
hyperledger-fabricdocs Documentation
Release master

hyperledger

Jul 10, 2020

Contents

1 Introduction 3

2 What’s new in Hyperledger Fabric v2.x 9

3 Release notes 13

4 Key Concepts 15

5 Getting Started 123

6 Developing Applications 139

7 Tutorials 199

8 Deploying a production network 339

9 Operations Guides 347

10 Upgrading to the latest release 425

11 Commands Reference 447

12 Architecture Reference 505

13 Frequently Asked Questions 529

14 Contributions Welcome! 533

15 Glossary 561

16 Releases 571

17 Still Have Questions? 573

18 Status 575

i

ii

hyperledger-fabricdocs Documentation, Release master

Note: Please make sure you are looking at the documentation that matches the version of the software you are using.
See the version label at the top of the navigation panel on the left. You can change it using selector at the bottom of
that navigation panel.

Enterprise grade permissioned distributed ledger platform that offers modularity and versatility for a broad set of
industry use cases.

Contents 1

hyperledger-fabricdocs Documentation, Release master

2 Contents

CHAPTER 1

Introduction

In general terms, a blockchain is an immutable transaction ledger, maintained within a distributed network of peer
nodes. These nodes each maintain a copy of the ledger by applying transactions that have been validated by a consensus
protocol, grouped into blocks that include a hash that bind each block to the preceding block.

The first and most widely recognized application of blockchain is the Bitcoin cryptocurrency, though others have
followed in its footsteps. Ethereum, an alternative cryptocurrency, took a different approach, integrating many of the
same characteristics as Bitcoin but adding smart contracts to create a platform for distributed applications. Bitcoin
and Ethereum fall into a class of blockchain that we would classify as public permissionless blockchain technology.
Basically, these are public networks, open to anyone, where participants interact anonymously.

As the popularity of Bitcoin, Ethereum and a few other derivative technologies grew, interest in applying the underlying
technology of the blockchain, distributed ledger and distributed application platform to more innovative enterprise
use cases also grew. However, many enterprise use cases require performance characteristics that the permissionless
blockchain technologies are unable (presently) to deliver. In addition, in many use cases, the identity of the participants
is a hard requirement, such as in the case of financial transactions where Know-Your-Customer (KYC) and Anti-Money
Laundering (AML) regulations must be followed.

For enterprise use, we need to consider the following requirements:

• Participants must be identified/identifiable

• Networks need to be permissioned

• High transaction throughput performance

• Low latency of transaction confirmation

• Privacy and confidentiality of transactions and data pertaining to business transactions

While many early blockchain platforms are currently being adapted for enterprise use, Hyperledger Fabric has been
designed for enterprise use from the outset. The following sections describe how Hyperledger Fabric (Fabric) differ-
entiates itself from other blockchain platforms and describes some of the motivation for its architectural decisions.

3

https://en.wikipedia.org/wiki/Bitcoin

hyperledger-fabricdocs Documentation, Release master

1.1 Hyperledger Fabric

Hyperledger Fabric is an open source enterprise-grade permissioned distributed ledger technology (DLT) platform,
designed for use in enterprise contexts, that delivers some key differentiating capabilities over other popular distributed
ledger or blockchain platforms.

One key point of differentiation is that Hyperledger was established under the Linux Foundation, which itself has a
long and very successful history of nurturing open source projects under open governance that grow strong sustaining
communities and thriving ecosystems. Hyperledger is governed by a diverse technical steering committee, and the Hy-
perledger Fabric project by a diverse set of maintainers from multiple organizations. It has a development community
that has grown to over 35 organizations and nearly 200 developers since its earliest commits.

Fabric has a highly modular and configurable architecture, enabling innovation, versatility and optimization for a
broad range of industry use cases including banking, finance, insurance, healthcare, human resources, supply chain
and even digital music delivery.

Fabric is the first distributed ledger platform to support smart contracts authored in general-purpose programming
languages such as Java, Go and Node.js, rather than constrained domain-specific languages (DSL). This means that
most enterprises already have the skill set needed to develop smart contracts, and no additional training to learn a new
language or DSL is needed.

The Fabric platform is also permissioned, meaning that, unlike with a public permissionless network, the participants
are known to each other, rather than anonymous and therefore fully untrusted. This means that while the participants
may not fully trust one another (they may, for example, be competitors in the same industry), a network can be operated
under a governance model that is built off of what trust does exist between participants, such as a legal agreement or
framework for handling disputes.

One of the most important of the platform’s differentiators is its support for pluggable consensus protocols that
enable the platform to be more effectively customized to fit particular use cases and trust models. For instance, when
deployed within a single enterprise, or operated by a trusted authority, fully byzantine fault tolerant consensus might
be considered unnecessary and an excessive drag on performance and throughput. In situations such as that, a crash
fault-tolerant (CFT) consensus protocol might be more than adequate whereas, in a multi-party, decentralized use case,
a more traditional byzantine fault tolerant (BFT) consensus protocol might be required.

Fabric can leverage consensus protocols that do not require a native cryptocurrency to incent costly mining or to
fuel smart contract execution. Avoidance of a cryptocurrency reduces some significant risk/attack vectors, and absence
of cryptographic mining operations means that the platform can be deployed with roughly the same operational cost
as any other distributed system.

The combination of these differentiating design features makes Fabric one of the better performing platforms avail-
able today both in terms of transaction processing and transaction confirmation latency, and it enables privacy and
confidentiality of transactions and the smart contracts (what Fabric calls “chaincode”) that implement them.

Let’s explore these differentiating features in more detail.

1.2 Modularity

Hyperledger Fabric has been specifically architected to have a modular architecture. Whether it is pluggable con-
sensus, pluggable identity management protocols such as LDAP or OpenID Connect, key management protocols or
cryptographic libraries, the platform has been designed at its core to be configured to meet the diversity of enterprise
use case requirements.

At a high level, Fabric is comprised of the following modular components:

• A pluggable ordering service establishes consensus on the order of transactions and then broadcasts blocks to
peers.

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance

hyperledger-fabricdocs Documentation, Release master

• A pluggable membership service provider is responsible for associating entities in the network with crypto-
graphic identities.

• An optional peer-to-peer gossip service disseminates the blocks output by ordering service to other peers.

• Smart contracts (“chaincode”) run within a container environment (e.g. Docker) for isolation. They can be
written in standard programming languages but do not have direct access to the ledger state.

• The ledger can be configured to support a variety of DBMSs.

• A pluggable endorsement and validation policy enforcement that can be independently configured per applica-
tion.

There is fair agreement in the industry that there is no “one blockchain to rule them all”. Hyperledger Fabric can be
configured in multiple ways to satisfy the diverse solution requirements for multiple industry use cases.

1.3 Permissioned vs Permissionless Blockchains

In a permissionless blockchain, virtually anyone can participate, and every participant is anonymous. In such a context,
there can be no trust other than that the state of the blockchain, prior to a certain depth, is immutable. In order
to mitigate this absence of trust, permissionless blockchains typically employ a “mined” native cryptocurrency or
transaction fees to provide economic incentive to offset the extraordinary costs of participating in a form of byzantine
fault tolerant consensus based on “proof of work” (PoW).

Permissioned blockchains, on the other hand, operate a blockchain amongst a set of known, identified and often vetted
participants operating under a governance model that yields a certain degree of trust. A permissioned blockchain
provides a way to secure the interactions among a group of entities that have a common goal but which may not fully
trust each other. By relying on the identities of the participants, a permissioned blockchain can use more traditional
crash fault tolerant (CFT) or byzantine fault tolerant (BFT) consensus protocols that do not require costly mining.

Additionally, in such a permissioned context, the risk of a participant intentionally introducing malicious code through
a smart contract is diminished. First, the participants are known to one another and all actions, whether submitting
application transactions, modifying the configuration of the network or deploying a smart contract are recorded on the
blockchain following an endorsement policy that was established for the network and relevant transaction type. Rather
than being completely anonymous, the guilty party can be easily identified and the incident handled in accordance
with the terms of the governance model.

1.4 Smart Contracts

A smart contract, or what Fabric calls “chaincode”, functions as a trusted distributed application that gains its secu-
rity/trust from the blockchain and the underlying consensus among the peers. It is the business logic of a blockchain
application.

There are three key points that apply to smart contracts, especially when applied to a platform:

• many smart contracts run concurrently in the network,

• they may be deployed dynamically (in many cases by anyone), and

• application code should be treated as untrusted, potentially even malicious.

Most existing smart-contract capable blockchain platforms follow an order-execute architecture in which the consen-
sus protocol:

• validates and orders transactions then propagates them to all peer nodes,

• each peer then executes the transactions sequentially.

1.3. Permissioned vs Permissionless Blockchains 5

hyperledger-fabricdocs Documentation, Release master

The order-execute architecture can be found in virtually all existing blockchain systems, ranging from pub-
lic/permissionless platforms such as Ethereum (with PoW-based consensus) to permissioned platforms such as Ten-
dermint, Chain, and Quorum.

Smart contracts executing in a blockchain that operates with the order-execute architecture must be deterministic;
otherwise, consensus might never be reached. To address the non-determinism issue, many platforms require that the
smart contracts be written in a non-standard, or domain-specific language (such as Solidity) so that non-deterministic
operations can be eliminated. This hinders wide-spread adoption because it requires developers writing smart contracts
to learn a new language and may lead to programming errors.

Further, since all transactions are executed sequentially by all nodes, performance and scale is limited. The fact that
the smart contract code executes on every node in the system demands that complex measures be taken to protect the
overall system from potentially malicious contracts in order to ensure resiliency of the overall system.

1.5 A New Approach

Fabric introduces a new architecture for transactions that we call execute-order-validate. It addresses the resiliency,
flexibility, scalability, performance and confidentiality challenges faced by the order-execute model by separating the
transaction flow into three steps:

• execute a transaction and check its correctness, thereby endorsing it,

• order transactions via a (pluggable) consensus protocol, and

• validate transactions against an application-specific endorsement policy before committing them to the ledger

This design departs radically from the order-execute paradigm in that Fabric executes transactions before reaching
final agreement on their order.

In Fabric, an application-specific endorsement policy specifies which peer nodes, or how many of them, need to vouch
for the correct execution of a given smart contract. Thus, each transaction need only be executed (endorsed) by the
subset of the peer nodes necessary to satisfy the transaction’s endorsement policy. This allows for parallel execution
increasing overall performance and scale of the system. This first phase also eliminates any non-determinism, as
inconsistent results can be filtered out before ordering.

Because we have eliminated non-determinism, Fabric is the first blockchain technology that enables use of standard
programming languages.

1.6 Privacy and Confidentiality

As we have discussed, in a public, permissionless blockchain network that leverages PoW for its consensus model,
transactions are executed on every node. This means that neither can there be confidentiality of the contracts them-
selves, nor of the transaction data that they process. Every transaction, and the code that implements it, is visible to
every node in the network. In this case, we have traded confidentiality of contract and data for byzantine fault tolerant
consensus delivered by PoW.

This lack of confidentiality can be problematic for many business/enterprise use cases. For example, in a network of
supply-chain partners, some consumers might be given preferred rates as a means of either solidifying a relationship,
or promoting additional sales. If every participant can see every contract and transaction, it becomes impossible to
maintain such business relationships in a completely transparent network — everyone will want the preferred rates!

As a second example, consider the securities industry, where a trader building a position (or disposing of one) would
not want her competitors to know of this, or else they will seek to get in on the game, weakening the trader’s gambit.

In order to address the lack of privacy and confidentiality for purposes of delivering on enterprise use case require-
ments, blockchain platforms have adopted a variety of approaches. All have their trade-offs.

6 Chapter 1. Introduction

https://ethereum.org/
http://tendermint.com/
http://tendermint.com/
http://chain.com/
http://www.jpmorgan.com/global/Quorum
https://solidity.readthedocs.io/en/v0.4.23/

hyperledger-fabricdocs Documentation, Release master

Encrypting data is one approach to providing confidentiality; however, in a permissionless network leveraging PoW
for its consensus, the encrypted data is sitting on every node. Given enough time and computational resource, the
encryption could be broken. For many enterprise use cases, the risk that their information could become compromised
is unacceptable.

Zero knowledge proofs (ZKP) are another area of research being explored to address this problem, the trade-off here
being that, presently, computing a ZKP requires considerable time and computational resources. Hence, the trade-off
in this case is performance for confidentiality.

In a permissioned context that can leverage alternate forms of consensus, one might explore approaches that restrict
the distribution of confidential information exclusively to authorized nodes.

Hyperledger Fabric, being a permissioned platform, enables confidentiality through its channel architecture and private
data feature. In channels, participants on a Fabric network establish a sub-network where every member has visibility
to a particular set of transactions. Thus, only those nodes that participate in a channel have access to the smart contract
(chaincode) and data transacted, preserving the privacy and confidentiality of both. Private data allows collections
between members on a channel, allowing much of the same protection as channels without the maintenance overhead
of creating and maintaining a separate channel.

1.7 Pluggable Consensus

The ordering of transactions is delegated to a modular component for consensus that is logically decoupled from
the peers that execute transactions and maintain the ledger. Specifically, the ordering service. Since consensus is
modular, its implementation can be tailored to the trust assumption of a particular deployment or solution. This
modular architecture allows the platform to rely on well-established toolkits for CFT (crash fault-tolerant) or BFT
(byzantine fault-tolerant) ordering.

Fabric currently offers a CFT ordering service implementation based on the etcd library of the Raft protocol. For
information about currently available ordering services, check out our conceptual documentation about ordering.

Note also that these are not mutually exclusive. A Fabric network can have multiple ordering services supporting
different applications or application requirements.

1.8 Performance and Scalability

Performance of a blockchain platform can be affected by many variables such as transaction size, block size, network
size, as well as limits of the hardware, etc. The Hyperledger Fabric Performance and Scale working group currently
works on a benchmarking framework called Hyperledger Caliper.

Several research papers have been published studying and testing the performance capabilities of Hyperledger Fabric.
The latest scaled Fabric to 20,000 transactions per second.

1.9 Conclusion

Any serious evaluation of blockchain platforms should include Hyperledger Fabric in its short list.

Combined, the differentiating capabilities of Fabric make it a highly scalable system for permissioned blockchains
supporting flexible trust assumptions that enable the platform to support a wide range of industry use cases ranging
from government, to finance, to supply-chain logistics, to healthcare and so much more.

Hyperledger Fabric is the most active of the Hyperledger projects. The community building around the platform is
growing steadily, and the innovation delivered with each successive release far out-paces any of the other enterprise
blockchain platforms.

1.7. Pluggable Consensus 7

./private-data/private-data.html
./private-data/private-data.html
https://coreos.com/etcd/
https://raft.github.io/raft.pdf
./orderer/ordering_service.html
https://wiki.hyperledger.org/display/PSWG/Performance+and+Scale+Working+Group
https://wiki.hyperledger.org/projects/caliper
https://arxiv.org/abs/1901.00910

hyperledger-fabricdocs Documentation, Release master

1.10 Acknowledgement

The preceding is derived from the peer reviewed “Hyperledger Fabric: A Distributed Operating System for Per-
missioned Blockchains” - Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan,
Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolic, Sharon Weed Cocco, Jason Yellick

8 Chapter 1. Introduction

https://dl.acm.org/doi/10.1145/3190508.3190538
https://dl.acm.org/doi/10.1145/3190508.3190538

CHAPTER 2

What’s new in Hyperledger Fabric v2.x

The first Hyperledger Fabric major release since v1.0, Fabric v2.0 delivers important new features and changes for
users and operators alike, including support for new application and privacy patterns, enhanced governance around
smart contracts, and new options for operating nodes.

Each v2.x minor release builds on the v2.0 release with minor features, improvements, and bug fixes.

Let’s take a look at some of the highlights of the Fabric v2.0 release. . .

2.1 Decentralized governance for smart contracts

Fabric v2.0 introduces decentralized governance for smart contracts, with a new process for installing a chaincode on
your peers and starting it on a channel. The new Fabric chaincode lifecycle allows multiple organizations to come
to agreement on the parameters of a chaincode, such as the chaincode endorsement policy, before it can be used to
interact with the ledger. The new model offers several improvements over the previous lifecycle:

• Multiple organizations must agree to the parameters of a chaincode In the release 1.x versions of Fabric,
one organization had the ability to set parameters of a chaincode (for instance the endorsement policy) for all
other channel members, who only had the power to refuse to install the chaincode and therefore not take part in
transactions invoking it. The new Fabric chaincode lifecycle is more flexible since it supports both centralized
trust models (such as that of the previous lifecycle model) as well as decentralized models requiring a sufficient
number of organizations to agree on an endorsement policy and other details before the chaincode becomes
active on a channel.

• More deliberate chaincode upgrade process In the previous chaincode lifecycle, the upgrade transaction could
be issued by a single organization, creating a risk for a channel member that had not yet installed the new
chaincode. The new model allows for a chaincode to be upgraded only after a sufficient number of organizations
have approved the upgrade.

• Simpler endorsement policy and private data collection updates Fabric lifecycle allows you to change an en-
dorsement policy or private data collection configuration without having to repackage or reinstall the chaincode.
Users can also take advantage of a new default endorsement policy that requires endorsement from a majority
of organizations on the channel. This policy is updated automatically when organizations are added or removed
from the channel.

9

hyperledger-fabricdocs Documentation, Release master

• Inspectable chaincode packages The Fabric lifecycle packages chaincode in easily readable tar files. This
makes it easier to inspect the chaincode package and coordinate installation across multiple organizations.

• Start multiple chaincodes on a channel using one package The previous lifecycle defined each chaincode on
the channel using a name and version that was specified when the chaincode package was installed. You can
now use a single chaincode package and deploy it multiple times with different names on the same channel or
on different channels. For example, if you’d like to track different types of assets in their own ‘copy’ of the
chaincode.

• Chaincode packages do not need to be identical across channel members Organizations can extend a chain-
code for their own use case, for example to perform different validations in the interest of their organization. As
long as the required number of organizations endorse chaincode transactions with matching results, the transac-
tion will be validated and committed to the ledger. This also allows organizations to individually roll out minor
fixes on their own schedules without requiring the entire network to proceed in lock-step.

2.1.1 Using the new chaincode lifecycle

For existing Fabric deployments, you can continue to use the prior chaincode lifecycle with Fabric v2.x. The new
chaincode lifecycle will become effective only when the channel application capability is updated to v2.0. See the
Fabric chaincode lifecycle concept topic for an overview of the new chaincode lifecycle.

2.2 New chaincode application patterns for collaboration and con-
sensus

The same decentralized methods of coming to agreement that underpin the new chaincode lifecycle management can
also be used in your own chaincode applications to ensure organizations consent to data transactions before they are
committed to the ledger.

• Automated checks As mentioned above, organizations can add automated checks to chaincode functions to
validate additional information before endorsing a transaction proposal.

• Decentralized agreement Human decisions can be modeled into a chaincode process that spans multiple trans-
actions. The chaincode may require actors from various organizations to indicate their terms and conditions of
agreement in a ledger transaction. Then, a final chaincode proposal can verify that the conditions from all the
individual transactors are met, and “settle” the business transaction with finality across all channel members. For
a concrete example of indicating terms and conditions in private, see the asset transfer scenario in the Private
data documentation.

2.3 Private data enhancements

Fabric v2.0 also enables new patterns for working with and sharing private data, without the requirement of creating
private data collections for all combinations of channel members that may want to transact. Specifically, instead of
sharing private data within a collection of multiple members, you may want to share private data across collections,
where each collection may include a single organization, or perhaps a single organization along with a regulator or
auditor.

Several enhancements in Fabric v2.x make these new private data patterns possible:

• Sharing and verifying private data When private data is shared with a channel member who is not a member of
a collection, or shared with another private data collection that contains one or more channel members (by writ-
ing a key to that collection), the receiving parties can utilize the GetPrivateDataHash() chaincode API to verify
that the private data matches the on-chain hashes that were created from private data in previous transactions.

10 Chapter 2. What’s new in Hyperledger Fabric v2.x

hyperledger-fabricdocs Documentation, Release master

• Collection-level endorsement policies Private data collections can now optionally be defined with an endorse-
ment policy that overrides the chaincode-level endorsement policy for keys within the collection. This feature
can be used to restrict which organizations can write data to a collection, and is what enables the new chain-
code lifecycle and chaincode application patterns mentioned earlier. For example, you may have a chaincode
endorsement policy that requires a majority of organizations to endorse, but for any given transaction, you may
need two transacting organizations to individually endorse their agreement in their own private data collections.

• Implicit per-organization collections If you’d like to utilize per-organization private data patterns, you don’t
even need to define the collections when deploying chaincode in Fabric v2.x. Implicit organization-specific
collections can be used without any upfront definition.

To learn more about the new private data patterns, see the Private data (conceptual documentation). For details about
private data collection configuration and implicit collections, see the Private Data (reference documentation).

2.4 External chaincode launcher

The external chaincode launcher feature empowers operators to build and launch chaincode with the technology of
their choice. Use of external builders and launchers is not required as the default behavior builds and runs chaincode
in the same manner as prior releases using the Docker API.

• Eliminate Docker daemon dependency Prior releases of Fabric required peers to have access to a Docker
daemon in order to build and launch chaincode - something that may not be desirable in production environments
due to the privileges required by the peer process.

• Alternatives to containers Chaincode is no longer required to be run in Docker containers, and may be executed
in the operator’s choice of environment (including containers).

• External builder executables An operator can provide a set of external builder executables to override how the
peer builds and launches chaincode.

• Chaincode as an external service Traditionally, chaincodes are launched by the peer, and then connect back
to the peer. It is now possible to run chaincode as an external service, for example in a Kubernetes pod, which
a peer can connect to and utilize for chaincode execution. See Chaincode as an external service for more
information.

See External Builders and Launchers to learn more about the external chaincode launcher feature.

2.5 State database cache for improved performance on CouchDB

• When using external CouchDB state database, read delays during endorsement and validation phases have his-
torically been a performance bottleneck.

• With Fabric v2.0, a new peer cache replaces many of these expensive lookups with fast local cache reads. The
cache size can be configured by using the core.yaml property cacheSize.

2.6 Alpine-based docker images

Starting with v2.0, Hyperledger Fabric Docker images will use Alpine Linux, a security-oriented, lightweight Linux
distribution. This means that Docker images are now much smaller, providing faster download and startup times, as
well as taking up less disk space on host systems. Alpine Linux is designed from the ground up with security in mind,
and the minimalist nature of the Alpine distribution greatly reduces the risk of security vulnerabilities.

2.4. External chaincode launcher 11

hyperledger-fabricdocs Documentation, Release master

2.7 Sample test network

The fabric-samples repository now includes a new Fabric test network. The test network is built to be a modular and
user friendly sample Fabric network that makes it easy to test your applications and smart contracts. The network also
supports the ability to deploy your network using Certificate Authorities, in addition to cryptogen.

For more information about this network, check out Using the Fabric test network.

2.8 Upgrading to Fabric v2.x

A major new release brings some additional upgrade considerations. Rest assured though, that rolling upgrades from
v1.4.x to v2.0 are supported, so that network components can be upgraded one at a time with no downtime.

The upgrade docs have been significantly expanded and reworked, and now have a standalone home in the documen-
tation: Upgrading to the latest release. Here you’ll find documentation on Upgrading your components and Updating
the capability level of a channel, as well as a specific look at the considerations for upgrading to v2.x, Considerations
for getting to v2.x.

12 Chapter 2. What’s new in Hyperledger Fabric v2.x

CHAPTER 3

Release notes

The release notes provide more details for users moving to the new release. Specifically, take a look at the changes
and deprecations announced in each of the v2.x releases.

• Fabric v2.0.0 release notes.

• Fabric v2.0.1 release notes.

• Fabric v2.1.0 release notes.

• Fabric v2.1.1 release notes.

• Fabric v2.2.0 release notes.

13

https://github.com/hyperledger/fabric/releases/tag/v2.0.0
https://github.com/hyperledger/fabric/releases/tag/v2.0.1
https://github.com/hyperledger/fabric/releases/tag/v2.1.0
https://github.com/hyperledger/fabric/releases/tag/v2.1.1
https://github.com/hyperledger/fabric/releases/tag/v2.2.0

hyperledger-fabricdocs Documentation, Release master

14 Chapter 3. Release notes

CHAPTER 4

Key Concepts

4.1 Introduction

Hyperledger Fabric is a platform for distributed ledger solutions underpinned by a modular architecture delivering high
degrees of confidentiality, resiliency, flexibility, and scalability. It is designed to support pluggable implementations
of different components and accommodate the complexity and intricacies that exist across the economic ecosystem.

We recommend first-time users begin by going through the rest of the introduction below in order to gain familiarity
with how blockchains work and with the specific features and components of Hyperledger Fabric.

Once comfortable — or if you’re already familiar with blockchain and Hyperledger Fabric — go to Getting Started
and from there explore the demos, technical specifications, APIs, etc.

4.1.1 What is a Blockchain?

A Distributed Ledger

At the heart of a blockchain network is a distributed ledger that records all the transactions that take place on the
network.

A blockchain ledger is often described as decentralized because it is replicated across many network participants,
each of whom collaborate in its maintenance. We’ll see that decentralization and collaboration are powerful attributes
that mirror the way businesses exchange goods and services in the real world.

15

hyperledger-fabricdocs Documentation, Release master

In addition to being decentralized and collaborative, the information recorded to a blockchain is append-only, using
cryptographic techniques that guarantee that once a transaction has been added to the ledger it cannot be modified.
This property of “immutability” makes it simple to determine the provenance of information because participants can
be sure information has not been changed after the fact. It’s why blockchains are sometimes described as systems of
proof.

Smart Contracts

To support the consistent update of information — and to enable a whole host of ledger functions (transacting, query-
ing, etc) — a blockchain network uses smart contracts to provide controlled access to the ledger.

16 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Smart contracts are not only a key mechanism for encapsulating information and keeping it simple across the network,
they can also be written to allow participants to execute certain aspects of transactions automatically.

A smart contract can, for example, be written to stipulate the cost of shipping an item where the shipping charge
changes depending on how quickly the item arrives. With the terms agreed to by both parties and written to the ledger,
the appropriate funds change hands automatically when the item is received.

Consensus

The process of keeping the ledger transactions synchronized across the network — to ensure that ledgers update only
when transactions are approved by the appropriate participants, and that when ledgers do update, they update with the
same transactions in the same order — is called consensus.

4.1. Introduction 17

hyperledger-fabricdocs Documentation, Release master

You’ll learn a lot more about ledgers, smart contracts and consensus later. For now, it’s enough to think of a blockchain
as a shared, replicated transaction system which is updated via smart contracts and kept consistently synchronized
through a collaborative process called consensus.

4.1.2 Why is a Blockchain useful?

Today’s Systems of Record

The transactional networks of today are little more than slightly updated versions of networks that have existed since
business records have been kept. The members of a business network transact with each other, but they maintain
separate records of their transactions. And the things they’re transacting — whether it’s Flemish tapestries in the 16th
century or the securities of today — must have their provenance established each time they’re sold to ensure that the
business selling an item possesses a chain of title verifying their ownership of it.

What you’re left with is a business network that looks like this:

18 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Modern technology has taken this process from stone tablets and paper folders to hard drives and cloud platforms, but
the underlying structure is the same. Unified systems for managing the identity of network participants do not exist,
establishing provenance is so laborious it takes days to clear securities transactions (the world volume of which is
numbered in the many trillions of dollars), contracts must be signed and executed manually, and every database in the
system contains unique information and therefore represents a single point of failure.

It’s impossible with today’s fractured approach to information and process sharing to build a system of record that
spans a business network, even though the needs of visibility and trust are clear.

The Blockchain Difference

What if, instead of the rat’s nest of inefficiencies represented by the “modern” system of transactions, business net-
works had standard methods for establishing identity on the network, executing transactions, and storing data? What
if establishing the provenance of an asset could be determined by looking through a list of transactions that, once
written, cannot be changed, and can therefore be trusted?

That business network would look more like this:

4.1. Introduction 19

hyperledger-fabricdocs Documentation, Release master

This is a blockchain network, wherein every participant has their own replicated copy of the ledger. In addition to
ledger information being shared, the processes which update the ledger are also shared. Unlike today’s systems, where
a participant’s private programs are used to update their private ledgers, a blockchain system has shared programs
to update shared ledgers.

With the ability to coordinate their business network through a shared ledger, blockchain networks can reduce the
time, cost, and risk associated with private information and processing while improving trust and visibility.

You now know what blockchain is and why it’s useful. There are a lot of other details that are important, but they all
relate to these fundamental ideas of the sharing of information and processes.

4.1.3 What is Hyperledger Fabric?

The Linux Foundation founded the Hyperledger project in 2015 to advance cross-industry blockchain technologies.
Rather than declaring a single blockchain standard, it encourages a collaborative approach to developing blockchain
technologies via a community process, with intellectual property rights that encourage open development and the
adoption of key standards over time.

Hyperledger Fabric is one of the blockchain projects within Hyperledger. Like other blockchain technologies, it has a
ledger, uses smart contracts, and is a system by which participants manage their transactions.

20 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Where Hyperledger Fabric breaks from some other blockchain systems is that it is private and permissioned. Rather
than an open permissionless system that allows unknown identities to participate in the network (requiring protocols
like “proof of work” to validate transactions and secure the network), the members of a Hyperledger Fabric network
enroll through a trusted Membership Service Provider (MSP).

Hyperledger Fabric also offers several pluggable options. Ledger data can be stored in multiple formats, consensus
mechanisms can be swapped in and out, and different MSPs are supported.

Hyperledger Fabric also offers the ability to create channels, allowing a group of participants to create a separate ledger
of transactions. This is an especially important option for networks where some participants might be competitors and
not want every transaction they make — a special price they’re offering to some participants and not others, for
example — known to every participant. If two participants form a channel, then those participants — and no others —
have copies of the ledger for that channel.

Shared Ledger

Hyperledger Fabric has a ledger subsystem comprising two components: the world state and the transaction log.
Each participant has a copy of the ledger to every Hyperledger Fabric network they belong to.

The world state component describes the state of the ledger at a given point in time. It’s the database of the ledger. The
transaction log component records all transactions which have resulted in the current value of the world state; it’s the
update history for the world state. The ledger, then, is a combination of the world state database and the transaction
log history.

The ledger has a replaceable data store for the world state. By default, this is a LevelDB key-value store database.
The transaction log does not need to be pluggable. It simply records the before and after values of the ledger database
being used by the blockchain network.

Smart Contracts

Hyperledger Fabric smart contracts are written in chaincode and are invoked by an application external to the
blockchain when that application needs to interact with the ledger. In most cases, chaincode interacts only with
the database component of the ledger, the world state (querying it, for example), and not the transaction log.

Chaincode can be implemented in several programming languages. Currently, Go and Node are supported.

Privacy

Depending on the needs of a network, participants in a Business-to-Business (B2B) network might be extremely
sensitive about how much information they share. For other networks, privacy will not be a top concern.

Hyperledger Fabric supports networks where privacy (using channels) is a key operational requirement as well as
networks that are comparatively open.

Consensus

Transactions must be written to the ledger in the order in which they occur, even though they might be between
different sets of participants within the network. For this to happen, the order of transactions must be established and a
method for rejecting bad transactions that have been inserted into the ledger in error (or maliciously) must be put into
place.

This is a thoroughly researched area of computer science, and there are many ways to achieve it, each with different
trade-offs. For example, PBFT (Practical Byzantine Fault Tolerance) can provide a mechanism for file replicas to
communicate with each other to keep each copy consistent, even in the event of corruption. Alternatively, in Bitcoin,
ordering happens through a process called mining where competing computers race to solve a cryptographic puzzle
which defines the order that all processes subsequently build upon.

Hyperledger Fabric has been designed to allow network starters to choose a consensus mechanism that best represents
the relationships that exist between participants. As with privacy, there is a spectrum of needs; from networks that are
highly structured in their relationships to those that are more peer-to-peer.

4.1. Introduction 21

hyperledger-fabricdocs Documentation, Release master

4.2 Hyperledger Fabric Model

This section outlines the key design features woven into Hyperledger Fabric that fulfill its promise of a comprehensive,
yet customizable, enterprise blockchain solution:

• Assets — Asset definitions enable the exchange of almost anything with monetary value over the network, from
whole foods to antique cars to currency futures.

• Chaincode — Chaincode execution is partitioned from transaction ordering, limiting the required levels of trust
and verification across node types, and optimizing network scalability and performance.

• Ledger Features — The immutable, shared ledger encodes the entire transaction history for each channel, and
includes SQL-like query capability for efficient auditing and dispute resolution.

• Privacy — Channels and private data collections enable private and confidential multi-lateral transactions that
are usually required by competing businesses and regulated industries that exchange assets on a common net-
work.

• Security & Membership Services — Permissioned membership provides a trusted blockchain network, where
participants know that all transactions can be detected and traced by authorized regulators and auditors.

• Consensus — A unique approach to consensus enables the flexibility and scalability needed for the enterprise.

4.2.1 Assets

Assets can range from the tangible (real estate and hardware) to the intangible (contracts and intellectual property).
Hyperledger Fabric provides the ability to modify assets using chaincode transactions.

Assets are represented in Hyperledger Fabric as a collection of key-value pairs, with state changes recorded as trans-
actions on a Channel ledger. Assets can be represented in binary and/or JSON form.

4.2.2 Chaincode

Chaincode is software defining an asset or assets, and the transaction instructions for modifying the asset(s); in other
words, it’s the business logic. Chaincode enforces the rules for reading or altering key-value pairs or other state
database information. Chaincode functions execute against the ledger’s current state database and are initiated through
a transaction proposal. Chaincode execution results in a set of key-value writes (write set) that can be submitted to the
network and applied to the ledger on all peers.

4.2.3 Ledger Features

The ledger is the sequenced, tamper-resistant record of all state transitions in the fabric. State transitions are a result
of chaincode invocations (‘transactions’) submitted by participating parties. Each transaction results in a set of asset
key-value pairs that are committed to the ledger as creates, updates, or deletes.

The ledger is comprised of a blockchain (‘chain’) to store the immutable, sequenced record in blocks, as well as a state
database to maintain current fabric state. There is one ledger per channel. Each peer maintains a copy of the ledger
for each channel of which they are a member.

Some features of a Fabric ledger:

• Query and update ledger using key-based lookups, range queries, and composite key queries

• Read-only queries using a rich query language (if using CouchDB as state database)

• Read-only history queries — Query ledger history for a key, enabling data provenance scenarios

22 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

• Transactions consist of the versions of keys/values that were read in chaincode (read set) and keys/values that
were written in chaincode (write set)

• Transactions contain signatures of every endorsing peer and are submitted to ordering service

• Transactions are ordered into blocks and are “delivered” from an ordering service to peers on a channel

• Peers validate transactions against endorsement policies and enforce the policies

• Prior to appending a block, a versioning check is performed to ensure that states for assets that were read have
not changed since chaincode execution time

• There is immutability once a transaction is validated and committed

• A channel’s ledger contains a configuration block defining policies, access control lists, and other pertinent
information

• Channels contain Membership Service Provider instances allowing for crypto materials to be derived from
different certificate authorities

See the ledger topic for a deeper dive on the databases, storage structure, and “query-ability.”

4.2.4 Privacy

Hyperledger Fabric employs an immutable ledger on a per-channel basis, as well as chaincode that can manipulate
and modify the current state of assets (i.e. update key-value pairs). A ledger exists in the scope of a channel — it can
be shared across the entire network (assuming every participant is operating on one common channel) — or it can be
privatized to include only a specific set of participants.

In the latter scenario, these participants would create a separate channel and thereby isolate/segregate their transactions
and ledger. In order to solve scenarios that want to bridge the gap between total transparency and privacy, chaincode
can be installed only on peers that need to access the asset states to perform reads and writes (in other words, if a
chaincode is not installed on a peer, it will not be able to properly interface with the ledger).

When a subset of organizations on that channel need to keep their transaction data confidential, a private data collection
(collection) is used to segregate this data in a private database, logically separate from the channel ledger, accessible
only to the authorized subset of organizations.

Thus, channels keep transactions private from the broader network whereas collections keep data private between
subsets of organizations on the channel.

To further obfuscate the data, values within chaincode can be encrypted (in part or in total) using common cryp-
tographic algorithms such as AES before sending transactions to the ordering service and appending blocks to the
ledger. Once encrypted data has been written to the ledger, it can be decrypted only by a user in possession of the
corresponding key that was used to generate the cipher text.

See the Private Data topic for more details on how to achieve privacy on your blockchain network.

4.2.5 Security & Membership Services

Hyperledger Fabric underpins a transactional network where all participants have known identities. Public Key Infras-
tructure is used to generate cryptographic certificates which are tied to organizations, network components, and end
users or client applications. As a result, data access control can be manipulated and governed on the broader network
and on channel levels. This “permissioned” notion of Hyperledger Fabric, coupled with the existence and capabilities
of channels, helps address scenarios where privacy and confidentiality are paramount concerns.

See the Membership Service Providers (MSP) topic to better understand cryptographic implementations, and the sign,
verify, authenticate approach used in Hyperledger Fabric.

4.2. Hyperledger Fabric Model 23

hyperledger-fabricdocs Documentation, Release master

4.2.6 Consensus

In distributed ledger technology, consensus has recently become synonymous with a specific algorithm, within a
single function. However, consensus encompasses more than simply agreeing upon the order of transactions, and
this differentiation is highlighted in Hyperledger Fabric through its fundamental role in the entire transaction flow,
from proposal and endorsement, to ordering, validation and commitment. In a nutshell, consensus is defined as the
full-circle verification of the correctness of a set of transactions comprising a block.

Consensus is achieved ultimately when the order and results of a block’s transactions have met the explicit policy
criteria checks. These checks and balances take place during the lifecycle of a transaction, and include the usage of
endorsement policies to dictate which specific members must endorse a certain transaction class, as well as system
chaincodes to ensure that these policies are enforced and upheld. Prior to commitment, the peers will employ these
system chaincodes to make sure that enough endorsements are present, and that they were derived from the appropriate
entities. Moreover, a versioning check will take place during which the current state of the ledger is agreed or consented
upon, before any blocks containing transactions are appended to the ledger. This final check provides protection against
double spend operations and other threats that might compromise data integrity, and allows for functions to be executed
against non-static variables.

In addition to the multitude of endorsement, validity and versioning checks that take place, there are also ongoing
identity verifications happening in all directions of the transaction flow. Access control lists are implemented on
hierarchical layers of the network (ordering service down to channels), and payloads are repeatedly signed, verified and
authenticated as a transaction proposal passes through the different architectural components. To conclude, consensus
is not merely limited to the agreed upon order of a batch of transactions; rather, it is an overarching characterization
that is achieved as a byproduct of the ongoing verifications that take place during a transaction’s journey from proposal
to commitment.

Check out the Transaction Flow diagram for a visual representation of consensus.

4.3 Blockchain network

This topic will describe, at a conceptual level, how Hyperledger Fabric allows organizations to collaborate in the
formation of blockchain networks. If you’re an architect, administrator or developer, you can use this topic to get a
solid understanding of the major structure and process components in a Hyperledger Fabric blockchain network. This
topic will use a manageable worked example that introduces all of the major components in a blockchain network.

After reading this topic and understanding the concept of policies, you will have a solid understanding of the decisions
that organizations need to make to establish the policies that control a deployed Hyperledger Fabric network. You’ll
also understand how organizations manage network evolution using declarative policies – a key feature of Hyperledger
Fabric. In a nutshell, you’ll understand the major technical components of Hyperledger Fabric and the decisions
organizations need to make about them.

4.3.1 What is a blockchain network?

A blockchain network is a technical infrastructure that provides ledger and smart contract (chaincode) services to
applications. Primarily, smart contracts are used to generate transactions which are subsequently distributed to every
peer node in the network where they are immutably recorded on their copy of the ledger. The users of applications
might be end users using client applications or blockchain network administrators.

In most cases, multiple organizations come together as a consortium to form the network and their permissions are
determined by a set of policies that are agreed by the consortium when the network is originally configured. Moreover,
network policies can change over time subject to the agreement of the organizations in the consortium, as we’ll discover
when we discuss the concept of modification policy.

24 Chapter 4. Key Concepts

../glossary.html#organization
../glossary.html#consortium
../glossary.html#policy

hyperledger-fabricdocs Documentation, Release master

4.3.2 The sample network

Before we start, let’s show you what we’re aiming at! Here’s a diagram representing the final state of our sample
network.

Don’t worry that this might look complicated! As we go through this topic, we will build up the network piece by
piece, so that you see how the organizations R1, R2, R3 and R4 contribute infrastructure to the network to help form
it. This infrastructure implements the blockchain network, and it is governed by policies agreed by the organizations
who form the network – for example, who can add new organizations. You’ll discover how applications consume the
ledger and smart contract services provided by the blockchain network.

Four organizations, R1, R2, R3 and R4 have jointly decided, and written into an agreement, that they will set up and
exploit a Hyperledger Fabric network. R4 has been assigned to be the network initiator – it has been given the power
to set up the initial version of the network. R4 has no intention to perform business transactions on the network. R1
and R2 have a need for a private communications within the overall network, as do R2 and R3. Organization R1 has a
client application that can perform business transactions within channel C1. Organization R2 has a client application
that can do similar work both in channel C1 and C2. Organization R3 has a client application that can do this on
channel C2. Peer node P1 maintains a copy of the ledger L1 associated with C1. Peer node P2 maintains a copy of
the ledger L1 associated with C1 and a copy of ledger L2 associated with C2. Peer node P3 maintains a copy of the
ledger L2 associated with C2. The network is governed according to policy rules specified in network configuration
NC4, the network is under the control of organizations R1 and R4. Channel C1 is governed according to the policy
rules specified in channel configuration CC1; the channel is under the control of organizations R1 and R2. Channel
C2 is governed according to the policy rules specified in channel configuration CC2; the channel is under the control
of organizations R2 and R3. There is an ordering service O4 that services as a network administration point for N,
and uses the system channel. The ordering service also supports application channels C1 and C2, for the purposes of
transaction ordering into blocks for distribution. Each of the four organizations has a preferred Certificate Authority.

4.3.3 Creating the Network

Let’s start at the beginning by creating the basis for the network:

4.3. Blockchain network 25

hyperledger-fabricdocs Documentation, Release master

The network is formed when an orderer is started. In our example network, N, the ordering service comprising a single
node, O4, is configured according to a network configuration NC4, which gives administrative rights to organization
R4. At the network level, Certificate Authority CA4 is used to dispense identities to the administrators and network
nodes of the R4 organization.

We can see that the first thing that defines a network, N, is an ordering service, O4. It’s helpful to think of the
ordering service as the initial administration point for the network. As agreed beforehand, O4 is initially configured
and started by an administrator in organization R4, and hosted in R4. The configuration NC4 contains the policies that
describe the starting set of administrative capabilities for the network. Initially this is set to only give R4 rights over
the network. This will change, as we’ll see later, but for now R4 is the only member of the network.

Certificate Authorities

You can also see a Certificate Authority, CA4, which is used to issue certificates to administrators and network nodes.
CA4 plays a key role in our network because it dispenses X.509 certificates that can be used to identify components
as belonging to organization R4. Certificates issued by CAs can also be used to sign transactions to indicate that an
organization endorses the transaction result – a precondition of it being accepted onto the ledger. Let’s examine these
two aspects of a CA in a little more detail.

Firstly, different components of the blockchain network use certificates to identify themselves to each other as being
from a particular organization. That’s why there is usually more than one CA supporting a blockchain network –
different organizations often use different CAs. We’re going to use four CAs in our network; one for each organization.
Indeed, CAs are so important that Hyperledger Fabric provides you with a built-in one (called Fabric-CA) to help you
get going, though in practice, organizations will choose to use their own CA.

The mapping of certificates to member organizations is achieved by via a structure called a Membership Services
Provider (MSP). Network configuration NC4 uses a named MSP to identify the properties of certificates dispensed by
CA4 which associate certificate holders with organization R4. NC4 can then use this MSP name in policies to grant
actors from R4 particular rights over network resources. An example of such a policy is to identify the administrators
in R4 who can add new member organizations to the network. We don’t show MSPs on these diagrams, as they would
just clutter them up, but they are very important.

Secondly, we’ll see later how certificates issued by CAs are at the heart of the transaction generation and validation
process. Specifically, X.509 certificates are used in client application transaction proposals and smart contract trans-
action responses to digitally sign transactions. Subsequently the network nodes who host copies of the ledger verify
that transaction signatures are valid before accepting transactions onto the ledger.

26 Chapter 4. Key Concepts

../glossary.html#membership-services
../glossary.html#membership-services
../glossary.html#transaction
../glossary.html#proposal
../glossary.html#response
../glossary.html#response
../glossary.html#transaction

hyperledger-fabricdocs Documentation, Release master

Let’s recap the basic structure of our example blockchain network. There’s a resource, the network N, accessed by a
set of users defined by a Certificate Authority CA4, who have a set of rights over the resources in the network N as
described by policies contained inside a network configuration NC4. All of this is made real when we configure and
start the ordering service node O4.

4.3.4 Adding Network Administrators

NC4 was initially configured to only allow R4 users administrative rights over the network. In this next phase, we are
going to allow organization R1 users to administer the network. Let’s see how the network evolves:

Organization R4 updates the network configuration to make organization R1 an administrator too. After this point R1
and R4 have equal rights over the network configuration.

We see the addition of a new organization R1 as an administrator – R1 and R4 now have equal rights over the net-
work. We can also see that certificate authority CA1 has been added – it can be used to identify users from the R1
organization. After this point, users from both R1 and R4 can administer the network.

Although the orderer node, O4, is running on R4’s infrastructure, R1 has shared administrative rights over it, as long
as it can gain network access. It means that R1 or R4 could update the network configuration NC4 to allow the R2
organization a subset of network operations. In this way, even though R4 is running the ordering service, and R1 has
full administrative rights over it, R2 has limited rights to create new consortia.

In its simplest form, the ordering service is a single node in the network, and that’s what you can see in the example.
Ordering services are usually multi-node, and can be configured to have different nodes in different organizations. For
example, we might run O4 in R4 and connect it to O2, a separate orderer node in organization R1. In this way, we
would have a multi-site, multi-organization administration structure.

We’ll discuss the ordering service a little later in this topic, but for now just think of the ordering service as an
administration point which provides different organizations controlled access to the network.

4.3.5 Defining a Consortium

Although the network can now be administered by R1 and R4, there is very little that can be done. The first thing we
need to do is define a consortium. This word literally means “a group with a shared destiny”, so it’s an appropriate
choice for a set of organizations in a blockchain network.

Let’s see how a consortium is defined:

4.3. Blockchain network 27

hyperledger-fabricdocs Documentation, Release master

A network administrator defines a consortium X1 that contains two members, the organizations R1 and R2. This
consortium definition is stored in the network configuration NC4, and will be used at the next stage of network devel-
opment. CA1 and CA2 are the respective Certificate Authorities for these organizations.

Because of the way NC4 is configured, only R1 or R4 can create new consortia. This diagram shows the addition of
a new consortium, X1, which defines R1 and R2 as its constituting organizations. We can also see that CA2 has been
added to identify users from R2. Note that a consortium can have any number of organizational members – we have
just shown two as it is the simplest configuration.

Why are consortia important? We can see that a consortium defines the set of organizations in the network who share
a need to transact with one another – in this case R1 and R2. It really makes sense to group organizations together if
they have a common goal, and that’s exactly what’s happening.

The network, although started by a single organization, is now controlled by a larger set of organizations. We could
have started it this way, with R1, R2 and R4 having shared control, but this build up makes it easier to understand.

We’re now going to use consortium X1 to create a really important part of a Hyperledger Fabric blockchain – a
channel.

4.3.6 Creating a channel for a consortium

So let’s create this key part of the Fabric blockchain network – a channel. A channel is a primary communications
mechanism by which the members of a consortium can communicate with each other. There can be multiple channels
in a network, but for now, we’ll start with one.

Let’s see how the first channel has been added to the network:

28 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

A channel C1 has been created for R1 and R2 using the consortium definition X1. The channel is governed by a
channel configuration CC1, completely separate to the network configuration. CC1 is managed by R1 and R2 who
have equal rights over C1. R4 has no rights in CC1 whatsoever.

The channel C1 provides a private communications mechanism for the consortium X1. We can see channel C1 has been
connected to the ordering service O4 but that nothing else is attached to it. In the next stage of network development,
we’re going to connect components such as client applications and peer nodes. But at this point, a channel represents
the potential for future connectivity.

Even though channel C1 is a part of the network N, it is quite distinguishable from it. Also notice that organizations
R3 and R4 are not in this channel – it is for transaction processing between R1 and R2. In the previous step, we saw
how R4 could grant R1 permission to create new consortia. It’s helpful to mention that R4 also allowed R1 to create
channels! In this diagram, it could have been organization R1 or R4 who created a channel C1. Again, note that a
channel can have any number of organizations connected to it – we’ve shown two as it’s the simplest configuration.

Again, notice how channel C1 has a completely separate configuration, CC1, to the network configuration NC4. CC1
contains the policies that govern the rights that R1 and R2 have over the channel C1 – and as we’ve seen, R3 and
R4 have no permissions in this channel. R3 and R4 can only interact with C1 if they are added by R1 or R2 to the
appropriate policy in the channel configuration CC1. An example is defining who can add a new organization to the
channel. Specifically, note that R4 cannot add itself to the channel C1 – it must, and can only, be authorized by R1 or
R2.

Why are channels so important? Channels are useful because they provide a mechanism for private communications
and private data between the members of a consortium. Channels provide privacy from other channels, and from the
network. Hyperledger Fabric is powerful in this regard, as it allows organizations to share infrastructure and keep it
private at the same time. There’s no contradiction here – different consortia within the network will have a need for
different information and processes to be appropriately shared, and channels provide an efficient mechanism to do this.
Channels provide an efficient sharing of infrastructure while maintaining data and communications privacy.

We can also see that once a channel has been created, it is in a very real sense “free from the network”. It is only
organizations that are explicitly specified in a channel configuration that have any control over it, from this time
forward into the future. Likewise, any updates to network configuration NC4 from this time onwards will have no direct
effect on channel configuration CC1; for example if consortia definition X1 is changed, it will not affect the members
of channel C1. Channels are therefore useful because they allow private communications between the organizations
constituting the channel. Moreover, the data in a channel is completely isolated from the rest of the network, including
other channels.

As an aside, there is also a special system channel defined for use by the ordering service. It behaves in exactly the

4.3. Blockchain network 29

hyperledger-fabricdocs Documentation, Release master

same way as a regular channel, which are sometimes called application channels for this reason. We don’t normally
need to worry about this channel, but we’ll discuss a little bit more about it later in this topic.

4.3.7 Peers and Ledgers

Let’s now start to use the channel to connect the blockchain network and the organizational components together. In
the next stage of network development, we can see that our network N has just acquired two new components, namely
a peer node P1 and a ledger instance, L1.

A peer node P1 has joined the channel C1. P1 physically hosts a copy of the ledger L1. P1 and O4 can communicate
with each other using channel C1.

Peer nodes are the network components where copies of the blockchain ledger are hosted! At last, we’re starting to
see some recognizable blockchain components! P1’s purpose in the network is purely to host a copy of the ledger L1
for others to access. We can think of L1 as being physically hosted on P1, but logically hosted on the channel C1.
We’ll see this idea more clearly when we add more peers to the channel.

A key part of a P1’s configuration is an X.509 identity issued by CA1 which associates P1 with organization R1. When
R1 administrator takes the action of joining peer P1 to channel C1, and the peer starts pulling blocks from the orderer
O4, the orderer uses the channel configuration CC1 to determine P1’s permissions on this channel. For example, policy
in CC1 determines whether P1 (or the organization R1) can read and/or write on the channel C1.

Notice how peers are joined to channels by the organizations that own them, and though we’ve only added one peer,
we’ll see how there can be multiple peer nodes on multiple channels within the network. We’ll see the different roles
that peers can take on a little later.

4.3.8 Applications and Smart Contract chaincode

Now that the channel C1 has a ledger on it, we can start connecting client applications to consume some of the services
provided by workhorse of the ledger, the peer!

Notice how the network has grown:

30 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

A smart contract S5 has been installed onto P1. Client application A1 in organization R1 can use S5 to access the
ledger via peer node P1. A1, P1 and O4 are all joined to channel C1, i.e. they can all make use of the communication
facilities provided by that channel.

In the next stage of network development, we can see that client application A1 can use channel C1 to connect to
specific network resources – in this case A1 can connect to both peer node P1 and orderer node O4. Again, see how
channels are central to the communication between network and organization components. Just like peers and orderers,
a client application will have an identity that associates it with an organization. In our example, client application A1
is associated with organization R1; and although it is outside the Fabric blockchain network, it is connected to it via
the channel C1.

It might now appear that A1 can access the ledger L1 directly via P1, but in fact, all access is managed via a special
program called a smart contract chaincode, S5. Think of S5 as defining all the common access patterns to the ledger;
S5 provides a well-defined set of ways by which the ledger L1 can be queried or updated. In short, client application
A1 has to go through smart contract S5 to get to ledger L1!

Smart contracts can be created by application developers in each organization to implement a business process shared
by the consortium members. Smart contracts are used to help generate transactions which can be subsequently dis-
tributed to every node in the network. We’ll discuss this idea a little later; it’ll be easier to understand when the
network is bigger. For now, the important thing to understand is that to get to this point two operations must have been
performed on the smart contract; it must have been installed on peers, and then defined on a channel.

Hyperledger Fabric users often use the terms smart contract and chaincode interchangeably. In general, a smart
contract defines the transaction logic that controls the lifecycle of a business object contained in the world state. It is
then packaged into a chaincode which is then deployed to a blockchain network. Think of smart contracts as governing
transactions, whereas chaincode governs how smart contracts are packaged for deployment.

Installing a chaincode package

After a smart contract S5 has been developed, an administrator in organization R1 must create a chaincode package
and install it onto peer node P1. This is a straightforward operation; once completed, P1 has full knowledge of
S5. Specifically, P1 can see the implementation logic of S5 – the program code that it uses to access the ledger
L1. We contrast this to the S5 interface which merely describes the inputs and outputs of S5, without regard to its
implementation.

When an organization has multiple peers in a channel, it can choose the peers upon which it installs smart contracts; it
does not need to install a smart contract on every peer.

4.3. Blockchain network 31

../glossary.html#install

hyperledger-fabricdocs Documentation, Release master

Defining a chaincode

Although a chaincode is installed on the peers of individual organizations, it is governed and operated in the scope
of a channel. Each organization needs to approve a chaincode definition, a set of parameters that establish how a
chaincode will be used on a channel. An organization must approve a chaincode definition in order to use the installed
smart contract to query the ledger and endorse transactions. In our example, which only has a single peer node P1, an
administrator in organization R1 must approve a chaincode definition for S5.

A sufficient number of organizations need to approve a chaincode definition (A majority, by default) before the chain-
code definition can be committed to the channel and used to interact with the channel ledger. Because the channel
only has one member, the administrator of R1 can commit the chaincode definition of S5 to the channel C1. Once the
definition has been committed, S5 can now be invoked by client application A1!

Note that although every component on the channel can now access S5, they are not able to see its program logic.
This remains private to those nodes who have installed it; in our example that means P1. Conceptually this means
that it’s the smart contract interface that is defined and committed to a channel, in contrast to the smart contract
implementation that is installed. To reinforce this idea; installing a smart contract shows how we think of it being
physically hosted on a peer, whereas a smart contract that has been defined on a channel shows how we consider it
logically hosted by the channel.

Endorsement policy

The most important piece of information supplied within the chaincode definition is the endorsement policy. It de-
scribes which organizations must approve transactions before they will be accepted by other organizations onto their
copy of the ledger. In our sample network, transactions can only be accepted onto ledger L1 if R1 or R2 endorse them.

Committing the chaincode definition to the channel places the endorsement policy on the channel ledger; it enables it
to be accessed by any member of the channel. You can read more about endorsement policies in the transaction flow
topic.

Invoking a smart contract

Once a smart contract has been installed on a peer node and defined on a channel it can be invoked by a client
application. Client applications do this by sending transaction proposals to peers owned by the organizations specified
by the smart contract endorsement policy. The transaction proposal serves as input to the smart contract, which uses it
to generate an endorsed transaction response, which is returned by the peer node to the client application.

It’s these transactions responses that are packaged together with the transaction proposal to form a fully endorsed
transaction, which can be distributed to the entire network. We’ll look at this in more detail later For now, it’s enough
to understand how applications invoke smart contracts to generate endorsed transactions.

By this stage in network development we can see that organization R1 is fully participating in the network. Its
applications – starting with A1 – can access the ledger L1 via smart contract S5, to generate transactions that will be
endorsed by R1, and therefore accepted onto the ledger because they conform to the endorsement policy.

4.3.9 Network completed

Recall that our objective was to create a channel for consortium X1 – organizations R1 and R2. This next phase of
network development sees organization R2 add its infrastructure to the network.

Let’s see how the network has evolved:

32 Chapter 4. Key Concepts

../glossary.html#invoke
../glossary.html#endorsement-policy
../txflow.html
../txflow.html
../glossary.html#invoke

hyperledger-fabricdocs Documentation, Release master

The network has grown through the addition of infrastructure from organization R2. Specifically, R2 has added peer
node P2, which hosts a copy of ledger L1, and chaincode S5. R2 approves the same chaincode definition as R1. P2
has also joined channel C1, as has application A2. A2 and P2 are identified using certificates from CA2. All of this
means that both applications A1 and A2 can invoke S5 on C1 either using peer node P1 or P2.

We can see that organization R2 has added a peer node, P2, on channel C1. P2 also hosts a copy of the ledger L1
and smart contract S5. We can see that R2 has also added client application A2 which can connect to the network via
channel C1. To achieve this, an administrator in organization R2 has created peer node P2 and joined it to channel C1,
in the same way as an administrator in R1. The administrator also has to approve the same chaincode definition as R1.

We have created our first operational network! At this stage in network development, we have a channel in which
organizations R1 and R2 can fully transact with each other. Specifically, this means that applications A1 and A2 can
generate transactions using smart contract S5 and ledger L1 on channel C1.

Generating and accepting transactions

In contrast to peer nodes, which always host a copy of the ledger, we see that there are two different kinds of peer
nodes; those which host smart contracts and those which do not. In our network, every peer hosts a copy of the smart
contract, but in larger networks, there will be many more peer nodes that do not host a copy of the smart contract. A
peer can only run a smart contract if it is installed on it, but it can know about the interface of a smart contract by being
connected to a channel.

You should not think of peer nodes which do not have smart contracts installed as being somehow inferior. It’s more
the case that peer nodes with smart contracts have a special power – to help generate transactions. Note that all peer
nodes can validate and subsequently accept or reject transactions onto their copy of the ledger L1. However, only
peer nodes with a smart contract installed can take part in the process of transaction endorsement which is central to
the generation of valid transactions.

We don’t need to worry about the exact details of how transactions are generated, distributed and accepted in this topic
– it is sufficient to understand that we have a blockchain network where organizations R1 and R2 can share information
and processes as ledger-captured transactions. We’ll learn a lot more about transactions, ledgers, smart contracts in
other topics.

4.3. Blockchain network 33

hyperledger-fabricdocs Documentation, Release master

Types of peers

In Hyperledger Fabric, while all peers are the same, they can assume multiple roles depending on how the network is
configured. We now have enough understanding of a typical network topology to describe these roles.

• Committing peer. Every peer node in a channel is a committing peer. It receives blocks of generated transactions,
which are subsequently validated before they are committed to the peer node’s copy of the ledger as an append
operation.

• Endorsing peer. Every peer with a smart contract can be an endorsing peer if it has a smart contract installed.
However, to actually be an endorsing peer, the smart contract on the peer must be used by a client application to
generate a digitally signed transaction response. The term endorsing peer is an explicit reference to this fact.

An endorsement policy for a smart contract identifies the organizations whose peer should digitally sign a
generated transaction before it can be accepted onto a committing peer’s copy of the ledger.

These are the two major types of peer; there are two other roles a peer can adopt:

• Leader peer. When an organization has multiple peers in a channel, a leader peer is a node which takes respon-
sibility for distributing transactions from the orderer to the other committing peers in the organization. A peer
can choose to participate in static or dynamic leadership selection.

It is helpful, therefore to think of two sets of peers from leadership perspective – those that have static leader
selection, and those with dynamic leader selection. For the static set, zero or more peers can be configured as
leaders. For the dynamic set, one peer will be elected leader by the set. Moreover, in the dynamic set, if a leader
peer fails, then the remaining peers will re-elect a leader.

It means that an organization’s peers can have one or more leaders connected to the ordering service. This can
help to improve resilience and scalability in large networks which process high volumes of transactions.

• Anchor peer. If a peer needs to communicate with a peer in another organization, then it can use one of the
anchor peers defined in the channel configuration for that organization. An organization can have zero or more
anchor peers defined for it, and an anchor peer can help with many different cross-organization communication
scenarios.

Note that a peer can be a committing peer, endorsing peer, leader peer and anchor peer all at the same time! Only the
anchor peer is optional – for all practical purposes there will always be a leader peer and at least one endorsing peer
and at least one committing peer.

Adding organizations and peers to the channel

When R2 joins the channel, the organization must install smart contract S5 onto its peer node, P2. That’s obvious – if
applications A1 or A2 wish to use S5 on peer node P2 to generate transactions, it must first be present; installation is
the mechanism by which this happens. At this point, peer node P2 has a physical copy of the smart contract and the
ledger; like P1, it can both generate and accept transactions onto its copy of ledger L1.

R2 must approve the same chaincode definition as was approved by R1 in order to use smart contract S5. Because the
chaincode definition has already been committed to the channel by organization R1, R2 can use the chaincode as soon
as the organization approves the chaincode definition and installs the chaincode package. The commit transaction only
needs to happen once. A new organization can use the chaincode as soon as they approve the chaincode parameters
agreed to by other members of the channel. Because the approval of a chaincode definition occurs at the organization
level, R2 can approve the chaincode definition once and join multiple peers to the channel with the chaincode package
installed. However, if R2 wanted to change the chaincode definition, both R1 and R2 would need to approve a new
definition for their organization, and then one of the organizations would need to commit the definition to the channel.

In our network, we can see that channel C1 connects two client applications, two peer nodes and an ordering service.
Since there is only one channel, there is only one logical ledger with which these components interact. Peer nodes P1
and P2 have identical copies of ledger L1. Copies of smart contract S5 will usually be identically implemented using
the same programming language, but if not, they must be semantically equivalent.

34 Chapter 4. Key Concepts

../glossary.html#commitment
../glossary.html#endorsement
../glossary.html#leading-peer
../glossary.html#anchor-peer

hyperledger-fabricdocs Documentation, Release master

We can see that the careful addition of peers to the network can help support increased throughput, stability, and
resilience. For example, more peers in a network will allow more applications to connect to it; and multiple peers in
an organization will provide extra resilience in the case of planned or unplanned outages.

It all means that it is possible to configure sophisticated topologies which support a variety of operational goals – there
is no theoretical limit to how big a network can get. Moreover, the technical mechanism by which peers within an
individual organization efficiently discover and communicate with each other – the gossip protocol – will accommodate
a large number of peer nodes in support of such topologies.

The careful use of network and channel policies allow even large networks to be well-governed. Organizations are free
to add peer nodes to the network so long as they conform to the policies agreed by the network. Network and channel
policies create the balance between autonomy and control which characterizes a de-centralized network.

4.3.10 Simplifying the visual vocabulary

We’re now going to simplify the visual vocabulary used to represent our sample blockchain network. As the size of
the network grows, the lines initially used to help us understand channels will become cumbersome. Imagine how
complicated our diagram would be if we added another peer or client application, or another channel?

That’s what we’re going to do in a minute, so before we do, let’s simplify the visual vocabulary. Here’s a simplified
representation of the network we’ve developed so far:

The diagram shows the facts relating to channel C1 in the network N as follows: Client applications A1 and A2
can use channel C1 for communication with peers P1 and P2, and orderer O4. Peer nodes P1 and P2 can use the
communication services of channel C1. Ordering service O4 can make use of the communication services of channel
C1. Channel configuration CC1 applies to channel C1.

Note that the network diagram has been simplified by replacing channel lines with connection points, shown as blue
circles which include the channel number. No information has been lost. This representation is more scalable be-
cause it eliminates crossing lines. This allows us to more clearly represent larger networks. We’ve achieved this
simplification by focusing on the connection points between components and a channel, rather than the channel itself.

4.3.11 Adding another consortium definition

In this next phase of network development, we introduce organization R3. We’re going to give organizations R2 and
R3 a separate application channel which allows them to transact with each other. This application channel will be

4.3. Blockchain network 35

../gossip.html#gossip-protocol

hyperledger-fabricdocs Documentation, Release master

completely separate to that previously defined, so that R2 and R3 transactions can be kept private to them.

Let’s return to the network level and define a new consortium, X2, for R2 and R3:

A network administrator from organization R1 or R4 has added a new consortium definition, X2, which includes
organizations R2 and R3. This will be used to define a new channel for X2.

Notice that the network now has two consortia defined: X1 for organizations R1 and R2 and X2 for organizations R2
and R3. Consortium X2 has been introduced in order to be able to create a new channel for R2 and R3.

A new channel can only be created by those organizations specifically identified in the network configuration policy,
NC4, as having the appropriate rights to do so, i.e. R1 or R4. This is an example of a policy which separates
organizations that can manage resources at the network level versus those who can manage resources at the channel
level. Seeing these policies at work helps us understand why Hyperledger Fabric has a sophisticated tiered policy
structure.

In practice, consortium definition X2 has been added to the network configuration NC4. We discuss the exact mechan-
ics of this operation elsewhere in the documentation.

4.3.12 Adding a new channel

Let’s now use this new consortium definition, X2, to create a new channel, C2. To help reinforce your understanding of
the simpler channel notation, we’ve used both visual styles – channel C1 is represented with blue circular end points,
whereas channel C2 is represented with red connecting lines:

36 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

A new channel C2 has been created for R2 and R3 using consortium definition X2. The channel has a channel con-
figuration CC2, completely separate to the network configuration NC4, and the channel configuration CC1. Channel
C2 is managed by R2 and R3 who have equal rights over C2 as defined by a policy in CC2. R1 and R4 have no rights
defined in CC2 whatsoever.

The channel C2 provides a private communications mechanism for the consortium X2. Again, notice how organiza-
tions united in a consortium are what form channels. The channel configuration CC2 now contains the policies that
govern channel resources, assigning management rights to organizations R2 and R3 over channel C2. It is managed
exclusively by R2 and R3; R1 and R4 have no power in channel C2. For example, channel configuration CC2 can
subsequently be updated to add organizations to support network growth, but this can only be done by R2 or R3.

Note how the channel configurations CC1 and CC2 remain completely separate from each other, and completely
separate from the network configuration, NC4. Again we’re seeing the de-centralized nature of a Hyperledger Fabric
network; once channel C2 has been created, it is managed by organizations R2 and R3 independently to other network
elements. Channel policies always remain separate from each other and can only be changed by the organizations
authorized to do so in the channel.

As the network and channels evolve, so will the network and channel configurations. There is a process by which
this is accomplished in a controlled manner – involving configuration transactions which capture the change to these
configurations. Every configuration change results in a new configuration block transaction being generated, and
later in this topic, we’ll see how these blocks are validated and accepted to create updated network and channel
configurations respectively.

Network and channel configurations

Throughout our sample network, we see the importance of network and channel configurations. These configurations
are important because they encapsulate the policies agreed by the network members, which provide a shared reference
for controlling access to network resources. Network and channel configurations also contain facts about the network
and channel composition, such as the name of consortia and its organizations.

For example, when the network is first formed using the ordering service node O4, its behaviour is governed by the
network configuration NC4. The initial configuration of NC4 only contains policies that permit organization R4 to
manage network resources. NC4 is subsequently updated to also allow R1 to manage network resources. Once this
change is made, any administrator from organization R1 or R4 that connects to O4 will have network management
rights because that is what the policy in the network configuration NC4 permits. Internally, each node in the ordering
service records each channel in the network configuration, so that there is a record of each channel created, at the
network level.

4.3. Blockchain network 37

hyperledger-fabricdocs Documentation, Release master

It means that although ordering service node O4 is the actor that created consortia X1 and X2 and channels C1 and
C2, the intelligence of the network is contained in the network configuration NC4 that O4 is obeying. As long as O4
behaves as a good actor, and correctly implements the policies defined in NC4 whenever it is dealing with network
resources, our network will behave as all organizations have agreed. In many ways NC4 can be considered more
important than O4 because, ultimately, it controls network access.

The same principles apply for channel configurations with respect to peers. In our network, P1 and P2 are likewise
good actors. When peer nodes P1 and P2 are interacting with client applications A1 or A2 they are each using the
policies defined within channel configuration CC1 to control access to the channel C1 resources.

For example, if A1 wants to access the smart contract chaincode S5 on peer nodes P1 or P2, each peer node uses its
copy of CC1 to determine the operations that A1 can perform. For example, A1 may be permitted to read or write data
from the ledger L1 according to policies defined in CC1. We’ll see later the same pattern for actors in channel and its
channel configuration CC2. Again, we can see that while the peers and applications are critical actors in the network,
their behaviour in a channel is dictated more by the channel configuration policy than any other factor.

Finally, it is helpful to understand how network and channel configurations are physically realized. We can see that
network and channel configurations are logically singular – there is one for the network, and one for each channel.
This is important; every component that accesses the network or the channel must have a shared understanding of the
permissions granted to different organizations.

Even though there is logically a single configuration, it is actually replicated and kept consistent by every node that
forms the network or channel. For example, in our network peer nodes P1 and P2 both have a copy of channel
configuration CC1, and by the time the network is fully complete, peer nodes P2 and P3 will both have a copy of
channel configuration CC2. Similarly ordering service node O4 has a copy of the network configuration, but in a
multi-node configuration, every ordering service node will have its own copy of the network configuration.

Both network and channel configurations are kept consistent using the same blockchain technology that is used for
user transactions – but for configuration transactions. To change a network or channel configuration, an administrator
must submit a configuration transaction to change the network or channel configuration. It must be signed by the
organizations identified in the appropriate policy as being responsible for configuration change. This policy is called
the mod_policy and we’ll discuss it later.

Indeed, the ordering service nodes operate a mini-blockchain, connected via the system channel we mentioned earlier.
Using the system channel ordering service nodes distribute network configuration transactions. These transactions are
used to co-operatively maintain a consistent copy of the network configuration at each ordering service node. In a
similar way, peer nodes in an application channel can distribute channel configuration transactions. Likewise, these
transactions are used to maintain a consistent copy of the channel configuration at each peer node.

This balance between objects that are logically singular, by being physically distributed is a common pattern in Hy-
perledger Fabric. Objects like network configurations, that are logically single, turn out to be physically replicated
among a set of ordering services nodes for example. We also see it with channel configurations, ledgers, and to
some extent smart contracts which are installed in multiple places but whose interfaces exist logically at the channel
level. It’s a pattern you see repeated time and again in Hyperledger Fabric, and enables Hyperledger Fabric to be both
de-centralized and yet manageable at the same time.

4.3.13 Adding another peer

Now that organization R3 is able to fully participate in channel C2, let’s add its infrastructure components to the
channel. Rather than do this one component at a time, we’re going to add a peer, its local copy of a ledger, a smart
contract and a client application all at once!

Let’s see the network with organization R3’s components added:

38 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

The diagram shows the facts relating to channels C1 and C2 in the network N as follows: Client applications A1 and
A2 can use channel C1 for communication with peers P1 and P2, and ordering service O4; client applications A3 can
use channel C2 for communication with peer P3 and ordering service O4. Ordering service O4 can make use of the
communication services of channels C1 and C2. Channel configuration CC1 applies to channel C1, CC2 applies to
channel C2.

First of all, notice that because peer node P3 is connected to channel C2, it has a different ledger – L2 – to those peer
nodes using channel C1. The ledger L2 is effectively scoped to channel C2. The ledger L1 is completely separate;
it is scoped to channel C1. This makes sense – the purpose of the channel C2 is to provide private communications
between the members of the consortium X2, and the ledger L2 is the private store for their transactions.

In a similar way, the smart contract S6, installed on peer node P3, and defined on channel C2, is used to provide
controlled access to ledger L2. Application A3 can now use channel C2 to invoke the services provided by smart
contract S6 to generate transactions that can be accepted onto every copy of the ledger L2 in the network.

At this point in time, we have a single network that has two completely separate channels defined within it. These
channels provide independently managed facilities for organizations to transact with each other. Again, this is de-
centralization at work; we have a balance between control and autonomy. This is achieved through policies which are
applied to channels which are controlled by, and affect, different organizations.

4.3.14 Joining a peer to multiple channels

In this final stage of network development, let’s return our focus to organization R2. We can exploit the fact that R2 is
a member of both consortia X1 and X2 by joining it to multiple channels:

4.3. Blockchain network 39

hyperledger-fabricdocs Documentation, Release master

The diagram shows the facts relating to channels C1 and C2 in the network N as follows: Client applications A1 can
use channel C1 for communication with peers P1 and P2, and ordering service O4; client application A2 can use
channel C1 for communication with peers P1 and P2 and channel C2 for communication with peers P2 and P3 and
ordering service O4; client application A3 can use channel C2 for communication with peer P3 and P2 and ordering
service O4. Ordering service O4 can make use of the communication services of channels C1 and C2. Channel
configuration CC1 applies to channel C1, CC2 applies to channel C2.

We can see that R2 is a special organization in the network, because it is the only organization that is a member of
two application channels! It is able to transact with organization R1 on channel C1, while at the same time it can also
transact with organization R3 on a different channel, C2.

Notice how peer node P2 has smart contract S5 installed for channel C1 and smart contract S6 installed for channel
C2. Peer node P2 is a full member of both channels at the same time via different smart contracts for different ledgers.

This is a very powerful concept – channels provide both a mechanism for the separation of organizations, and a
mechanism for collaboration between organizations. All the while, this infrastructure is provided by, and shared
between, a set of independent organizations.

It is also important to note that peer node P2’s behaviour is controlled very differently depending upon the channel
in which it is transacting. Specifically, the policies contained in channel configuration CC1 dictate the operations
available to P2 when it is transacting in channel C1, whereas it is the policies in channel configuration CC2 that
control P2’s behaviour in channel C2.

Again, this is desirable – R2 and R1 agreed the rules for channel C1, whereas R2 and R3 agreed the rules for channel
C2. These rules were captured in the respective channel policies – they can and must be used by every component in
a channel to enforce correct behaviour, as agreed.

Similarly, we can see that client application A2 is now able to transact on channels C1 and C2. And likewise, it too
will be governed by the policies in the appropriate channel configurations. As an aside, note that client application
A2 and peer node P2 are using a mixed visual vocabulary – both lines and connections. You can see that they are
equivalent; they are visual synonyms.

The ordering service

The observant reader may notice that the ordering service node appears to be a centralized component; it was used to
create the network initially, and connects to every channel in the network. Even though we added R1 and R4 to the
network configuration policy NC4 which controls the orderer, the node was running on R4’s infrastructure. In a world
of de-centralization, this looks wrong!

40 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Don’t worry! Our example network showed the simplest ordering service configuration to help you understand the idea
of a network administration point. In fact, the ordering service can itself too be completely de-centralized! We men-
tioned earlier that an ordering service could be comprised of many individual nodes owned by different organizations,
so let’s see how that would be done in our sample network.

Let’s have a look at a more realistic ordering service node configuration:

A multi-organization ordering service. The ordering service comprises ordering service nodes O1 and O4. O1 is
provided by organization R1 and node O4 is provided by organization R4. The network configuration NC4 defines
network resource permissions for actors from both organizations R1 and R4.

We can see that this ordering service completely de-centralized – it runs in organization R1 and it runs in organization
R4. The network configuration policy, NC4, permits R1 and R4 equal rights over network resources. Client applica-
tions and peer nodes from organizations R1 and R4 can manage network resources by connecting to either node O1
or node O4, because both nodes behave the same way, as defined by the policies in network configuration NC4. In
practice, actors from a particular organization tend to use infrastructure provided by their home organization, but that’s
certainly not always the case.

De-centralized transaction distribution

As well as being the management point for the network, the ordering service also provides another key facility – it
is the distribution point for transactions. The ordering service is the component which gathers endorsed transactions
from applications and orders them into transaction blocks, which are subsequently distributed to every peer node in
the channel. At each of these committing peers, transactions are recorded, whether valid or invalid, and their local
copy of the ledger updated appropriately.

Notice how the ordering service node O4 performs a very different role for the channel C1 than it does for the network
N. When acting at the channel level, O4’s role is to gather transactions and distribute blocks inside channel C1. It
does this according to the policies defined in channel configuration CC1. In contrast, when acting at the network
level, O4’s role is to provide a management point for network resources according to the policies defined in network
configuration NC4. Notice again how these roles are defined by different policies within the channel and network
configurations respectively. This should reinforce to you the importance of declarative policy based configuration in
Hyperledger Fabric. Policies both define, and are used to control, the agreed behaviours by each and every member of
a consortium.

We can see that the ordering service, like the other components in Hyperledger Fabric, is a fully de-centralized com-
ponent. Whether acting as a network management point, or as a distributor of blocks in a channel, its nodes can be

4.3. Blockchain network 41

hyperledger-fabricdocs Documentation, Release master

distributed as required throughout the multiple organizations in a network.

Changing policy

Throughout our exploration of the sample network, we’ve seen the importance of the policies to control the behaviour
of the actors in the system. We’ve only discussed a few of the available policies, but there are many that can be
declaratively defined to control every aspect of behaviour. These individual policies are discussed elsewhere in the
documentation.

Most importantly of all, Hyperledger Fabric provides a uniquely powerful policy that allows network and channel
administrators to manage policy change itself! The underlying philosophy is that policy change is a constant, whether
it occurs within or between organizations, or whether it is imposed by external regulators. For example, new or-
ganizations may join a channel, or existing organizations may have their permissions increased or decreased. Let’s
investigate a little more how change policy is implemented in Hyperledger Fabric.

The key point of understanding is that policy change is managed by a policy within the policy itself. The modification
policy, or mod_policy for short, is a first class policy within a network or channel configuration that manages change.
Let’s give two brief examples of how we’ve already used mod_policy to manage change in our network!

The first example was when the network was initially set up. At this time, only organization R4 was allowed to manage
the network. In practice, this was achieved by making R4 the only organization defined in the network configuration
NC4 with permissions to network resources. Moreover, the mod_policy for NC4 only mentioned organization R4 –
only R4 was allowed to change this configuration.

We then evolved the network N to also allow organization R1 to administer the network. R4 did this by adding R1 to
the policies for channel creation and consortium creation. Because of this change, R1 was able to define the consortia
X1 and X2, and create the channels C1 and C2. R1 had equal administrative rights over the channel and consortium
policies in the network configuration.

R4 however, could grant even more power over the network configuration to R1! R4 could add R1 to the mod_policy
such that R1 would be able to manage change of the network policy too.

This second power is much more powerful than the first, because R1 now has full control over the network configu-
ration NC4! This means that R1 can, in principle remove R4’s management rights from the network. In practice, R4
would configure the mod_policy such that R4 would need to also approve the change, or that all organizations in the
mod_policy would have to approve the change. There’s lots of flexibility to make the mod_policy as sophisticated as
it needs to be to support whatever change process is required.

This is mod_policy at work – it has allowed the graceful evolution of a basic configuration into a sophisticated one.
All the time this has occurred with the agreement of all organization involved. The mod_policy behaves like every
other policy inside a network or channel configuration; it defines a set of organizations that are allowed to change the
mod_policy itself.

We’ve only scratched the surface of the power of policies and mod_policy in particular in this subsection. It is
discussed at much more length in the policy topic, but for now let’s return to our finished network!

4.3.15 Network fully formed

Let’s recap what our network looks like using a consistent visual vocabulary. We’ve re-organized it slightly using our
more compact visual syntax, because it better accommodates larger topologies:

42 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

In this diagram we see that the Fabric blockchain network consists of two application channels and one ordering
channel. The organizations R1 and R4 are responsible for the ordering channel, R1 and R2 are responsible for the
blue application channel while R2 and R3 are responsible for the red application channel. Client applications A1 is
an element of organization R1, and CA1 is it’s certificate authority. Note that peer P2 of organization R2 can use the
communication facilities of the blue and the red application channel. Each application channel has its own channel
configuration, in this case CC1 and CC2. The channel configuration of the system channel is part of the network
configuration, NC4.

We’re at the end of our conceptual journey to build a sample Hyperledger Fabric blockchain network. We’ve created a
four organization network with two channels and three peer nodes, with two smart contracts and an ordering service.
It is supported by four certificate authorities. It provides ledger and smart contract services to three client applications,
who can interact with it via the two channels. Take a moment to look through the details of the network in the diagram,
and feel free to read back through the topic to reinforce your knowledge, or go to a more detailed topic.

Summary of network components

Here’s a quick summary of the network components we’ve discussed:

• Ledger. One per channel. Comprised of the Blockchain and the World state

• Smart contract (aka chaincode)

• Peer nodes

• Ordering service

• Channel

• Certificate Authority

4.3.16 Network summary

In this topic, we’ve seen how different organizations share their infrastructure to provide an integrated Hyperledger
Fabric blockchain network. We’ve seen how the collective infrastructure can be organized into channels that provide
private communications mechanisms that are independently managed. We’ve seen how actors such as client applica-
tions, administrators, peers and orderers are identified as being from different organizations by their use of certificates

4.3. Blockchain network 43

../glossary.html#ledger
../glossary.html#block
../glossary.html#world-state
../glossary.html#smart-contract
../glossary.html#peer
../glossary.html#ordering-service
../glossary.html#channel
../glossary.html#hyperledger-fabric-ca

hyperledger-fabricdocs Documentation, Release master

from their respective certificate authorities. And in turn, we’ve seen the importance of policy to define the agreed
permissions that these organizational actors have over network and channel resources.

4.4 Identity

4.4.1 What is an Identity?

The different actors in a blockchain network include peers, orderers, client applications, administrators and more. Each
of these actors — active elements inside or outside a network able to consume services — has a digital identity encap-
sulated in an X.509 digital certificate. These identities really matter because they determine the exact permissions
over resources and access to information that actors have in a blockchain network.

A digital identity furthermore has some additional attributes that Fabric uses to determine permissions, and it gives
the union of an identity and the associated attributes a special name — principal. Principals are just like userIDs or
groupIDs, but a little more flexible because they can include a wide range of properties of an actor’s identity, such as
the actor’s organization, organizational unit, role or even the actor’s specific identity. When we talk about principals,
they are the properties which determine their permissions.

For an identity to be verifiable, it must come from a trusted authority. A membership service provider (MSP) is
that trusted authority in Fabric. More specifically, an MSP is a component that defines the rules that govern the
valid identities for this organization. The default MSP implementation in Fabric uses X.509 certificates as identities,
adopting a traditional Public Key Infrastructure (PKI) hierarchical model (more on PKI later).

4.4.2 A Simple Scenario to Explain the Use of an Identity

Imagine that you visit a supermarket to buy some groceries. At the checkout you see a sign that says that only Visa,
Mastercard and AMEX cards are accepted. If you try to pay with a different card — let’s call it an “ImagineCard” —
it doesn’t matter whether the card is authentic and you have sufficient funds in your account. It will be not be accepted.

Having a valid credit card is not enough — it must also be accepted by the store! PKIs and MSPs work together in the
same way — a PKI provides a list of identities, and an MSP says which of these are members of a given organization
that participates in the network.

PKI certificate authorities and MSPs provide a similar combination of functionalities. A PKI is like a card provider —
it dispenses many different types of verifiable identities. An MSP, on the other hand, is like the list of card providers
accepted by the store, determining which identities are the trusted members (actors) of the store payment network.
MSPs turn verifiable identities into the members of a blockchain network.

Let’s drill into these concepts in a little more detail.

44 Chapter 4. Key Concepts

../membership/membership.html

hyperledger-fabricdocs Documentation, Release master

4.4.3 What are PKIs?

A public key infrastructure (PKI) is a collection of internet technologies that provides secure communications
in a network. It’s PKI that puts the S in HTTPS — and if you’re reading this documentation on a web browser, you’re
probably using a PKI to make sure it comes from a verified source.

The elements of Public Key Infrastructure (PKI). A PKI is comprised of Certificate Authorities who issue digital
certificates to parties (e.g., users of a service, service provider), who then use them to authenticate themselves in the
messages they exchange in their environment. A CA’s Certificate Revocation List (CRL) constitutes a reference for the
certificates that are no longer valid. Revocation of a certificate can happen for a number of reasons. For example, a
certificate may be revoked because the cryptographic private material associated to the certificate has been exposed.

Although a blockchain network is more than a communications network, it relies on the PKI standard to ensure
secure communication between various network participants, and to ensure that messages posted on the blockchain are
properly authenticated. It’s therefore important to understand the basics of PKI and then why MSPs are so important.

There are four key elements to PKI:

• Digital Certificates

• Public and Private Keys

• Certificate Authorities

• Certificate Revocation Lists

Let’s quickly describe these PKI basics, and if you want to know more details, Wikipedia is a good place to start.

4.4.4 Digital Certificates

A digital certificate is a document which holds a set of attributes relating to the holder of the certificate. The most
common type of certificate is the one compliant with the X.509 standard, which allows the encoding of a party’s
identifying details in its structure.

For example, Mary Morris in the Manufacturing Division of Mitchell Cars in Detroit, Michigan might have
a digital certificate with a SUBJECT attribute of C=US, ST=Michigan, L=Detroit, O=Mitchell Cars,
OU=Manufacturing, CN=Mary Morris /UID=123456. Mary’s certificate is similar to her government iden-
tity card — it provides information about Mary which she can use to prove key facts about her. There are many other
attributes in an X.509 certificate, but let’s concentrate on just these for now.

4.4. Identity 45

https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/X.509

hyperledger-fabricdocs Documentation, Release master

A digital certificate describing a party called Mary Morris. Mary is the SUBJECT of the certificate, and the high-
lighted SUBJECT text shows key facts about Mary. The certificate also holds many more pieces of information, as you
can see. Most importantly, Mary’s public key is distributed within her certificate, whereas her private signing key is
not. This signing key must be kept private.

What is important is that all of Mary’s attributes can be recorded using a mathematical technique called cryptography
(literally, “secret writing”) so that tampering will invalidate the certificate. Cryptography allows Mary to present her
certificate to others to prove her identity so long as the other party trusts the certificate issuer, known as a Certificate
Authority (CA). As long as the CA keeps certain cryptographic information securely (meaning, its own private
signing key), anyone reading the certificate can be sure that the information about Mary has not been tampered with
— it will always have those particular attributes for Mary Morris. Think of Mary’s X.509 certificate as a digital identity
card that is impossible to change.

4.4.5 Authentication, Public keys, and Private Keys

Authentication and message integrity are important concepts in secure communications. Authentication requires that
parties who exchange messages are assured of the identity that created a specific message. For a message to have
“integrity” means that cannot have been modified during its transmission. For example, you might want to be sure
you’re communicating with the real Mary Morris rather than an impersonator. Or if Mary has sent you a message, you
might want to be sure that it hasn’t been tampered with by anyone else during transmission.

Traditional authentication mechanisms rely on digital signatures that, as the name suggests, allow a party to digitally
sign its messages. Digital signatures also provide guarantees on the integrity of the signed message.

Technically speaking, digital signature mechanisms require each party to hold two cryptographically connected keys:
a public key that is made widely available and acts as authentication anchor, and a private key that is used to produce
digital signatures on messages. Recipients of digitally signed messages can verify the origin and integrity of a
received message by checking that the attached signature is valid under the public key of the expected sender.

The unique relationship between a private key and the respective public key is the cryptographic magic that
makes secure communications possible. The unique mathematical relationship between the keys is such that the
private key can be used to produce a signature on a message that only the corresponding public key can match, and
only on the same message.

46 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

In the example above, Mary uses her private key to sign the message. The signature can be verified by anyone who
sees the signed message using her public key.

4.4.6 Certificate Authorities

As you’ve seen, an actor or a node is able to participate in the blockchain network, via the means of a digital identity
issued for it by an authority trusted by the system. In the most common case, digital identities (or simply identities)
have the form of cryptographically validated digital certificates that comply with X.509 standard and are issued by a
Certificate Authority (CA).

CAs are a common part of internet security protocols, and you’ve probably heard of some of the more popular ones:
Symantec (originally Verisign), GeoTrust, DigiCert, GoDaddy, and Comodo, among others.

A Certificate Authority dispenses certificates to different actors. These certificates are digitally signed by the CA and

4.4. Identity 47

hyperledger-fabricdocs Documentation, Release master

bind together the actor with the actor’s public key (and optionally with a comprehensive list of properties). As a result,
if one trusts the CA (and knows its public key), it can trust that the specific actor is bound to the public key included in
the certificate, and owns the included attributes, by validating the CA’s signature on the actor’s certificate.

Certificates can be widely disseminated, as they do not include either the actors’ nor the CA’s private keys. As such
they can be used as anchor of trusts for authenticating messages coming from different actors.

CAs also have a certificate, which they make widely available. This allows the consumers of identities issued by a given
CA to verify them by checking that the certificate could only have been generated by the holder of the corresponding
private key (the CA).

In a blockchain setting, every actor who wishes to interact with the network needs an identity. In this setting, you might
say that one or more CAs can be used to define the members of an organization’s from a digital perspective. It’s
the CA that provides the basis for an organization’s actors to have a verifiable digital identity.

Root CAs, Intermediate CAs and Chains of Trust

CAs come in two flavors: Root CAs and Intermediate CAs. Because Root CAs (Symantec, Geotrust, etc) have to
securely distribute hundreds of millions of certificates to internet users, it makes sense to spread this process out
across what are called Intermediate CAs. These Intermediate CAs have their certificates issued by the root CA or
another intermediate authority, allowing the establishment of a “chain of trust” for any certificate that is issued by
any CA in the chain. This ability to track back to the Root CA not only allows the function of CAs to scale while
still providing security — allowing organizations that consume certificates to use Intermediate CAs with confidence
— it limits the exposure of the Root CA, which, if compromised, would endanger the entire chain of trust. If an
Intermediate CA is compromised, on the other hand, there will be a much smaller exposure.

A chain of trust is established between a Root CA and a set of Intermediate CAs as long as the issuing CA for the
certificate of each of these Intermediate CAs is either the Root CA itself or has a chain of trust to the Root CA.

Intermediate CAs provide a huge amount of flexibility when it comes to the issuance of certificates across multiple
organizations, and that’s very helpful in a permissioned blockchain system (like Fabric). For example, you’ll see that
different organizations may use different Root CAs, or the same Root CA with different Intermediate CAs — it really
does depend on the needs of the network.

48 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Fabric CA

It’s because CAs are so important that Fabric provides a built-in CA component to allow you to create CAs in the
blockchain networks you form. This component — known as Fabric CA is a private root CA provider capable of
managing digital identities of Fabric participants that have the form of X.509 certificates. Because Fabric CA is
a custom CA targeting the Root CA needs of Fabric, it is inherently not capable of providing SSL certificates for
general/automatic use in browsers. However, because some CA must be used to manage identity (even in a test
environment), Fabric CA can be used to provide and manage certificates. It is also possible — and fully appropriate
— to use a public/commercial root or intermediate CA to provide identification.

If you’re interested, you can read a lot more about Fabric CA in the CA documentation section.

4.4.7 Certificate Revocation Lists

A Certificate Revocation List (CRL) is easy to understand — it’s just a list of references to certificates that a CA knows
to be revoked for one reason or another. If you recall the store scenario, a CRL would be like a list of stolen credit
cards.

When a third party wants to verify another party’s identity, it first checks the issuing CA’s CRL to make sure that
the certificate has not been revoked. A verifier doesn’t have to check the CRL, but if they don’t they run the risk of
accepting a compromised identity.

Using a CRL to check that a certificate is still valid. If an impersonator tries to pass a compromised digital certificate
to a validating party, it can be first checked against the issuing CA’s CRL to make sure it’s not listed as no longer
valid.

Note that a certificate being revoked is very different from a certificate expiring. Revoked certificates have not expired
— they are, by every other measure, a fully valid certificate. For more in-depth information about CRLs, click here.

Now that you’ve seen how a PKI can provide verifiable identities through a chain of trust, the next step is to see how
these identities can be used to represent the trusted members of a blockchain network. That’s where a Membership
Service Provider (MSP) comes into play — it identifies the parties who are the members of a given organization
in the blockchain network.

To learn more about membership, check out the conceptual documentation on MSPs.

4.4. Identity 49

http://hyperledger-fabric-ca.readthedocs.io/
https://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html#generating-a-crl-certificate-revocation-list
../membership/membership.html

hyperledger-fabricdocs Documentation, Release master

4.5 Membership Service Provider (MSP)

4.5.1 Why do I need an MSP?

Because Fabric is a permissioned network, blockchain participants need a way to prove their identity to the rest of the
network in order to transact on the network. If you’ve read through the documentation on Identity you’ve seen how
a Public Key Infrastructure (PKI) can provide verifiable identities through a chain of trust. How is that chain of trust
used by the blockchain network?

Certificate Authorities issue identities by generating a public and private key which forms a key-pair that can be used
to prove identity. Because a private key can never be shared publicly, a mechanism is required to enable that proof
which is where the MSP comes in. For example, a peer uses its private key to digitally sign, or endorse, a transaction.
The MSP on the ordering service contains the peer’s public key which is then used to verify that the signature attached
to the transaction is valid. The private key is used to produce a signature on a transaction that only the corresponding
public key, that is part of an MSP, can match. Thus, the MSP is the mechanism that allows that identity to be trusted
and recognized by the rest of the network without ever revealing the member’s private key.

Recall from the credit card scenario in the Identity topic that the Certificate Authority is like a card provider — it
dispenses many different types of verifiable identities. An MSP, on the other hand, determines which credit card
providers are accepted at the store. In this way, the MSP turns an identity (the credit card) into a role (the ability to
buy things at the store).

This ability to turn verifiable identities into roles is fundamental to the way Fabric networks function, since it al-
lows organizations, nodes, and channels the ability establish MSPs that determine who is allowed to do what at the
organization, node, and channel level.

Identities are similar to your credit cards that are used to prove you can pay. The MSP is similar to the list of accepted
credit cards.

Consider a consortium of banks that operate a blockchain network. Each bank operates peer and ordering nodes,
and the peers endorse transactions submitted to the network. However, each bank would also have departments and
account holders. The account holders would belong to each organization, but would not run nodes on the network.
They would only interact with the system from their mobile or web application. So how does the network recognize and
differentiate these identities? A CA was used to create the identities, but like the card example, those identities can’t
just be issued, they need to be recognized by the network. MSPs are used to define the organizations that are trusted
by the network members. MSPs are also the mechanism that provide members with a set of roles and permissions
within the network. Because the MSPs defining these organizations are known to the members of a network, they can
then be used to validate that network entities that attempt to perform actions are allowed to.

Finally, consider if you want to join an existing network, you need a way to turn your identity into something that is
recognized by the network. The MSP is the mechanism that enables you to participate on a permissioned blockchain

50 Chapter 4. Key Concepts

../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

network. To transact on a Fabric network a member needs to:

1. Have an identity issued by a CA that is trusted by the network.

2. Become a member of an organization that is recognized and approved by the network members. The MSP
is how the identity is linked to the membership of an organization. Membership is achieved by adding the
member’s public key (also known as certificate, signing cert, or signcert) to the organization’s MSP.

3. Add the MSP to either a consortium on the network or a channel.

4. Ensure the MSP is included in the policy definitions on the network.

4.5.2 What is an MSP?

Despite its name, the Membership Service Provider does not actually provide anything. Rather, the implementation
of the MSP requirement is a set of folders that are added to the configuration of the network and is used to define an
organization both inwardly (organizations decide who its admins are) and outwardly (by allowing other organizations
to validate that entities have the authority to do what they are attempting to do). Whereas Certificate Authorities
generate the certificates that represent identities, the MSP contains a list of permissioned identities.

The MSP identifies which Root CAs and Intermediate CAs are accepted to define the members of a trust domain by
listing the identities of their members, or by identifying which CAs are authorized to issue valid identities for their
members.

But the power of an MSP goes beyond simply listing who is a network participant or member of a channel. It is the
MSP that turns an identity into a role by identifying specific privileges an actor has on a node or channel. Note that
when a user is registered with a Fabric CA, a role of admin, peer, client, orderer, or member must be associated with the
user. For example, identities registered with the “peer” role should, naturally, be given to a peer. Similarly, identities
registered with the “admin” role should be given to organization admins. We’ll delve more into the significance of
these roles later in the topic.

In addition, an MSP can allow for the identification of a list of identities that have been revoked — as discussed in the
Identity documentation — but we will talk about how that process also extends to an MSP.

4.5.3 MSP domains

MSPs occur in two domains in a blockchain network:

• Locally on an actor’s node (local MSP)

• In channel configuration (channel MSP)

The key difference between local and channel MSPs is not how they function – both turn identities into roles – but
their scope. Each MSP lists roles and permissions at a particular level of administration.

Local MSPs

Local MSPs are defined for clients and for nodes (peers and orderers). Local MSPs define the permissions for a
node (who are the peer admins who can operate the node, for example). The local MSPs of clients (the account holders
in the banking scenario above), allow the user to authenticate itself in its transactions as a member of a channel (e.g. in
chaincode transactions), or as the owner of a specific role into the system such as an organization admin, for example,
in configuration transactions.

Every node must have a local MSP defined, as it defines who has administrative or participatory rights at that
level (peer admins will not necessarily be channel admins, and vice versa). This allows for authenticating member
messages outside the context of a channel and to define the permissions over a particular node (who has the ability to
install chaincode on a peer, for example). Note that one or more nodes can be owned by an organization. An MSP

4.5. Membership Service Provider (MSP) 51

../glossary.html#consortium
../policies/policies.html
../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

defines the organization admins. And the organization, the admin of the organization, the admin of the node, and the
node itself should all have the same root of trust.

An orderer local MSP is also defined on the file system of the node and only applies to that node. Like peer nodes,
orderers are also owned by a single organization and therefore have a single MSP to list the actors or nodes it trusts.

Channel MSPs

In contrast, channel MSPs define administrative and participatory rights at the channel level. Peers and ordering
nodes on an application channel share the same view of channel MSPs, and will therefore be able to correctly authen-
ticate the channel participants. This means that if an organization wishes to join the channel, an MSP incorporating
the chain of trust for the organization’s members would need to be included in the channel configuration. Otherwise
transactions originating from this organization’s identities will be rejected. Whereas local MSPs are represented as a
folder structure on the file system, channel MSPs are described in a channel configuration.

Snippet from a channel config.json file that includes two organization MSPs.

Channel MSPs identify who has authorities at a channel level. The channel MSP defines the relationship be-
tween the identities of channel members (which themselves are MSPs) and the enforcement of channel level policies.
Channel MSPs contain the MSPs of the organizations of the channel members.

Every organization participating in a channel must have an MSP defined for it. In fact, it is recommended that
there is a one-to-one mapping between organizations and MSPs. The MSP defines which members are empowered to
act on behalf of the organization. This includes configuration of the MSP itself as well as approving administrative
tasks that the organization has role, such as adding new members to a channel. If all network members were part of a
single organization or MSP, data privacy is sacrificed. Multiple organizations facilitate privacy by segregating ledger
data to only channel members. If more granularity is required within an organization, the organization can be further
divided into organizational units (OUs) which we describe in more detail later in this topic.

The system channel MSP includes the MSPs of all the organizations that participate in an ordering service. An
ordering service will likely include ordering nodes from multiple organizations and collectively these organizations
run the ordering service, most importantly managing the consortium of organizations and the default policies that are
inherited by the application channels.

Local MSPs are only defined on the file system of the node or user to which they apply. Therefore, physically and
logically there is only one local MSP per node. However, as channel MSPs are available to all nodes in the channel,
they are logically defined once in the channel configuration. However, a channel MSP is also instantiated on the file
system of every node in the channel and kept synchronized via consensus. So while there is a copy of each channel
MSP on the local file system of every node, logically a channel MSP resides on and is maintained by the channel or
the network.

The following diagram illustrates how local and channel MSPs coexist on the network:

52 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

The MSPs for the peer and orderer are local, whereas the MSPs for a channel (including the network configuration
channel, also known as the system channel) are global, shared across all participants of that channel. In this figure,
the network system channel is administered by ORG1, but another application channel can be managed by ORG1
and ORG2. The peer is a member of and managed by ORG2, whereas ORG1 manages the orderer of the figure.
ORG1 trusts identities from RCA1, whereas ORG2 trusts identities from RCA2. It is important to note that these are
administration identities, reflecting who can administer these components. So while ORG1 administers the network,
ORG2.MSP does exist in the network definition.

4.5.4 What role does an organization play in an MSP?

An organization is a logical managed group of members. This can be something as big as a multinational corporation
or a small as a flower shop. What’s most important about organizations (or orgs) is that they manage their members
under a single MSP. The MSP allows an identity to be linked to an organization. Note that this is different from the
organization concept defined in an X.509 certificate, which we mentioned above.

The exclusive relationship between an organization and its MSP makes it sensible to name the MSP after the organi-
zation, a convention you’ll find adopted in most policy configurations. For example, organization ORG1 would likely
have an MSP called something like ORG1-MSP. In some cases an organization may require multiple membership
groups — for example, where channels are used to perform very different business functions between organizations.
In these cases it makes sense to have multiple MSPs and name them accordingly, e.g., ORG2-MSP-NATIONAL and
ORG2-MSP-GOVERNMENT, reflecting the different membership roots of trust within ORG2 in the NATIONAL sales
channel compared to the GOVERNMENT regulatory channel.

Organizational Units (OUs) and MSPs

An organization can also be divided into multiple organizational units, each of which has a certain set of responsi-
bilities, also referred to as affiliations. Think of an OU as a department inside an organization. For example,
the ORG1 organization might have both ORG1.MANUFACTURING and ORG1.DISTRIBUTION OUs to reflect these
separate lines of business. When a CA issues X.509 certificates, the OU field in the certificate specifies the line of
business to which the identity belongs. A benefit of using OUs like this is that these values can then be used in policy
definitions in order to restrict access or in smart contracts for attribute-based access control. Otherwise, separate MSPs
would need to be created for each organization.

Specifying OUs is optional. If OUs are not used, all of the identities that are part of an MSP — as identified by the
Root CA and Intermediate CA folders — will be considered members of the organization.

4.5. Membership Service Provider (MSP) 53

hyperledger-fabricdocs Documentation, Release master

Node OU Roles and MSPs

Additionally, there is a special kind of OU, sometimes referred to as a Node OU, that can be used to confer a role onto
an identity. These Node OU roles are defined in the $FABRIC_CFG_PATH/msp/config.yaml file and contain a
list of organizational units whose members are considered to be part of the organization represented by this MSP. This
is particularly useful when you want to restrict the members of an organization to the ones holding an identity (signed
by one of MSP designated CAs) with a specific Node OU role in it. For example, with node OU’s you can implement a
more granular endorsement policy that requires Org1 peers to endorse a transaction, rather than any member of Org1.

In order to use the Node OU roles, the “identity classification” feature must be enabled for the network. When using
the folder-based MSP structure, this is accomplished by enabling “Node OUs” in the config.yaml file which resides in
the root of the MSP folder:

NodeOUs:
Enable: true
ClientOUIdentifier:
Certificate: cacerts/ca.sampleorg-cert.pem
OrganizationalUnitIdentifier: client

PeerOUIdentifier:
Certificate: cacerts/ca.sampleorg-cert.pem
OrganizationalUnitIdentifier: peer

AdminOUIdentifier:
Certificate: cacerts/ca.sampleorg-cert.pem
OrganizationalUnitIdentifier: admin

OrdererOUIdentifier:
Certificate: cacerts/ca.sampleorg-cert.pem
OrganizationalUnitIdentifier: orderer

In the example above, there are 4 possible Node OU ROLES for the MSP:

• client

• peer

• admin

• orderer

This convention allows you to distinguish MSP roles by the OU present in the CommonName attribute of the X509
certificate. The example above says that any certificate issued by cacerts/ca.sampleorg-cert.pem in which OU=client
will identified as a client, OU=peer as a peer, etc. Starting with Fabric v1.4.3, there is also an OU for the orderer and
for admins. The new admins role means that you no longer have to explicitly place certs in the admincerts folder of
the MSP directory. Rather, the admin role present in the user’s signcert qualifies the identity as an admin user.

These Role and OU attributes are assigned to an identity when the Fabric CA or SDK is used to register a user
with the CA. It is the subsequent enroll user command that generates the certificates in the users’ /msp folder.

54 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

The resulting ROLE and OU attributes are visible inside the X.509 signing certificate located in the /signcerts
folder. The ROLE attribute is identified as hf.Type and refers to an actor’s role within its organization, (specifying,
for example, that an actor is a peer). See the following snippet from a signing certificate shows how the Roles and
OUs are represented in the certificate.

Note: For Channel MSPs, just because an actor has the role of an administrator it doesn’t mean that
they can administer particular resources. The actual power a given identity has with respect to administer-
ing the system is determined by the policies that manage system resources. For example, a channel policy
might specify that ORG1-MANUFACTURING administrators, meaning identities with a role of admin and a

4.5. Membership Service Provider (MSP) 55

hyperledger-fabricdocs Documentation, Release master

Node OU of ORG1-MANUFACTURING, have the rights to add new organizations to the channel, whereas the
ORG1-DISTRIBUTION administrators have no such rights.

Finally, OUs could be used by different organizations in a consortium to distinguish each other. But in such cases,
the different organizations have to use the same Root CAs and Intermediate CAs for their chain of trust, and assign
the OU field to identify members of each organization. When every organization has the same CA or chain of trust,
this makes the system more centralized than what might be desirable and therefore deserves careful consideration on
a blockchain network.

4.5.5 MSP Structure

Let’s explore the MSP elements that render the functionality we’ve described so far.

A local MSP folder contains the following sub-folders:

The figure above shows the subfolders in a local MSP on the file system

• config.yaml: Used to configure the identity classification feature in Fabric by enabling “Node OUs” and defining
the accepted roles.

• cacerts: This folder contains a list of self-signed X.509 certificates of the Root CAs trusted by the organization
represented by this MSP. There must be at least one Root CA certificate in this MSP folder.

This is the most important folder because it identifies the CAs from which all other certificates must be derived
to be considered members of the corresponding organization to form the chain of trust.

• intermediatecerts: This folder contains a list of X.509 certificates of the Intermediate CAs trusted by this
organization. Each certificate must be signed by one of the Root CAs in the MSP or by any Intermediate CA
whose issuing CA chain ultimately leads back to a trusted Root CA.

An intermediate CA may represent a different subdivision of the organization (like ORG1-MANUFACTURING
and ORG1-DISTRIBUTION do for ORG1), or the organization itself (as may be the case if a commercial CA
is leveraged for the organization’s identity management). In the latter case intermediate CAs can be used to rep-
resent organization subdivisions. Here you may find more information on best practices for MSP configuration.

56 Chapter 4. Key Concepts

../msp.html

hyperledger-fabricdocs Documentation, Release master

Notice, that it is possible to have a functioning network that does not have an Intermediate CA, in which case
this folder would be empty.

Like the Root CA folder, this folder defines the CAs from which certificates must be issued to be considered
members of the organization.

• admincerts (Deprecated from Fabric v1.4.3 and higher): This folder contains a list of identities that define
the actors who have the role of administrators for this organization. In general, there should be one or more
X.509 certificates in this list.

Note: Prior to Fabric v1.4.3, admins were defined by explicitly putting certs in the admincerts folder in
the local MSP directory of your peer. With Fabric v1.4.3 or higher, certificates in this folder are no longer
required. Instead, it is recommended that when the user is registered with the CA, that the admin role is used
to designate the node administrator. Then, the identity is recognized as an admin by the Node OU role value
in their signcert. As a reminder, in order to leverage the admin role, the “identity classification” feature must be
enabled in the config.yaml above by setting “Node OUs” to Enable: true. We’ll explore this more later.

And as a reminder, for Channel MSPs, just because an actor has the role of an administrator it doesn’t mean that
they can administer particular resources. The actual power a given identity has with respect to administering
the system is determined by the policies that manage system resources. For example, a channel policy might
specify that ORG1-MANUFACTURING administrators have the rights to add new organizations to the channel,
whereas the ORG1-DISTRIBUTION administrators have no such rights.

• keystore: (private Key) This folder is defined for the local MSP of a peer or orderer node (or in a client’s local
MSP), and contains the node’s private key. This key is used to sign data — for example to sign a transaction
proposal response, as part of the endorsement phase.

This folder is mandatory for local MSPs, and must contain exactly one private key. Obviously, access to this
folder must be limited only to the identities of users who have administrative responsibility on the peer.

The channel MSP configuration does not include this folder, because channel MSPs solely aim to offer identity
validation functionalities and not signing abilities.

Note: If you are using a Hardware Security Module(HSM) for key management, this folder is empty because
the private key is generated by and stored in the HSM.

• signcert: For a peer or orderer node (or in a client’s local MSP) this folder contains the node’s signing key.
This key matches cryptographically the node’s identity included in Node Identity folder and is used to sign data
— for example to sign a transaction proposal response, as part of the endorsement phase.

This folder is mandatory for local MSPs, and must contain exactly one public key. Obviously, access to this
folder must be limited only to the identities of users who have administrative responsibility on the peer.

Configuration of a channel MSP does not include this folder, as channel MSPs solely aim to offer identity
validation functionalities and not signing abilities.

• tlscacerts: This folder contains a list of self-signed X.509 certificates of the Root CAs trusted by this organiza-
tion for secure communications between nodes using TLS. An example of a TLS communication would be
when a peer needs to connect to an orderer so that it can receive ledger updates.

MSP TLS information relates to the nodes inside the network — the peers and the orderers, in other words,
rather than the applications and administrations that consume the network.

There must be at least one TLS Root CA certificate in this folder. For more information about TLS, see Securing
Communication with Transport Layer Security (TLS).

• tlsintermediatecacerts: This folder contains a list intermediate CA certificates CAs trusted by the organization
represented by this MSP for secure communications between nodes using TLS. This folder is specifically use-
ful when commercial CAs are used for TLS certificates of an organization. Similar to membership intermediate
CAs, specifying intermediate TLS CAs is optional.

4.5. Membership Service Provider (MSP) 57

../hsm.html
../enable_tls.html
../enable_tls.html

hyperledger-fabricdocs Documentation, Release master

• operationscerts: This folder contains the certificates required to communicate with the Fabric Operations Ser-
vice API.

A channel MSP includes the following additional folder:

• Revoked Certificates: If the identity of an actor has been revoked, identifying information about the identity
— not the identity itself — is held in this folder. For X.509-based identities, these identifiers are pairs of strings
known as Subject Key Identifier (SKI) and Authority Access Identifier (AKI), and are checked whenever the
certificate is being used to make sure the certificate has not been revoked.

This list is conceptually the same as a CA’s Certificate Revocation List (CRL), but it also relates to revocation
of membership from the organization. As a result, the administrator of a channel MSP can quickly revoke an
actor or node from an organization by advertising the updated CRL of the CA. This “list of lists” is optional. It
will only become populated as certificates are revoked.

If you’ve read this doc as well as our doc on Identity, you should now have a pretty good grasp of how identities and
MSPs work in Hyperledger Fabric. You’ve seen how a PKI and MSPs are used to identify the actors collaborating in
a blockchain network. You’ve learned how certificates, public/private keys, and roots of trust work, in addition to how
MSPs are physically and logically structured.

4.6 Policies

Audience: Architects, application and smart contract developers, administrators

In this topic, we’ll cover:

• What is a policy

• Why are policies needed

• How are policies implemented throughout Fabric

• Fabric policy domains

• How do you write a policy in Fabric

• Fabric chaincode lifecycle

• Overriding policy definitions

4.6.1 What is a policy

At its most basic level, a policy is a set of rules that define the structure for how decisions are made and specific
outcomes are reached. To that end, policies typically describe a who and a what, such as the access or rights that an
individual has over an asset. We can see that policies are used throughout our daily lives to protect assets of value to
us, from car rentals, health, our homes, and many more.

For example, an insurance policy defines the conditions, terms, limits, and expiration under which an insurance payout
will be made. The policy is agreed to by the policy holder and the insurance company, and defines the rights and
responsibilities of each party.

Whereas an insurance policy is put in place for risk management, in Hyperledger Fabric, policies are the mechanism
for infrastructure management. Fabric policies represent how members come to agreement on accepting or rejecting
changes to the network, a channel, or a smart contract. Policies are agreed to by the consortium members when a
network is originally configured, but they can also be modified as the network evolves. For example, they describe
the criteria for adding or removing members from a channel, change how blocks are formed, or specify the number of
organizations required to endorse a smart contract. All of these actions are described by a policy which defines who
can perform the action. Simply put, everything you want to do on a Fabric network is controlled by a policy.

58 Chapter 4. Key Concepts

../operations_service.html
../operations_service.html
../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

4.6.2 Why are policies needed

Policies are one of the things that make Hyperledger Fabric different from other blockchains like Ethereum or Bitcoin.
In those systems, transactions can be generated and validated by any node in the network. The policies that govern the
network are fixed at any point in time and can only be changed using the same process that governs the code. Because
Fabric is a permissioned blockchain whose users are recognized by the underlying infrastructure, those users have
the ability to decide on the governance of the network before it is launched, and change the governance of a running
network.

Policies allow members to decide which organizations can access or update a Fabric network, and provide the mech-
anism to enforce those decisions. Policies contain the lists of organizations that have access to a given resource, such
as a user or system chaincode. They also specify how many organizations need to agree on a proposal to update a
resource, such as a channel or smart contracts. Once they are written, policies evaluate the collection of signatures
attached to transactions and proposals and validate if the signatures fulfill the governance agreed to by the network.

4.6.3 How are policies implemented throughout Fabric

Policies are implemented at different levels of a Fabric network. Each policy domain governs different aspects of how
a network operates.

A visual representation of the Fabric policy hierarchy.

System channel configuration

Every network begins with an ordering system channel. There must be exactly one ordering system channel for an
ordering service, and it is the first channel to be created. The system channel also contains the organizations who are
the members of the ordering service (ordering organizations) and those that are on the networks to transact (consortium
organizations).

The policies in the ordering system channel configuration blocks govern the consensus used by the ordering service
and define how new blocks are created. The system channel also governs which members of the consortium are
allowed to create new channels.

4.6. Policies 59

hyperledger-fabricdocs Documentation, Release master

Application channel configuration

Application channels are used to provide a private communication mechanism between organizations in the consor-
tium.

The policies in an application channel govern the ability to add or remove members from the channel. Application
channels also govern which organizations are required to approve a chaincode before the chaincode is defined and
committed to a channel using the Fabric chaincode lifecycle. When an application channel is initially created, it
inherits all the ordering service parameters from the orderer system channel by default. However, those parameters
(and the policies governing them) can be customized in each channel.

Access control lists (ACLs)

Network administrators will be especially interested in the Fabric use of ACLs, which provide the ability to configure
access to resources by associating those resources with existing policies. These “resources” could be functions on sys-
tem chaincode (e.g., “GetBlockByNumber” on the “qscc” system chaincode) or other resources (e.g.,who can receive
Block events). ACLs refer to policies defined in an application channel configuration and extends them to control ad-
ditional resources. The default set of Fabric ACLs is visible in the configtx.yaml file under the Application:
&ApplicationDefaults section but they can and should be overridden in a production environment. The list of
resources named in configtx.yaml is the complete set of all internal resources currently defined by Fabric.

In that file, ACLs are expressed using the following format:

ACL policy for chaincode to chaincode invocation
peer/ChaincodeToChaincode: /Channel/Application/Writers

Where peer/ChaincodeToChaincode represents the resource being secured and /Channel/
Application/Writers refers to the policy which must be satisfied for the associated transaction to be
considered valid.

For a deeper dive into ACLS, refer to the topic in the Operations Guide on ACLs.

Smart contract endorsement policies

Every smart contract inside a chaincode package has an endorsement policy that specifies how many peers belonging
to different channel members need to execute and validate a transaction against a given smart contract in order for the
transaction to be considered valid. Hence, the endorsement policies define the organizations (through their peers) who
must “endorse” (i.e., approve of) the execution of a proposal.

Modification policies

There is one last type of policy that is crucial to how policies work in Fabric, the Modification policy. Modifi-
cation policies specify the group of identities required to sign (approve) any configuration update. It is the policy that
defines how the policy is updated. Thus, each channel configuration element includes a reference to a policy which
governs its modification.

4.6.4 The Fabric policy domains

While Fabric policies are flexible and can be configured to meet the needs of a network, the policy structure naturally
leads to a division between the domains governed by either the Ordering Service organizations or the members of the
consortium. In the following diagram you can see how the default policies implement control over the Fabric policy
domains below.

60 Chapter 4. Key Concepts

../access_control.html

hyperledger-fabricdocs Documentation, Release master

A more detailed look at the policy domains governed by the Orderer organizations and consortium organizations.

A fully functional Fabric network can feature many organizations with different responsibilities. The domains provide
the ability to extend different privileges and roles to different organizations by allowing the founders of the ordering
service the ability to establish the initial rules and membership of the consortium. They also allow the organizations
that join the consortium to create private application channels, govern their own business logic, and restrict access to
the data that is put on the network.

The system channel configuration and a portion of each application channel configuration provides the ordering orga-
nizations control over which organizations are members of the consortium, how blocks are delivered to channels, and
the consensus mechanism used by the nodes of the ordering service.

The system channel configuration provides members of the consortium the ability to create channels. Application
channels and ACLs are the mechanism that consortium organizations use to add or remove members from a channel
and restrict access to data and smart contracts on a channel.

4.6.5 How do you write a policy in Fabric

If you want to change anything in Fabric, the policy associated with the resource describes who needs to approve it,
either with an explicit sign off from individuals, or an implicit sign off by a group. In the insurance domain, an explicit
sign off could be a single member of the homeowners insurance agents group. And an implicit sign off would be
analogous to requiring approval from a majority of the managerial members of the homeowners insurance group. This
is particularly useful because the members of that group can change over time without requiring that the policy be
updated. In Hyperledger Fabric, explicit sign offs in policies are expressed using the Signature syntax and implicit
sign offs use the ImplicitMeta syntax.

Signature policies

Signature policies define specific types of users who must sign in order for a policy to be satisfied such as
OR('Org1.peer', 'Org2.peer'). These policies are considered the most versatile because they allow for
the construction of extremely specific rules like: “An admin of org A and 2 other admins, or 5 of 6 organization
admins”. The syntax supports arbitrary combinations of AND, OR and NOutOf. For example, a policy can be easily

4.6. Policies 61

hyperledger-fabricdocs Documentation, Release master

expressed by using AND('Org1.member', 'Org2.member') which means that a signature from at least one
member in Org1 AND one member in Org2 is required for the policy to be satisfied.

ImplicitMeta policies

ImplicitMeta policies are only valid in the context of channel configuration which is based on a tiered hierarchy
of policies in a configuration tree. ImplicitMeta policies aggregate the result of policies deeper in the configuration
tree that are ultimately defined by Signature policies. They are Implicit because they are constructed implicitly
based on the current organizations in the channel configuration, and they are Meta because their evaluation is not
against specific MSP principals, but rather against other sub-policies below them in the configuration tree.

The following diagram illustrates the tiered policy structure for an application channel and shows how the
ImplicitMeta channel configuration admins policy, named /Channel/Admins, is resolved when the sub-
policies named Admins below it in the configuration hierarchy are satisfied where each check mark represents that
the conditions of the sub-policy were satisfied.

As you can see in the diagram above, ImplicitMeta policies, Type = 3, use a different syntax,
"<ANY|ALL|MAJORITY> <SubPolicyName>", for example:

`MAJORITY sub policy: Admins`

The diagram shows a sub-policy Admins, which refers to all the Admins policy below it in the configuration tree.
You can create your own sub-policies and name them whatever you want and then define them in each of your organi-
zations.

As mentioned above, a key benefit of an ImplicitMeta policy such as MAJORITY Admins is that when you add
a new admin organization to the channel, you do not have to update the channel policy. Therefore ImplicitMeta
policies are considered to be more flexible as the consortium members change. The consortium on the orderer can
change as new members are added or an existing member leaves with the consortium members agreeing to the changes,
but no policy updates are required. Recall that ImplicitMeta policies ultimately resolve the Signature sub-
policies underneath them in the configuration tree as the diagram shows.

62 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

You can also define an application level implicit policy to operate across organizations, in a channel for example,
and either require that ANY of them are satisfied, that ALL are satisfied, or that a MAJORITY are satisfied. This
format lends itself to much better, more natural defaults, so that each organization can decide what it means for a valid
endorsement.

Further granularity and control can be achieved if you include NodeOUs in your organization definition. Organization
Units (OUs) are defined in the Fabric CA client configuration file and can be associated with an identity when it
is created. In Fabric, NodeOUs provide a way to classify identities in a digital certificate hierarchy. For instance,
an organization having specific NodeOUs enabled could require that a ‘peer’ sign for it to be a valid endorsement,
whereas an organization without any might simply require that any member can sign.

4.6.6 An example: channel configuration policy

Understanding policies begins with examining the configtx.yaml where the channel policies are defined. We can
use the configtx.yaml file in the Fabric test network to see examples of both policy syntax types. We are going
to examine the configtx.yaml file used by the fabric-samples/test-network sample.

The first section of the file defines the organizations of the network. Inside each organization definition are the default
policies for that organization, Readers, Writers, Admins, and Endorsement, although you can name your
policies anything you want. Each policy has a Type which describes how the policy is expressed (Signature or
ImplicitMeta) and a Rule.

The test network example below shows the Org1 organization definition in the system channel, where the policy Type
is Signature and the endorsement policy rule is defined as "OR('Org1MSP.peer')". This policy specifies that
a peer that is a member of Org1MSP is required to sign. It is these signature policies that become the sub-policies that
the ImplicitMeta policies point to.

Click here to see an example of an organization defined with signature policies

- &Org1
DefaultOrg defines the organization which is used in the sampleconfig
of the fabric.git development environment
Name: Org1MSP

ID to load the MSP definition as
ID: Org1MSP

MSPDir: crypto-config/peerOrganizations/org1.example.com/msp

Policies defines the set of policies at this level of the config tree
For organization policies, their canonical path is usually
/Channel/<Application|Orderer>/<OrgName>/<PolicyName>
Policies:

Readers:
Type: Signature
Rule: "OR('Org1MSP.admin', 'Org1MSP.peer', 'Org1MSP.client')"

Writers:
Type: Signature
Rule: "OR('Org1MSP.admin', 'Org1MSP.client')"

Admins:
Type: Signature
Rule: "OR('Org1MSP.admin')"

Endorsement:
Type: Signature
Rule: "OR('Org1MSP.peer')"

The next example shows the ImplicitMeta policy type used in the Application section of the configtx.
yaml. These set of policies lie on the /Channel/Application/ path. If you use the default set of Fabric

4.6. Policies 63

msp.html#organizational-units
https://github.com/hyperledger/fabric-samples/blob/master/test-network/configtx/configtx.yaml

hyperledger-fabricdocs Documentation, Release master

ACLs, these policies define the behavior of many important features of application channels, such as who can query
the channel ledger, invoke a chaincode, or update a channel config. These policies point to the sub-policies defined
for each organization. The Org1 defined in the section above contains Reader, Writer, and Admin sub-policies
that are evaluated by the Reader, Writer, and Admin ImplicitMeta policies in the Application section.
Because the test network is built with the default policies, you can use the example Org1 to query the channel ledger,
invoke a chaincode, and approve channel updates for any test network channel that you create.

Click here to see an example of ImplicitMeta policies

##
#
SECTION: Application
#
- This section defines the values to encode into a config transaction or
genesis block for application related parameters
#
##
Application: &ApplicationDefaults

Organizations is the list of orgs which are defined as participants on
the application side of the network
Organizations:

Policies defines the set of policies at this level of the config tree
For Application policies, their canonical path is
/Channel/Application/<PolicyName>
Policies:

Readers:
Type: ImplicitMeta
Rule: "ANY Readers"

Writers:
Type: ImplicitMeta
Rule: "ANY Writers"

Admins:
Type: ImplicitMeta
Rule: "MAJORITY Admins"

LifecycleEndorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement"

Endorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement"

4.6.7 Fabric chaincode lifecycle

In the Fabric 2.0 release, a new chaincode lifecycle process was introduced, whereby a more democratic process is
used to govern chaincode on the network. The new process allows multiple organizations to vote on how a chaincode
will be operated before it can be used on a channel. This is significant because it is the combination of this new
lifecycle process and the policies that are specified during that process that dictate the security across the network.
More details on the flow are available in the Fabric chaincode lifecycle concept topic, but for purposes of this topic
you should understand how policies are used in this flow. The new flow includes two steps where policies are specified:
when chaincode is approved by organization members, and when it is committed to the channel.

The Application section of the configtx.yaml file includes the default chaincode lifecycle endorsement pol-
icy. In a production environment you would customize this definition for your own use case.

64 Chapter 4. Key Concepts

../chaincode_lifecycle.html

hyperledger-fabricdocs Documentation, Release master

##
#
SECTION: Application
#
- This section defines the values to encode into a config transaction or
genesis block for application related parameters
#
##
Application: &ApplicationDefaults

Organizations is the list of orgs which are defined as participants on
the application side of the network
Organizations:

Policies defines the set of policies at this level of the config tree
For Application policies, their canonical path is
/Channel/Application/<PolicyName>
Policies:

Readers:
Type: ImplicitMeta
Rule: "ANY Readers"

Writers:
Type: ImplicitMeta
Rule: "ANY Writers"

Admins:
Type: ImplicitMeta
Rule: "MAJORITY Admins"

LifecycleEndorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement"

Endorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement"

• The LifecycleEndorsement policy governs who needs to approve a chaincode definition.

• The Endorsement policy is the default endorsement policy for a chaincode. More on this below.

4.6.8 Chaincode endorsement policies

The endorsement policy is specified for a chaincode when it is approved and committed to the channel using the
Fabric chaincode lifecycle (that is, one endorsement policy covers all of the state associated with a chaincode). The
endorsement policy can be specified either by reference to an endorsement policy defined in the channel configuration
or by explicitly specifying a Signature policy.

If an endorsement policy is not explicitly specified during the approval step, the default Endorsement policy
"MAJORITY Endorsement" is used which means that a majority of the peers belonging to the different channel
members (organizations) need to execute and validate a transaction against the chaincode in order for the transaction
to be considered valid. This default policy allows organizations that join the channel to become automatically added
to the chaincode endorsement policy. If you don’t want to use the default endorsement policy, use the Signature pol-
icy format to specify a more complex endorsement policy (such as requiring that a chaincode be endorsed by one
organization, and then one of the other organizations on the channel).

Signature policies also allow you to include principals which are simply a way of matching an identity to a role.
Principals are just like user IDs or group IDs, but they are more versatile because they can include a wide range of
properties of an actor’s identity, such as the actor’s organization, organizational unit, role or even the actor’s specific
identity. When we talk about principals, they are the properties which determine their permissions. Principals are

4.6. Policies 65

hyperledger-fabricdocs Documentation, Release master

described as ‘MSP.ROLE’, where MSP represents the required MSP ID (the organization), and ROLE represents one
of the four accepted roles: Member, Admin, Client, and Peer. A role is associated to an identity when a user enrolls
with a CA. You can customize the list of roles available on your Fabric CA.

Some examples of valid principals are:

• ‘Org0.Admin’: an administrator of the Org0 MSP

• ‘Org1.Member’: a member of the Org1 MSP

• ‘Org1.Client’: a client of the Org1 MSP

• ‘Org1.Peer’: a peer of the Org1 MSP

• ‘OrdererOrg.Orderer’: an orderer in the OrdererOrg MSP

There are cases where it may be necessary for a particular state (a particular key-value pair, in other words) to have a
different endorsement policy. This state-based endorsement allows the default chaincode-level endorsement policies
to be overridden by a different policy for the specified keys.

For a deeper dive on how to write an endorsement policy refer to the topic on Endorsement policies in the Operations
Guide.

Note: Policies work differently depending on which version of Fabric you are using:

• In Fabric releases prior to 2.0, chaincode endorsement policies can be updated during chaincode instantiation
or by using the chaincode lifecycle commands. If not specified at instantiation time, the endorsement policy
defaults to “any member of the organizations in the channel”. For example, a channel with “Org1” and “Org2”
would have a default endorsement policy of “OR(‘Org1.member’, ‘Org2.member’)”.

• Starting with Fabric 2.0, Fabric introduced a new chaincode lifecycle process that allows multiple organizations
to agree on how a chaincode will be operated before it can be used on a channel. The new process requires
that organizations agree to the parameters that define a chaincode, such as name, version, and the chaincode
endorsement policy.

4.6.9 Overriding policy definitions

Hyperledger Fabric includes default policies which are useful for getting started, developing, and testing your
blockchain, but they are meant to be customized in a production environment. You should be aware of the default
policies in the configtx.yaml file. Channel configuration policies can be extended with arbitrary verbs, beyond
the default Readers, Writers, Admins in configtx.yaml. The orderer system and application channels
are overridden by issuing a config update when you override the default policies by editing the configtx.yaml for
the orderer system channel or the configtx.yaml for a specific channel.

See the topic on Updating a channel configuration for more information.

4.7 Peers

A blockchain network is comprised primarily of a set of peer nodes (or, simply, peers). Peers are a fundamental
element of the network because they host ledgers and smart contracts. Recall that a ledger immutably records all the
transactions generated by smart contracts (which in Hyperledger Fabric are contained in a chaincode, more on this
later). Smart contracts and ledgers are used to encapsulate the shared processes and shared information in a network,
respectively. These aspects of a peer make them a good starting point to understand a Fabric network.

Other elements of the blockchain network are of course important: ledgers and smart contracts, orderers, policies,
channels, applications, organizations, identities, and membership, and you can read more about them in their own
dedicated sections. This section focusses on peers, and their relationship to those other elements in a Fabric network.

66 Chapter 4. Key Concepts

../endorsement-policies.html
../config_update.html#updating-a-channel-configuration

hyperledger-fabricdocs Documentation, Release master

A blockchain network is comprised of peer nodes, each of which can hold copies of ledgers and copies of smart
contracts. In this example, the network N consists of peers P1, P2 and P3, each of which maintain their own instance
of the distributed ledger L1. P1, P2 and P3 use the same chaincode, S1, to access their copy of that distributed ledger.

Peers can be created, started, stopped, reconfigured, and even deleted. They expose a set of APIs that enable admin-
istrators and applications to interact with the services that they provide. We’ll learn more about these services in this
section.

4.7.1 A word on terminology

Fabric implements smart contracts with a technology concept it calls chaincode — simply a piece of code that
accesses the ledger, written in one of the supported programming languages. In this topic, we’ll usually use the term
chaincode, but feel free to read it as smart contract if you’re more used to that term. It’s the same thing! If you want
to learn more about chaincode and smart contracts, check out our documentation on smart contracts and chaincode.

4.7.2 Ledgers and Chaincode

Let’s look at a peer in a little more detail. We can see that it’s the peer that hosts both the ledger and chaincode.
More accurately, the peer actually hosts instances of the ledger, and instances of chaincode. Note that this provides a
deliberate redundancy in a Fabric network — it avoids single points of failure. We’ll learn more about the distributed
and decentralized nature of a blockchain network later in this section.

4.7. Peers 67

../smartcontract/smartcontract.html

hyperledger-fabricdocs Documentation, Release master

A peer hosts instances of ledgers and instances of chaincodes. In this example, P1 hosts an instance of ledger L1 and
an instance of chaincode S1. There can be many ledgers and chaincodes hosted on an individual peer.

Because a peer is a host for ledgers and chaincodes, applications and administrators must interact with a peer if they
want to access these resources. That’s why peers are considered the most fundamental building blocks of a Fabric
network. When a peer is first created, it has neither ledgers nor chaincodes. We’ll see later how ledgers get created,
and how chaincodes get installed, on peers.

Multiple Ledgers

A peer is able to host more than one ledger, which is helpful because it allows for a flexible system design. The
simplest configuration is for a peer to manage a single ledger, but it’s absolutely appropriate for a peer to host two or
more ledgers when required.

A peer hosting multiple ledgers. Peers host one or more ledgers, and each ledger has zero or more chaincodes that
apply to them. In this example, we can see that the peer P1 hosts ledgers L1 and L2. Ledger L1 is accessed using
chaincode S1. Ledger L2 on the other hand can be accessed using chaincodes S1 and S2.

68 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Although it is perfectly possible for a peer to host a ledger instance without hosting any chaincodes which access that
ledger, it’s rare that peers are configured this way. The vast majority of peers will have at least one chaincode installed
on it which can query or update the peer’s ledger instances. It’s worth mentioning in passing that, whether or not users
have installed chaincodes for use by external applications, peers also have special system chaincodes that are always
present. These are not discussed in detail in this topic.

Multiple Chaincodes

There isn’t a fixed relationship between the number of ledgers a peer has and the number of chaincodes that can access
that ledger. A peer might have many chaincodes and many ledgers available to it.

An example of a peer hosting multiple chaincodes. Each ledger can have many chaincodes which access it. In this
example, we can see that peer P1 hosts ledgers L1 and L2, where L1 is accessed by chaincodes S1 and S2, and L2 is
accessed by S1 and S3. We can see that S1 can access both L1 and L2.

We’ll see a little later why the concept of channels in Fabric is important when hosting multiple ledgers or multiple
chaincodes on a peer.

4.7.3 Applications and Peers

We’re now going to show how applications interact with peers to access the ledger. Ledger-query interactions involve
a simple three-step dialogue between an application and a peer; ledger-update interactions are a little more involved,
and require two extra steps. We’ve simplified these steps a little to help you get started with Fabric, but don’t worry
— what’s most important to understand is the difference in application-peer interactions for ledger-query compared to
ledger-update transaction styles.

Applications always connect to peers when they need to access ledgers and chaincodes. The Fabric Software De-
velopment Kit (SDK) makes this easy for programmers — its APIs enable applications to connect to peers, invoke
chaincodes to generate transactions, submit transactions to the network that will get ordered, validated and committed
to the distributed ledger, and receive events when this process is complete.

Through a peer connection, applications can execute chaincodes to query or update a ledger. The result of a ledger
query transaction is returned immediately, whereas ledger updates involve a more complex interaction between appli-
cations, peers and orderers. Let’s investigate this in a little more detail.

4.7. Peers 69

hyperledger-fabricdocs Documentation, Release master

Peers, in conjunction with orderers, ensure that the ledger is kept up-to-date on every peer. In this example, application
A connects to P1 and invokes chaincode S1 to query or update the ledger L1. P1 invokes S1 to generate a proposal
response that contains a query result or a proposed ledger update. Application A receives the proposal response and,
for queries, the process is now complete. For updates, A builds a transaction from all of the responses, which it sends
to O1 for ordering. O1 collects transactions from across the network into blocks, and distributes these to all peers,
including P1. P1 validates the transaction before committing to L1. Once L1 is updated, P1 generates an event,
received by A, to signify completion.

A peer can return the results of a query to an application immediately since all of the information required to satisfy the
query is in the peer’s local copy of the ledger. Peers never consult with other peers in order to respond to a query from
an application. Applications can, however, connect to one or more peers to issue a query; for example, to corroborate
a result between multiple peers, or retrieve a more up-to-date result from a different peer if there’s a suspicion that
information might be out of date. In the diagram, you can see that ledger query is a simple three-step process.

An update transaction starts in the same way as a query transaction, but has two extra steps. Although ledger-updating
applications also connect to peers to invoke a chaincode, unlike with ledger-querying applications, an individual peer
cannot perform a ledger update at this time, because other peers must first agree to the change — a process called
consensus. Therefore, peers return to the application a proposed update — one that this peer would apply subject to
other peers’ prior agreement. The first extra step — step four — requires that applications send an appropriate set of
matching proposed updates to the entire network of peers as a transaction for commitment to their respective ledgers.
This is achieved by the application by using an orderer to package transactions into blocks, and distributing them to
the entire network of peers, where they can be verified before being applied to each peer’s local copy of the ledger. As
this whole ordering processing takes some time to complete (seconds), the application is notified asynchronously, as
shown in step five.

Later in this section, you’ll learn more about the detailed nature of this ordering process — and for a really detailed
look at this process see the Transaction Flow topic.

4.7.4 Peers and Channels

Although this section is about peers rather than channels, it’s worth spending a little time understanding how peers
interact with each other, and with applications, via channels — a mechanism by which a set of components within a
blockchain network can communicate and transact privately.

These components are typically peer nodes, orderer nodes and applications and, by joining a channel, they agree to
collaborate to collectively share and manage identical copies of the ledger associated with that channel. Conceptually,
you can think of channels as being similar to groups of friends (though the members of a channel certainly don’t need

70 Chapter 4. Key Concepts

../txflow.html

hyperledger-fabricdocs Documentation, Release master

to be friends!). A person might have several groups of friends, with each group having activities they do together.
These groups might be totally separate (a group of work friends as compared to a group of hobby friends), or there
can be some crossover between them. Nevertheless, each group is its own entity, with “rules” of a kind.

Channels allow a specific set of peers and applications to communicate with each other within a blockchain network.
In this example, application A can communicate directly with peers P1 and P2 using channel C. You can think of the
channel as a pathway for communications between particular applications and peers. (For simplicity, orderers are
not shown in this diagram, but must be present in a functioning network.)

We see that channels don’t exist in the same way that peers do — it’s more appropriate to think of a channel as a
logical structure that is formed by a collection of physical peers. It is vital to understand this point — peers provide
the control point for access to, and management of, channels.

4.7.5 Peers and Organizations

Now that you understand peers and their relationship to ledgers, chaincodes and channels, you’ll be able to see how
multiple organizations come together to form a blockchain network.

Blockchain networks are administered by a collection of organizations rather than a single organization. Peers are
central to how this kind of distributed network is built because they are owned by — and are the connection points to
the network for — these organizations.

4.7. Peers 71

hyperledger-fabricdocs Documentation, Release master

Peers in a blockchain network with multiple organizations. The blockchain network is built up from the peers owned
and contributed by the different organizations. In this example, we see four organizations contributing eight peers to
form a network. The channel C connects five of these peers in the network N — P1, P3, P5, P7 and P8. The other
peers owned by these organizations have not been joined to this channel, but are typically joined to at least one other
channel. Applications that have been developed by a particular organization will connect to their own organization’s
peers as well as those of different organizations. Again, for simplicity, an orderer node is not shown in this diagram.

It’s really important that you can see what’s happening in the formation of a blockchain network. The network is
both formed and managed by the multiple organizations who contribute resources to it. Peers are the resources that
we’re discussing in this topic, but the resources an organization provides are more than just peers. There’s a principle
at work here — the network literally does not exist without organizations contributing their individual resources
to the collective network. Moreover, the network grows and shrinks with the resources that are provided by these
collaborating organizations.

You can see that (other than the ordering service) there are no centralized resources — in the example above, the
network, N, would not exist if the organizations did not contribute their peers. This reflects the fact that the network
does not exist in any meaningful sense unless and until organizations contribute the resources that form it. Moreover,
the network does not depend on any individual organization — it will continue to exist as long as one organization
remains, no matter which other organizations may come and go. This is at the heart of what it means for a network to
be decentralized.

Applications in different organizations, as in the example above, may or may not be the same. That’s because it’s
entirely up to an organization as to how its applications process their peers’ copies of the ledger. This means that both
application and presentation logic may vary from organization to organization even though their respective peers host
exactly the same ledger data.

Applications connect either to peers in their organization, or peers in another organization, depending on the nature of
the ledger interaction that’s required. For ledger-query interactions, applications typically connect to their own orga-
nization’s peers. For ledger-update interactions, we’ll see later why applications need to connect to peers representing
every organization that is required to endorse the ledger update.

4.7.6 Peers and Identity

Now that you’ve seen how peers from different organizations come together to form a blockchain network, it’s worth
spending a few moments understanding how peers get assigned to organizations by their administrators.

Peers have an identity assigned to them via a digital certificate from a particular certificate authority. You can read
lots more about how X.509 digital certificates work elsewhere in this guide but, for now, think of a digital certificate
as being like an ID card that provides lots of verifiable information about a peer. Each and every peer in the network
is assigned a digital certificate by an administrator from its owning organization.

72 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

When a peer connects to a channel, its digital certificate identifies its owning organization via a channel MSP. In this
example, P1 and P2 have identities issued by CA1. Channel C determines from a policy in its channel configuration
that identities from CA1 should be associated with Org1 using ORG1.MSP. Similarly, P3 and P4 are identified by
ORG2.MSP as being part of Org2.

Whenever a peer connects using a channel to a blockchain network, a policy in the channel configuration uses the
peer’s identity to determine its rights. The mapping of identity to organization is provided by a component called
a Membership Service Provider (MSP) — it determines how a peer gets assigned to a specific role in a particular
organization and accordingly gains appropriate access to blockchain resources. Moreover, a peer can be owned only
by a single organization, and is therefore associated with a single MSP. We’ll learn more about peer access control
later in this section, and there’s an entire section on MSPs and access control policies elsewhere in this guide. But
for now, think of an MSP as providing linkage between an individual identity and a particular organizational role in a
blockchain network.

To digress for a moment, peers as well as everything that interacts with a blockchain network acquire their organi-
zational identity from their digital certificate and an MSP. Peers, applications, end users, administrators and orderers
must have an identity and an associated MSP if they want to interact with a blockchain network. We give a name
to every entity that interacts with a blockchain network using an identity — a principal. You can learn lots more
about principals and organizations elsewhere in this guide, but for now you know more than enough to continue your
understanding of peers!

Finally, note that it’s not really important where the peer is physically located — it could reside in the cloud, or in a
data centre owned by one of the organizations, or on a local machine — it’s the digital certificate associated with it
that identifies it as being owned by a particular organization. In our example above, P3 could be hosted in Org1’s data
center, but as long as the digital certificate associated with it is issued by CA2, then it’s owned by Org2.

4.7.7 Peers and Orderers

We’ve seen that peers form the basis for a blockchain network, hosting ledgers and smart contracts which can be
queried and updated by peer-connected applications. However, the mechanism by which applications and peers interact

4.7. Peers 73

hyperledger-fabricdocs Documentation, Release master

with each other to ensure that every peer’s ledger is kept consistent with each other is mediated by special nodes called
orderers, and it’s to these nodes we now turn our attention.

An update transaction is quite different from a query transaction because a single peer cannot, on its own, update the
ledger — updating requires the consent of other peers in the network. A peer requires other peers in the network to
approve a ledger update before it can be applied to a peer’s local ledger. This process is called consensus, which takes
much longer to complete than a simple query. But when all the peers required to approve the transaction do so, and the
transaction is committed to the ledger, peers will notify their connected applications that the ledger has been updated.
You’re about to be shown a lot more detail about how peers and orderers manage the consensus process in this section.

Specifically, applications that want to update the ledger are involved in a 3-phase process, which ensures that all the
peers in a blockchain network keep their ledgers consistent with each other.

• In the first phase, applications work with a subset of endorsing peers, each of which provide an endorsement of
the proposed ledger update to the application, but do not apply the proposed update to their copy of the ledger.

• In the second phase, these separate endorsements are collected together as transactions and packaged into blocks.

• In the third and final phase, these blocks are distributed back to every peer where each transaction is validated
before being committed to that peer’s copy of the ledger.

As you will see, orderer nodes are central to this process, so let’s investigate in a little more detail how applications
and peers use orderers to generate ledger updates that can be consistently applied to a distributed, replicated ledger.

Phase 1: Proposal

Phase 1 of the transaction workflow involves an interaction between an application and a set of peers — it does not
involve orderers. Phase 1 is only concerned with an application asking different organizations’ endorsing peers to
agree to the results of the proposed chaincode invocation.

To start phase 1, applications generate a transaction proposal which they send to each of the required set of peers for
endorsement. Each of these endorsing peers then independently executes a chaincode using the transaction proposal
to generate a transaction proposal response. It does not apply this update to the ledger, but rather simply signs it and
returns it to the application. Once the application has received a sufficient number of signed proposal responses, the
first phase of the transaction flow is complete. Let’s examine this phase in a little more detail.

Transaction proposals are independently executed by peers who return endorsed proposal responses. In this example,
application A1 generates transaction T1 proposal P which it sends to both peer P1 and peer P2 on channel C. P1
executes S1 using transaction T1 proposal P generating transaction T1 response R1 which it endorses with E1. Inde-
pendently, P2 executes S1 using transaction T1 proposal P generating transaction T1 response R2 which it endorses
with E2. Application A1 receives two endorsed responses for transaction T1, namely E1 and E2.

74 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Initially, a set of peers are chosen by the application to generate a set of proposed ledger updates. Which peers are
chosen by the application? Well, that depends on the endorsement policy (defined for a chaincode), which defines the
set of organizations that need to endorse a proposed ledger change before it can be accepted by the network. This
is literally what it means to achieve consensus — every organization who matters must have endorsed the proposed
ledger change before it will be accepted onto any peer’s ledger.

A peer endorses a proposal response by adding its digital signature, and signing the entire payload using its private
key. This endorsement can be subsequently used to prove that this organization’s peer generated a particular response.
In our example, if peer P1 is owned by organization Org1, endorsement E1 corresponds to a digital proof that “Trans-
action T1 response R1 on ledger L1 has been provided by Org1’s peer P1!”.

Phase 1 ends when the application receives signed proposal responses from sufficient peers. We note that different
peers can return different and therefore inconsistent transaction responses to the application for the same transaction
proposal. It might simply be that the result was generated at different times on different peers with ledgers at different
states, in which case an application can simply request a more up-to-date proposal response. Less likely, but much
more seriously, results might be different because the chaincode is non-deterministic. Non-determinism is the enemy
of chaincodes and ledgers and if it occurs it indicates a serious problem with the proposed transaction, as inconsis-
tent results cannot, obviously, be applied to ledgers. An individual peer cannot know that their transaction result is
non-deterministic — transaction responses must be gathered together for comparison before non-determinism can be
detected. (Strictly speaking, even this is not enough, but we defer this discussion to the transaction section, where
non-determinism is discussed in detail.)

At the end of phase 1, the application is free to discard inconsistent transaction responses if it wishes to do so,
effectively terminating the transaction workflow early. We’ll see later that if an application tries to use an inconsistent
set of transaction responses to update the ledger, it will be rejected.

Phase 2: Ordering and packaging transactions into blocks

The second phase of the transaction workflow is the packaging phase. The orderer is pivotal to this process — it re-
ceives transactions containing endorsed transaction proposal responses from many applications, and orders the trans-
actions into blocks. For more details about the ordering and packaging phase, check out our conceptual information
about the ordering phase.

Phase 3: Validation and commit

At the end of phase 2, we see that orderers have been responsible for the simple but vital processes of collecting
proposed transaction updates, ordering them, and packaging them into blocks, ready for distribution to the peers.

The final phase of the transaction workflow involves the distribution and subsequent validation of blocks from the
orderer to the peers, where they can be committed to the ledger. Specifically, at each peer, every transaction within a
block is validated to ensure that it has been consistently endorsed by all relevant organizations before it is committed
to the ledger. Failed transactions are retained for audit, but are not committed to the ledger.

4.7. Peers 75

../orderer/ordering_service.html#phase-two-ordering-and-packaging-transactions-into-blocks
../orderer/ordering_service.html#phase-two-ordering-and-packaging-transactions-into-blocks

hyperledger-fabricdocs Documentation, Release master

The second role of an orderer node is to distribute blocks to peers. In this example, orderer O1 distributes block B2 to
peer P1 and peer P2. Peer P1 processes block B2, resulting in a new block being added to ledger L1 on P1. In parallel,
peer P2 processes block B2, resulting in a new block being added to ledger L1 on P2. Once this process is complete,
the ledger L1 has been consistently updated on peers P1 and P2, and each may inform connected applications that the
transaction has been processed.

Phase 3 begins with the orderer distributing blocks to all peers connected to it. Peers are connected to orderers on
channels such that when a new block is generated, all of the peers connected to the orderer will be sent a copy of the
new block. Each peer will process this block independently, but in exactly the same way as every other peer on the
channel. In this way, we’ll see that the ledger can be kept consistent. It’s also worth noting that not every peer needs to
be connected to an orderer — peers can cascade blocks to other peers using the gossip protocol, who also can process
them independently. But let’s leave that discussion to another time!

Upon receipt of a block, a peer will process each transaction in the sequence in which it appears in the block. For
every transaction, each peer will verify that the transaction has been endorsed by the required organizations according
to the endorsement policy of the chaincode which generated the transaction. For example, some transactions may
only need to be endorsed by a single organization, whereas others may require multiple endorsements before they are
considered valid. This process of validation verifies that all relevant organizations have generated the same outcome
or result. Also note that this validation is different than the endorsement check in phase 1, where it is the application
that receives the response from endorsing peers and makes the decision to send the proposal transactions. In case the
application violates the endorsement policy by sending wrong transactions, the peer is still able to reject the transaction
in the validation process of phase 3.

If a transaction has been endorsed correctly, the peer will attempt to apply it to the ledger. To do this, a peer must
perform a ledger consistency check to verify that the current state of the ledger is compatible with the state of the
ledger when the proposed update was generated. This may not always be possible, even when the transaction has
been fully endorsed. For example, another transaction may have updated the same asset in the ledger such that the
transaction update is no longer valid and therefore can no longer be applied. In this way, the ledger is kept consistent
across each peer in the channel because they each follow the same rules for validation.

After a peer has successfully validated each individual transaction, it updates the ledger. Failed transactions are not
applied to the ledger, but they are retained for audit purposes, as are successful transactions. This means that peer
blocks are almost exactly the same as the blocks received from the orderer, except for a valid or invalid indicator on
each transaction in the block.

We also note that phase 3 does not require the running of chaincodes — this is done only during phase 1, and that’s im-
portant. It means that chaincodes only have to be available on endorsing nodes, rather than throughout the blockchain
network. This is often helpful as it keeps the logic of the chaincode confidential to endorsing organizations. This is
in contrast to the output of the chaincodes (the transaction proposal responses) which are shared with every peer in
the channel, whether or not they endorsed the transaction. This specialization of endorsing peers is designed to help
scalability and confidentiality.

76 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Finally, every time a block is committed to a peer’s ledger, that peer generates an appropriate event. Block events
include the full block content, while block transaction events include summary information only, such as whether each
transaction in the block has been validated or invalidated. Chaincode events that the chaincode execution has produced
can also be published at this time. Applications can register for these event types so that they can be notified when
they occur. These notifications conclude the third and final phase of the transaction workflow.

In summary, phase 3 sees the blocks which are generated by the orderer consistently applied to the ledger. The strict
ordering of transactions into blocks allows each peer to validate that transaction updates are consistently applied across
the blockchain network.

Orderers and Consensus

This entire transaction workflow process is called consensus because all peers have reached agreement on the order and
content of transactions, in a process that is mediated by orderers. Consensus is a multi-step process and applications
are only notified of ledger updates when the process is complete — which may happen at slightly different times on
different peers.

We will discuss orderers in a lot more detail in a future orderer topic, but for now, think of orderers as nodes which
collect and distribute proposed ledger updates from applications for peers to validate and include on the ledger.

That’s it! We’ve now finished our tour of peers and the other components that they relate to in Fabric. We’ve seen that
peers are in many ways the most fundamental element — they form the network, host chaincodes and the ledger, handle
transaction proposals and responses, and keep the ledger up-to-date by consistently applying transaction updates to it.

4.8 Ledger

Audience: Architects, Application and smart contract developers, administrators

A ledger is a key concept in Hyperledger Fabric; it stores important factual information about business objects; both
the current value of the attributes of the objects, and the history of transactions that resulted in these current values.

In this topic, we’re going to cover:

• What is a Ledger?

• Storing facts about business objects

• A blockchain ledger

• The world state

• The blockchain data structure

• How blocks are stored in a blockchain

• Transactions

• World state database options

• The Fabcar example ledger

• Ledgers and namespaces

• Ledgers and channels

4.8. Ledger 77

hyperledger-fabricdocs Documentation, Release master

4.8.1 What is a Ledger?

A ledger contains the current state of a business as a journal of transactions. The earliest European and Chinese ledgers
date from almost 1000 years ago, and the Sumerians had stone ledgers 4000 years ago – but let’s start with a more
up-to-date example!

You’re probably used to looking at your bank account. What’s most important to you is the available balance – it’s
what you’re able to spend at the current moment in time. If you want to see how your balance was derived, then you
can look through the transaction credits and debits that determined it. This is a real life example of a ledger – a state
(your bank balance), and a set of ordered transactions (credits and debits) that determine it. Hyperledger Fabric is
motivated by these same two concerns – to present the current value of a set of ledger states, and to capture the history
of the transactions that determined these states.

4.8.2 Ledgers, Facts, and States

A ledger doesn’t literally store business objects – instead it stores facts about those objects. When we say “we store a
business object in a ledger” what we really mean is that we’re recording the facts about the current state of an object,
and the facts about the history of transactions that led to the current state. In an increasingly digital world, it can feel
like we’re looking at an object, rather than facts about an object. In the case of a digital object, it’s likely that it lives in
an external datastore; the facts we store in the ledger allow us to identify its location along with other key information
about it.

While the facts about the current state of a business object may change, the history of facts about it is immutable,
it can be added to, but it cannot be retrospectively changed. We’re going to see how thinking of a blockchain as an
immutable history of facts about business objects is a simple yet powerful way to understand it.

Let’s now take a closer look at the Hyperledger Fabric ledger structure!

4.8.3 The Ledger

In Hyperledger Fabric, a ledger consists of two distinct, though related, parts – a world state and a blockchain. Each
of these represents a set of facts about a set of business objects.

Firstly, there’s a world state – a database that holds current values of a set of ledger states. The world state makes
it easy for a program to directly access the current value of a state rather than having to calculate it by traversing the
entire transaction log. Ledger states are, by default, expressed as key-value pairs, and we’ll see later how Hyperledger
Fabric provides flexibility in this regard. The world state can change frequently, as states can be created, updated and
deleted.

Secondly, there’s a blockchain – a transaction log that records all the changes that have resulted in the current the
world state. Transactions are collected inside blocks that are appended to the blockchain – enabling you to understand
the history of changes that have resulted in the current world state. The blockchain data structure is very different to
the world state because once written, it cannot be modified; it is immutable.

78 Chapter 4. Key Concepts

http://www.sciencephoto.com/media/686227/view/accounting-ledger-sumerian-cuneiform

hyperledger-fabricdocs Documentation, Release master

A Ledger L comprises blockchain B and world state W, where blockchain B determines world state W. We can also say
that world state W is derived from blockchain B.

It’s helpful to think of there being one logical ledger in a Hyperledger Fabric network. In reality, the network maintains
multiple copies of a ledger – which are kept consistent with every other copy through a process called consensus. The
term Distributed Ledger Technology (DLT) is often associated with this kind of ledger – one that is logically singular,
but has many consistent copies distributed throughout a network.

Let’s now examine the world state and blockchain data structures in more detail.

4.8.4 World State

The world state holds the current value of the attributes of a business object as a unique ledger state. That’s use-
ful because programs usually require the current value of an object; it would be cumbersome to traverse the entire
blockchain to calculate an object’s current value – you just get it directly from the world state.

A ledger world state containing two states. The first state is: key=CAR1 and value=Audi. The second state has a more
complex value: key=CAR2 and value={model:BMW, color=red, owner=Jane}. Both states are at version 0.

A ledger state records a set of facts about a particular business object. Our example shows ledger states for two cars,

4.8. Ledger 79

hyperledger-fabricdocs Documentation, Release master

CAR1 and CAR2, each having a key and a value. An application program can invoke a smart contract which uses
simple ledger APIs to get, put and delete states. Notice how a state value can be simple (Audi. . .) or compound
(type:BMW. . .). The world state is often queried to retrieve objects with certain attributes, for example to find all red
BMWs.

The world state is implemented as a database. This makes a lot of sense because a database provides a rich set of
operators for the efficient storage and retrieval of states. We’ll see later that Hyperledger Fabric can be configured
to use different world state databases to address the needs of different types of state values and the access patterns
required by applications, for example in complex queries.

Applications submit transactions which capture changes to the world state, and these transactions end up being com-
mitted to the ledger blockchain. Applications are insulated from the details of this consensus mechanism by the
Hyperledger Fabric SDK; they merely invoke a smart contract, and are notified when the transaction has been in-
cluded in the blockchain (whether valid or invalid). The key design point is that only transactions that are signed by
the required set of endorsing organizations will result in an update to the world state. If a transaction is not signed by
sufficient endorsers, it will not result in a change of world state. You can read more about how applications use smart
contracts, and how to develop applications.

You’ll also notice that a state has a version number, and in the diagram above, states CAR1 and CAR2 are at their
starting versions, 0. The version number is for internal use by Hyperledger Fabric, and is incremented every time
the state changes. The version is checked whenever the state is updated to make sure the current states matches the
version at the time of endorsement. This ensures that the world state is changing as expected; that there has not been
a concurrent update.

Finally, when a ledger is first created, the world state is empty. Because any transaction which represents a valid change
to world state is recorded on the blockchain, it means that the world state can be re-generated from the blockchain
at any time. This can be very convenient – for example, the world state is automatically generated when a peer is
created. Moreover, if a peer fails abnormally, the world state can be regenerated on peer restart, before transactions
are accepted.

4.8.5 Blockchain

Let’s now turn our attention from the world state to the blockchain. Whereas the world state contains a set of facts
relating to the current state of a set of business objects, the blockchain is an historical record of the facts about how
these objects arrived at their current states. The blockchain has recorded every previous version of each ledger state
and how it has been changed.

The blockchain is structured as sequential log of interlinked blocks, where each block contains a sequence of transac-
tions, each transaction representing a query or update to the world state. The exact mechanism by which transactions
are ordered is discussed elsewhere; what’s important is that block sequencing, as well as transaction sequencing within
blocks, is established when blocks are first created by a Hyperledger Fabric component called the ordering service.

Each block’s header includes a hash of the block’s transactions, as well a hash of the prior block’s header. In this way,
all transactions on the ledger are sequenced and cryptographically linked together. This hashing and linking makes the
ledger data very secure. Even if one node hosting the ledger was tampered with, it would not be able to convince all the
other nodes that it has the ‘correct’ blockchain because the ledger is distributed throughout a network of independent
nodes.

The blockchain is always implemented as a file, in contrast to the world state, which uses a database. This is a sensible
design choice as the blockchain data structure is heavily biased towards a very small set of simple operations. Ap-
pending to the end of the blockchain is the primary operation, and query is currently a relatively infrequent operation.

Let’s have a look at the structure of a blockchain in a little more detail.

80 Chapter 4. Key Concepts

../txflow.html
../smartcontract/smartcontract.html
../smartcontract/smartcontract.html
../developapps/developing_applications.html
../peers/peers.html#peers-and-orderers

hyperledger-fabricdocs Documentation, Release master

A blockchain B containing blocks B0, B1, B2, B3. B0 is the first block in the blockchain, the genesis block.

In the above diagram, we can see that block B2 has a block data D2 which contains all its transactions: T5, T6, T7.

Most importantly, B2 has a block header H2, which contains a cryptographic hash of all the transactions in D2 as well
as a hash of H1. In this way, blocks are inextricably and immutably linked to each other, which the term blockchain
so neatly captures!

Finally, as you can see in the diagram, the first block in the blockchain is called the genesis block. It’s the starting
point for the ledger, though it does not contain any user transactions. Instead, it contains a configuration transaction
containing the initial state of the network channel (not shown). We discuss the genesis block in more detail when we
discuss the blockchain network and channels in the documentation.

4.8.6 Blocks

Let’s have a closer look at the structure of a block. It consists of three sections

• Block Header

This section comprises three fields, written when a block is created.

– Block number: An integer starting at 0 (the genesis block), and increased by 1 for every new block
appended to the blockchain.

– Current Block Hash: The hash of all the transactions contained in the current block.

– Previous Block Header Hash: The hash from the previous block header.

These fields are internally derived by cryptographically hashing the block data. They ensure that each and every
block is inextricably linked to its neighbour, leading to an immutable ledger.

4.8. Ledger 81

../channels.html

hyperledger-fabricdocs Documentation, Release master

Block header details. The header H2 of block B2 consists of block number 2, the hash CH2 of the current block
data D2, and the hash of the prior block header H1.

• Block Data

This section contains a list of transactions arranged in order. It is written when the block is created by the
ordering service. These transactions have a rich but straightforward structure, which we describe later in this
topic.

• Block Metadata

This section contains the certificate and signature of the block creator which is used to verify the block by
network nodes. Subsequently, the block committer adds a valid/invalid indicator for every transaction into a
bitmap that also resides in the block metadata, as well as a hash of the cumulative state updates up until and
including that block, in order to detect a state fork. Unlike the block data and header fields, this section is not an
input to the block hash computation.

4.8.7 Transactions

As we’ve seen, a transaction captures changes to the world state. Let’s have a look at the detailed blockdata structure
which contains the transactions in a block.

82 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Transaction details. Transaction T4 in blockdata D1 of block B1 consists of transaction header, H4, a transaction
signature, S4, a transaction proposal P4, a transaction response, R4, and a list of endorsements, E4.

In the above example, we can see the following fields:

• Header

This section, illustrated by H4, captures some essential metadata about the transaction – for example, the name
of the relevant chaincode, and its version.

• Signature

This section, illustrated by S4, contains a cryptographic signature, created by the client application. This field
is used to check that the transaction details have not been tampered with, as it requires the application’s private
key to generate it.

• Proposal

This field, illustrated by P4, encodes the input parameters supplied by an application to the smart contract
which creates the proposed ledger update. When the smart contract runs, this proposal provides a set of input
parameters, which, in combination with the current world state, determines the new world state.

• Response

This section, illustrated by R4, captures the before and after values of the world state, as a Read Write set
(RW-set). It’s the output of a smart contract, and if the transaction is successfully validated, it will be applied to
the ledger to update the world state.

• Endorsements

As shown in E4, this is a list of signed transaction responses from each required organization sufficient to satisfy
the endorsement policy. You’ll notice that, whereas only one transaction response is included in the transaction,
there are multiple endorsements. That’s because each endorsement effectively encodes its organization’s partic-
ular transaction response – meaning that there’s no need to include any transaction response that doesn’t match
sufficient endorsements as it will be rejected as invalid, and not update the world state.

That concludes the major fields of the transaction – there are others, but these are the essential ones that you need to
understand to have a solid understanding of the ledger data structure.

4.8. Ledger 83

hyperledger-fabricdocs Documentation, Release master

4.8.8 World State database options

The world state is physically implemented as a database, to provide simple and efficient storage and retrieval of ledger
states. As we’ve seen, ledger states can have simple or compound values, and to accommodate this, the world state
database implementation can vary, allowing these values to be efficiently implemented. Options for the world state
database currently include LevelDB and CouchDB.

LevelDB is the default and is particularly appropriate when ledger states are simple key-value pairs. A LevelDB
database is co-located with the peer node – it is embedded within the same operating system process.

CouchDB is a particularly appropriate choice when ledger states are structured as JSON documents because CouchDB
supports the rich queries and update of richer data types often found in business transactions. Implementation-wise,
CouchDB runs in a separate operating system process, but there is still a 1:1 relation between a peer node and a
CouchDB instance. All of this is invisible to a smart contract. See CouchDB as the StateDatabase for more information
on CouchDB.

In LevelDB and CouchDB, we see an important aspect of Hyperledger Fabric – it is pluggable. The world state
database could be a relational data store, or a graph store, or a temporal database. This provides great flexibility in the
types of ledger states that can be efficiently accessed, allowing Hyperledger Fabric to address many different types of
problems.

4.8.9 Example Ledger: fabcar

As we end this topic on the ledger, let’s have a look at a sample ledger. If you’ve run the fabcar sample application,
then you’ve created this ledger.

The fabcar sample app creates a set of 10 cars each with a unique identity; a different color, make, model and owner.
Here’s what the ledger looks like after the first four cars have been created.

The ledger, L, comprises a world state, W and a blockchain, B. W contains four states with keys: CAR0, CAR1, CAR2
and CAR3. B contains two blocks, 0 and 1. Block 1 contains four transactions: T1, T2, T3, T4.

We can see that the world state contains states that correspond to CAR0, CAR1, CAR2 and CAR3. CAR0 has a value
which indicates that it is a blue Toyota Prius, currently owned by Tomoko, and we can see similar states and values
for the other cars. Moreover, we can see that all car states are at version number 0, indicating that this is their starting
version number – they have not been updated since they were created.

We can also see that the blockchain contains two blocks. Block 0 is the genesis block, though it does not contain
any transactions that relate to cars. Block 1 however, contains transactions T1, T2, T3, T4 and these correspond to

84 Chapter 4. Key Concepts

../couchdb_as_state_database.html
../write_first_app.html

hyperledger-fabricdocs Documentation, Release master

transactions that created the initial states for CAR0 to CAR3 in the world state. We can see that block 1 is linked to
block 0.

We have not shown the other fields in the blocks or transactions, specifically headers and hashes. If you’re interested
in the precise details of these, you will find a dedicated reference topic elsewhere in the documentation. It gives you
a fully worked example of an entire block with its transactions in glorious detail – but for now, you have achieved a
solid conceptual understanding of a Hyperledger Fabric ledger. Well done!

4.8.10 Namespaces

Even though we have presented the ledger as though it were a single world state and single blockchain, that’s a little bit
of an over-simplification. In reality, each chaincode has its own world state that is separate from all other chaincodes.
World states are in a namespace so that only smart contracts within the same chaincode can access a given namespace.

A blockchain is not namespaced. It contains transactions from many different smart contract namespaces. You can
read more about chaincode namespaces in this topic.

Let’s now look at how the concept of a namespace is applied within a Hyperledger Fabric channel.

4.8.11 Channels

In Hyperledger Fabric, each channel has a completely separate ledger. This means a completely separate blockchain,
and completely separate world states, including namespaces. It is possible for applications and smart contracts to
communicate between channels so that ledger information can be accessed between them.

You can read more about how ledgers work with channels in this topic.

4.8.12 More information

See the Transaction Flow, Read-Write set semantics and CouchDB as the StateDatabase topics for a deeper dive on
transaction flow, concurrency control, and the world state database.

4.9 The Ordering Service

Audience: Architects, ordering service admins, channel creators

This topic serves as a conceptual introduction to the concept of ordering, how orderers interact with peers, the role
they play in a transaction flow, and an overview of the currently available implementations of the ordering service,
with a particular focus on the recommended Raft ordering service implementation.

4.9.1 What is ordering?

Many distributed blockchains, such as Ethereum and Bitcoin, are not permissioned, which means that any node can
participate in the consensus process, wherein transactions are ordered and bundled into blocks. Because of this fact,
these systems rely on probabilistic consensus algorithms which eventually guarantee ledger consistency to a high
degree of probability, but which are still vulnerable to divergent ledgers (also known as a ledger “fork”), where different
participants in the network have a different view of the accepted order of transactions.

Hyperledger Fabric works differently. It features a node called an orderer (it’s also known as an “ordering node”)
that does this transaction ordering, which along with other orderer nodes forms an ordering service. Because Fabric’s
design relies on deterministic consensus algorithms, any block validated by the peer is guaranteed to be final and
correct. Ledgers cannot fork the way they do in many other distributed and permissionless blockchain networks.

4.9. The Ordering Service 85

../developapps/chaincodenamespace.html
../channels.html
../developapps/chaincodenamespace.html#channels
../txflow.html
../readwrite.html
../couchdb_as_state_database.html

hyperledger-fabricdocs Documentation, Release master

In addition to promoting finality, separating the endorsement of chaincode execution (which happens at the peers)
from ordering gives Fabric advantages in performance and scalability, eliminating bottlenecks which can occur when
execution and ordering are performed by the same nodes.

4.9.2 Orderer nodes and channel configuration

In addition to their ordering role, orderers also maintain the list of organizations that are allowed to create channels.
This list of organizations is known as the “consortium”, and the list itself is kept in the configuration of the “orderer
system channel” (also known as the “ordering system channel”). By default, this list, and the channel it lives on, can
only be edited by the orderer admin. Note that it is possible for an ordering service to hold several of these lists, which
makes the consortium a vehicle for Fabric multi-tenancy.

Orderers also enforce basic access control for channels, restricting who can read and write data to them, and who
can configure them. Remember that who is authorized to modify a configuration element in a channel is subject
to the policies that the relevant administrators set when they created the consortium or the channel. Configuration
transactions are processed by the orderer, as it needs to know the current set of policies to execute its basic form
of access control. In this case, the orderer processes the configuration update to make sure that the requestor has the
proper administrative rights. If so, the orderer validates the update request against the existing configuration, generates
a new configuration transaction, and packages it into a block that is relayed to all peers on the channel. The peers then
process the configuration transactions in order to verify that the modifications approved by the orderer do indeed
satisfy the policies defined in the channel.

4.9.3 Orderer nodes and Identity

Everything that interacts with a blockchain network, including peers, applications, admins, and orderers, acquires their
organizational identity from their digital certificate and their Membership Service Provider (MSP) definition.

For more information about identities and MSPs, check out our documentation on Identity and Membership.

Just like peers, ordering nodes belong to an organization. And similar to peers, a separate Certificate Authority (CA)
should be used for each organization. Whether this CA will function as the root CA, or whether you choose to deploy
a root CA and then intermediate CAs associated with that root CA, is up to you.

4.9.4 Orderers and the transaction flow

Phase one: Proposal

We’ve seen from our topic on Peers that they form the basis for a blockchain network, hosting ledgers, which can be
queried and updated by applications through smart contracts.

Specifically, applications that want to update the ledger are involved in a process with three phases that ensures all of
the peers in a blockchain network keep their ledgers consistent with each other.

In the first phase, a client application sends a transaction proposal to a subset of peers that will invoke a smart contract to
produce a proposed ledger update and then endorse the results. The endorsing peers do not apply the proposed update
to their copy of the ledger at this time. Instead, the endorsing peers return a proposal response to the client application.
The endorsed transaction proposals will ultimately be ordered into blocks in phase two, and then distributed to all
peers for final validation and commit in phase three.

For an in-depth look at the first phase, refer back to the Peers topic.

86 Chapter 4. Key Concepts

../identity/identity.html
../membership/membership.html
../peers/peers.html
../peers/peers.html#phase-1-proposal

hyperledger-fabricdocs Documentation, Release master

Phase two: Ordering and packaging transactions into blocks

After the completion of the first phase of a transaction, a client application has received an endorsed transaction
proposal response from a set of peers. It’s now time for the second phase of a transaction.

In this phase, application clients submit transactions containing endorsed transaction proposal responses to an ordering
service node. The ordering service creates blocks of transactions which will ultimately be distributed to all peers on
the channel for final validation and commit in phase three.

Ordering service nodes receive transactions from many different application clients concurrently. These ordering
service nodes work together to collectively form the ordering service. Its job is to arrange batches of submitted
transactions into a well-defined sequence and package them into blocks. These blocks will become the blocks of the
blockchain!

The number of transactions in a block depends on channel configuration parameters related to the desired size and
maximum elapsed duration for a block (BatchSize and BatchTimeout parameters, to be exact). The blocks are
then saved to the orderer’s ledger and distributed to all peers that have joined the channel. If a peer happens to be down
at this time, or joins the channel later, it will receive the blocks after reconnecting to an ordering service node, or by
gossiping with another peer. We’ll see how this block is processed by peers in the third phase.

The first role of an ordering node is to package proposed ledger updates. In this example, application A1 sends a
transaction T1 endorsed by E1 and E2 to the orderer O1. In parallel, Application A2 sends transaction T2 endorsed
by E1 to the orderer O1. O1 packages transaction T1 from application A1 and transaction T2 from application
A2 together with other transactions from other applications in the network into block B2. We can see that in B2,
the transaction order is T1,T2,T3,T4,T6,T5 – which may not be the order in which these transactions arrived at the
orderer! (This example shows a very simplified ordering service configuration with only one ordering node.)

It’s worth noting that the sequencing of transactions in a block is not necessarily the same as the order received by
the ordering service, since there can be multiple ordering service nodes that receive transactions at approximately the
same time. What’s important is that the ordering service puts the transactions into a strict order, and peers will use this
order when validating and committing transactions.

This strict ordering of transactions within blocks makes Hyperledger Fabric a little different from other blockchains
where the same transaction can be packaged into multiple different blocks that compete to form a chain. In Hyperledger
Fabric, the blocks generated by the ordering service are final. Once a transaction has been written to a block, its
position in the ledger is immutably assured. As we said earlier, Hyperledger Fabric’s finality means that there are no
ledger forks — validated transactions will never be reverted or dropped.

We can also see that, whereas peers execute smart contracts and process transactions, orderers most definitely do not.
Every authorized transaction that arrives at an orderer is mechanically packaged in a block — the orderer makes no
judgement as to the content of a transaction (except for channel configuration transactions, as mentioned earlier).

4.9. The Ordering Service 87

hyperledger-fabricdocs Documentation, Release master

At the end of phase two, we see that orderers have been responsible for the simple but vital processes of collecting
proposed transaction updates, ordering them, and packaging them into blocks, ready for distribution.

Phase three: Validation and commit

The third phase of the transaction workflow involves the distribution and subsequent validation of blocks from the
orderer to the peers, where they can be committed to the ledger.

Phase 3 begins with the orderer distributing blocks to all peers connected to it. It’s also worth noting that not every
peer needs to be connected to an orderer — peers can cascade blocks to other peers using the gossip protocol.

Each peer will validate distributed blocks independently, but in a deterministic fashion, ensuring that ledgers remain
consistent. Specifically, each peer in the channel will validate each transaction in the block to ensure it has been
endorsed by the required organization’s peers, that its endorsements match, and that it hasn’t become invalidated by
other recently committed transactions which may have been in-flight when the transaction was originally endorsed.
Invalidated transactions are still retained in the immutable block created by the orderer, but they are marked as invalid
by the peer and do not update the ledger’s state.

The second role of an ordering node is to distribute blocks to peers. In this example, orderer O1 distributes block B2 to
peer P1 and peer P2. Peer P1 processes block B2, resulting in a new block being added to ledger L1 on P1. In parallel,
peer P2 processes block B2, resulting in a new block being added to ledger L1 on P2. Once this process is complete,
the ledger L1 has been consistently updated on peers P1 and P2, and each may inform connected applications that the
transaction has been processed.

In summary, phase three sees the blocks generated by the ordering service applied consistently to the ledger. The
strict ordering of transactions into blocks allows each peer to validate that transaction updates are consistently applied
across the blockchain network.

For a deeper look at phase 3, refer back to the Peers topic.

4.9.5 Ordering service implementations

While every ordering service currently available handles transactions and configuration updates the same way, there are
nevertheless several different implementations for achieving consensus on the strict ordering of transactions between
ordering service nodes.

For information about how to stand up an ordering node (regardless of the implementation the node will be used in),
check out our documentation on standing up an ordering node.

• Raft (recommended)

88 Chapter 4. Key Concepts

../gossip.html
../peers/peers.html#phase-3-validation-and-commit
../orderer_deploy.html

hyperledger-fabricdocs Documentation, Release master

New as of v1.4.1, Raft is a crash fault tolerant (CFT) ordering service based on an implementation of Raft
protocol in etcd. Raft follows a “leader and follower” model, where a leader node is elected (per channel)
and its decisions are replicated by the followers. Raft ordering services should be easier to set up and manage
than Kafka-based ordering services, and their design allows different organizations to contribute nodes to a
distributed ordering service.

• Kafka (deprecated in v2.x)

Similar to Raft-based ordering, Apache Kafka is a CFT implementation that uses a “leader and follower” node
configuration. Kafka utilizes a ZooKeeper ensemble for management purposes. The Kafka based ordering
service has been available since Fabric v1.0, but many users may find the additional administrative overhead of
managing a Kafka cluster intimidating or undesirable.

• Solo (deprecated in v2.x)

The Solo implementation of the ordering service is intended for test only and consists only of a single ordering
node. It has been deprecated and may be removed entirely in a future release. Existing users of Solo should
move to a single node Raft network for equivalent function.

4.9.6 Raft

For information on how to configure a Raft ordering service, check out our documentation on configuring a Raft
ordering service.

The go-to ordering service choice for production networks, the Fabric implementation of the established Raft protocol
uses a “leader and follower” model, in which a leader is dynamically elected among the ordering nodes in a channel
(this collection of nodes is known as the “consenter set”), and that leader replicates messages to the follower nodes.
Because the system can sustain the loss of nodes, including leader nodes, as long as there is a majority of ordering
nodes (what’s known as a “quorum”) remaining, Raft is said to be “crash fault tolerant” (CFT). In other words, if there
are three nodes in a channel, it can withstand the loss of one node (leaving two remaining). If you have five nodes in a
channel, you can lose two nodes (leaving three remaining nodes).

From the perspective of the service they provide to a network or a channel, Raft and the existing Kafka-based ordering
service (which we’ll talk about later) are similar. They’re both CFT ordering services using the leader and follower
design. If you are an application developer, smart contract developer, or peer administrator, you will not notice
a functional difference between an ordering service based on Raft versus Kafka. However, there are a few major
differences worth considering, especially if you intend to manage an ordering service:

• Raft is easier to set up. Although Kafka has many admirers, even those admirers will (usually) admit that
deploying a Kafka cluster and its ZooKeeper ensemble can be tricky, requiring a high level of expertise in Kafka
infrastructure and settings. Additionally, there are many more components to manage with Kafka than with Raft,
which means that there are more places where things can go wrong. And Kafka has its own versions, which
must be coordinated with your orderers. With Raft, everything is embedded into your ordering node.

• Kafka and Zookeeper are not designed to be run across large networks. While Kafka is CFT, it should be
run in a tight group of hosts. This means that practically speaking you need to have one organization run
the Kafka cluster. Given that, having ordering nodes run by different organizations when using Kafka (which
Fabric supports) doesn’t give you much in terms of decentralization because the nodes will all go to the same
Kafka cluster which is under the control of a single organization. With Raft, each organization can have its own
ordering nodes, participating in the ordering service, which leads to a more decentralized system.

• Raft is supported natively, which means that users are required to get the requisite images and learn how to use
Kafka and ZooKeeper on their own. Likewise, support for Kafka-related issues is handled through Apache, the
open-source developer of Kafka, not Hyperledger Fabric. The Fabric Raft implementation, on the other hand,
has been developed and will be supported within the Fabric developer community and its support apparatus.

• Where Kafka uses a pool of servers (called “Kafka brokers”) and the admin of the orderer organization specifies
how many nodes they want to use on a particular channel, Raft allows the users to specify which ordering nodes

4.9. The Ordering Service 89

https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://coreos.com/etcd/
../raft_configuration.html
../raft_configuration.html
https://kafka.apache.org/

hyperledger-fabricdocs Documentation, Release master

will be deployed to which channel. In this way, peer organizations can make sure that, if they also own an
orderer, this node will be made a part of a ordering service of that channel, rather than trusting and depending
on a central admin to manage the Kafka nodes.

• Raft is the first step toward Fabric’s development of a byzantine fault tolerant (BFT) ordering service. As we’ll
see, some decisions in the development of Raft were driven by this. If you are interested in BFT, learning how
to use Raft should ease the transition.

For all of these reasons, support for Kafka-based ordering service is being deprecated in Fabric v2.x.

Note: Similar to Solo and Kafka, a Raft ordering service can lose transactions after acknowledgement of receipt has
been sent to a client. For example, if the leader crashes at approximately the same time as a follower provides
acknowledgement of receipt. Therefore, application clients should listen on peers for transaction commit events
regardless (to check for transaction validity), but extra care should be taken to ensure that the client also gracefully
tolerates a timeout in which the transaction does not get committed in a configured timeframe. Depending on the
application, it may be desirable to resubmit the transaction or collect a new set of endorsements upon such a timeout.

Raft concepts

While Raft offers many of the same features as Kafka — albeit in a simpler and easier-to-use package — it functions
substantially different under the covers from Kafka and introduces a number of new concepts, or twists on existing
concepts, to Fabric.

Log entry. The primary unit of work in a Raft ordering service is a “log entry”, with the full sequence of such entries
known as the “log”. We consider the log consistent if a majority (a quorum, in other words) of members agree on the
entries and their order, making the logs on the various orderers replicated.

Consenter set. The ordering nodes actively participating in the consensus mechanism for a given channel and re-
ceiving replicated logs for the channel. This can be all of the nodes available (either in a single cluster or in multiple
clusters contributing to the system channel), or a subset of those nodes.

Finite-State Machine (FSM). Every ordering node in Raft has an FSM and collectively they’re used to ensure that
the sequence of logs in the various ordering nodes is deterministic (written in the same sequence).

Quorum. Describes the minimum number of consenters that need to affirm a proposal so that transactions can be
ordered. For every consenter set, this is a majority of nodes. In a cluster with five nodes, three must be available
for there to be a quorum. If a quorum of nodes is unavailable for any reason, the ordering service cluster becomes
unavailable for both read and write operations on the channel, and no new logs can be committed.

Leader. This is not a new concept — Kafka also uses leaders, as we’ve said — but it’s critical to understand that
at any given time, a channel’s consenter set elects a single node to be the leader (we’ll describe how this happens in
Raft later). The leader is responsible for ingesting new log entries, replicating them to follower ordering nodes, and
managing when an entry is considered committed. This is not a special type of orderer. It is only a role that an orderer
may have at certain times, and then not others, as circumstances determine.

Follower. Again, not a new concept, but what’s critical to understand about followers is that the followers receive the
logs from the leader and replicate them deterministically, ensuring that logs remain consistent. As we’ll see in our
section on leader election, the followers also receive “heartbeat” messages from the leader. In the event that the leader
stops sending those message for a configurable amount of time, the followers will initiate a leader election and one of
them will be elected the new leader.

Raft in a transaction flow

Every channel runs on a separate instance of the Raft protocol, which allows each instance to elect a different leader.
This configuration also allows further decentralization of the service in use cases where clusters are made up of
ordering nodes controlled by different organizations. While all Raft nodes must be part of the system channel, they do
not necessarily have to be part of all application channels. Channel creators (and channel admins) have the ability to

90 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

pick a subset of the available orderers and to add or remove ordering nodes as needed (as long as only a single node is
added or removed at a time).

While this configuration creates more overhead in the form of redundant heartbeat messages and goroutines, it lays
necessary groundwork for BFT.

In Raft, transactions (in the form of proposals or configuration updates) are automatically routed by the ordering node
that receives the transaction to the current leader of that channel. This means that peers and applications do not need
to know who the leader node is at any particular time. Only the ordering nodes need to know.

When the orderer validation checks have been completed, the transactions are ordered, packaged into blocks, consented
on, and distributed, as described in phase two of our transaction flow.

Architectural notes

How leader election works in Raft

Although the process of electing a leader happens within the orderer’s internal processes, it’s worth noting how the
process works.

Raft nodes are always in one of three states: follower, candidate, or leader. All nodes initially start out as a follower.
In this state, they can accept log entries from a leader (if one has been elected), or cast votes for leader. If no log entries
or heartbeats are received for a set amount of time (for example, five seconds), nodes self-promote to the candidate
state. In the candidate state, nodes request votes from other nodes. If a candidate receives a quorum of votes, then it is
promoted to a leader. The leader must accept new log entries and replicate them to the followers.

For a visual representation of how the leader election process works, check out The Secret Lives of Data.

Snapshots

If an ordering node goes down, how does it get the logs it missed when it is restarted?

While it’s possible to keep all logs indefinitely, in order to save disk space, Raft uses a process called “snapshotting”,
in which users can define how many bytes of data will be kept in the log. This amount of data will conform to a
certain number of blocks (which depends on the amount of data in the blocks. Note that only full blocks are stored in
a snapshot).

For example, let’s say lagging replica R1 was just reconnected to the network. Its latest block is 100. Leader L is at
block 196, and is configured to snapshot at amount of data that in this case represents 20 blocks. R1 would therefore
receive block 180 from L and then make a Deliver request for blocks 101 to 180. Blocks 180 to 196 would then
be replicated to R1 through the normal Raft protocol.

Kafka (deprecated in v2.x)

The other crash fault tolerant ordering service supported by Fabric is an adaptation of a Kafka distributed streaming
platform for use as a cluster of ordering nodes. You can read more about Kafka at the Apache Kafka Web site, but at
a high level, Kafka uses the same conceptual “leader and follower” configuration used by Raft, in which transactions
(which Kafka calls “messages”) are replicated from the leader node to the follower nodes. In the event the leader node
goes down, one of the followers becomes the leader and ordering can continue, ensuring fault tolerance, just as with
Raft.

The management of the Kafka cluster, including the coordination of tasks, cluster membership, access control, and
controller election, among others, is handled by a ZooKeeper ensemble and its related APIs.

Kafka clusters and ZooKeeper ensembles are notoriously tricky to set up, so our documentation assumes a working
knowledge of Kafka and ZooKeeper. If you decide to use Kafka without having this expertise, you should complete,

4.9. The Ordering Service 91

http://thesecretlivesofdata.com/raft/
https://kafka.apache.org/intro

hyperledger-fabricdocs Documentation, Release master

at a minimum, the first six steps of the Kafka Quickstart guide before experimenting with the Kafka-based ordering
service. You can also consult this sample configuration file for a brief explanation of the sensible defaults for Kafka
and ZooKeeper.

To learn how to bring up a Kafka-based ordering service, check out our documentation on Kafka.

4.10 Smart Contracts and Chaincode

Audience: Architects, application and smart contract developers, administrators

From an application developer’s perspective, a smart contract, together with the ledger, form the heart of a Hyper-
ledger Fabric blockchain system. Whereas a ledger holds facts about the current and historical state of a set of business
objects, a smart contract defines the executable logic that generates new facts that are added to the ledger. A chain-
code is typically used by administrators to group related smart contracts for deployment, but can also be used for low
level system programming of Fabric. In this topic, we’ll focus on why both smart contracts and chaincode exist, and
how and when to use them.

In this topic, we’ll cover:

• What is a smart contract

• A note on terminology

• Smart contracts and the ledger

• How to develop a smart contract

• The importance of endorsement policies

• Valid transactions

• Channels and chaincode definitions

• Communicating between smart contracts

• What is system chaincode?

4.10.1 Smart contract

Before businesses can transact with each other, they must define a common set of contracts covering common terms,
data, rules, concept definitions, and processes. Taken together, these contracts lay out the business model that govern
all of the interactions between transacting parties.

92 Chapter 4. Key Concepts

https://kafka.apache.org/quickstart
https://github.com/hyperledger/fabric/blob/release-1.1/bddtests/dc-orderer-kafka.yml
../kafka.html
../ledger/ledger.html

hyperledger-fabricdocs Documentation, Release master

A smart contract defines the rules between different organizations in executable code. Applications invoke a smart
contract to generate transactions that are recorded on the ledger.

Using a blockchain network, we can turn these contracts into executable programs – known in the industry as smart
contracts – to open up a wide variety of new possibilities. That’s because a smart contract can implement the gov-
ernance rules for any type of business object, so that they can be automatically enforced when the smart contract is
executed. For example, a smart contract might ensure that a new car delivery is made within a specified timeframe,
or that funds are released according to prearranged terms, improving the flow of goods or capital respectively. Most
importantly however, the execution of a smart contract is much more efficient than a manual human business process.

In the diagram above, we can see how two organizations, ORG1 and ORG2 have defined a car smart contract to
query, transfer and update cars. Applications from these organizations invoke this smart contract to perform
an agreed step in a business process, for example to transfer ownership of a specific car from ORG1 to ORG2.

4.10.2 Terminology

Hyperledger Fabric users often use the terms smart contract and chaincode interchangeably. In general, a smart
contract defines the transaction logic that controls the lifecycle of a business object contained in the world state. It is
then packaged into a chaincode which is then deployed to a blockchain network. Think of smart contracts as governing
transactions, whereas chaincode governs how smart contracts are packaged for deployment.

A smart contract is defined within a chaincode. Multiple smart contracts can be defined within the same chaincode.
When a chaincode is deployed, all smart contracts within it are made available to applications.

In the diagram, we can see a vehicle chaincode that contains three smart contracts: cars, boats and trucks. We

4.10. Smart Contracts and Chaincode 93

hyperledger-fabricdocs Documentation, Release master

can also see an insurance chaincode that contains four smart contracts: policy, liability, syndication
and securitization. In both cases these contracts cover key aspects of the business process relating to vehicles
and insurance. In this topic, we will use the car contract as an example. We can see that a smart contract is a domain
specific program which relates to specific business processes, whereas a chaincode is a technical container of a group
of related smart contracts.

4.10.3 Ledger

At the simplest level, a blockchain immutably records transactions which update states in a ledger. A smart contract
programmatically accesses two distinct pieces of the ledger – a blockchain, which immutably records the history of
all transactions, and a world state that holds a cache of the current value of these states, as it’s the current value of an
object that is usually required.

Smart contracts primarily put, get and delete states in the world state, and can also query the immutable blockchain
record of transactions.

• A get typically represents a query to retrieve information about the current state of a business object.

• A put typically creates a new business object or modifies an existing one in the ledger world state.

• A delete typically represents the removal of a business object from the current state of the ledger, but not its
history.

Smart contracts have many APIs available to them. Critically, in all cases, whether transactions create, read, update or
delete business objects in the world state, the blockchain contains an immutable record of these changes.

4.10.4 Development

Smart contracts are the focus of application development, and as we’ve seen, one or more smart contracts can be
defined within a single chaincode. Deploying a chaincode to a network makes all its smart contracts available to the
organizations in that network. It means that only administrators need to worry about chaincode; everyone else can
think in terms of smart contracts.

At the heart of a smart contract is a set of transaction definitions. For example, look at fabcar.js here, where you
can see a smart contract transaction that creates a new car:

async createCar(ctx, carNumber, make, model, color, owner) {

const car = {
color,
docType: 'car',
make,
model,
owner,

};

await ctx.stub.putState(carNumber, Buffer.from(JSON.stringify(car)));
}

You can learn more about the Fabcar smart contract in the Writing your first application tutorial.

A smart contract can describe an almost infinite array of business use cases relating to immutability of data in multi-
organizational decision making. The job of a smart contract developer is to take an existing business process that
might govern financial prices or delivery conditions, and express it as a smart contract in a programming language
such as JavaScript, Go, or Java. The legal and technical skills required to convert centuries of legal language into
programming language is increasingly practiced by smart contract auditors. You can learn about how to design and
develop a smart contract in the Developing applications topic.

94 Chapter 4. Key Concepts

../developapps/transactioncontext.html#structure
../ledger/ledger.html
https://github.com/hyperledger/fabric-samples/blob/master/chaincode/fabcar/javascript/lib/fabcar.js#L93
../write_first_app.html
../developapps/developing_applications.html

hyperledger-fabricdocs Documentation, Release master

4.10.5 Endorsement

Associated with every chaincode is an endorsement policy that applies to all of the smart contracts defined within
it. An endorsement policy is very important; it indicates which organizations in a blockchain network must sign a
transaction generated by a given smart contract in order for that transaction to be declared valid.

Every smart contract has an endorsement policy associated with it. This endorsement policy identifies which orga-
nizations must approve transactions generated by the smart contract before those transactions can be identified as
valid.

An example endorsement policy might define that three of the four organizations participating in a blockchain net-
work must sign a transaction before it is considered valid. All transactions, whether valid or invalid are added to a
distributed ledger, but only valid transactions update the world state.

If an endorsement policy specifies that more than one organization must sign a transaction, then the smart contract
must be executed by a sufficient set of organizations in order for a valid transaction to be generated. In the example
above, a smart contract transaction to transfer a car would need to be executed and signed by both ORG1 and
ORG2 for it to be valid.

Endorsement policies are what make Hyperledger Fabric different to other blockchains like Ethereum or Bitcoin. In
these systems valid transactions can be generated by any node in the network. Hyperledger Fabric more realistically
models the real world; transactions must be validated by trusted organizations in a network. For example, a government
organization must sign a valid issueIdentity transaction, or both the buyer and seller of a car must sign a
car transfer transaction. Endorsement policies are designed to allow Hyperledger Fabric to better model these types
of real-world interactions.

Finally, endorsement policies are just one example of policy in Hyperledger Fabric. Other policies can be defined
to identify who can query or update the ledger, or add or remove participants from the network. In general, policies
should be agreed in advance by the consortium of organizations in a blockchain network, although they are not set
in stone. Indeed, policies themselves can define the rules by which they can be changed. And although an advanced
topic, it is also possible to define custom endorsement policy rules over and above those provided by Fabric.

4.10.6 Valid transactions

When a smart contract executes, it runs on a peer node owned by an organization in the blockchain network. The
contract takes a set of input parameters called the transaction proposal and uses them in combination with its program
logic to read and write the ledger. Changes to the world state are captured as a transaction proposal response (or just
transaction response) which contains a read-write set with both the states that have been read, and the new states

4.10. Smart Contracts and Chaincode 95

../access_control.html#policies
../pluggable_endorsement_and_validation.html

hyperledger-fabricdocs Documentation, Release master

that are to be written if the transaction is valid. Notice that the world state is not updated when the smart contract
is executed!

All transactions have an identifier, a proposal, and a response signed by a set of organizations. All transactions are
recorded on the blockchain, whether valid or invalid, but only valid transactions contribute to the world state.

Examine the car transfer transaction. You can see a transaction t3 for a car transfer between ORG1 and
ORG2. See how the transaction has input {CAR1, ORG1, ORG2} and output {CAR1.owner=ORG1, CAR1.
owner=ORG2}, representing the change of owner from ORG1 to ORG2. Notice how the input is signed by the
application’s organization ORG1, and the output is signed by both organizations identified by the endorsement policy,
ORG1 and ORG2. These signatures were generated by using each actor’s private key, and mean that anyone in the
network can verify that all actors in the network are in agreement about the transaction details.

A transaction that is distributed to all peer nodes in the network is validated in two phases by each peer. Firstly, the
transaction is checked to ensure it has been signed by sufficient organizations according to the endorsement policy.
Secondly, it is checked to ensure that the current value of the world state matches the read set of the transaction when
it was signed by the endorsing peer nodes; that there has been no intermediate update. If a transaction passes both
these tests, it is marked as valid. All transactions are added to the blockchain history, whether valid or invalid, but
only valid transactions result in an update to the world state.

In our example, t3 is a valid transaction, so the owner of CAR1 has been updated to ORG2. However, t4 (not shown)
is an invalid transaction, so while it was recorded in the ledger, the world state was not updated, and CAR2 remains
owned by ORG2.

Finally, to understand how to use a smart contract or chaincode with world state, read the chaincode namespace topic.

4.10.7 Channels

Hyperledger Fabric allows an organization to simultaneously participate in multiple, separate blockchain networks
via channels. By joining multiple channels, an organization can participate in a so-called network of networks.
Channels provide an efficient sharing of infrastructure while maintaining data and communications privacy. They
are independent enough to help organizations separate their work traffic with different counterparties, but integrated
enough to allow them to coordinate independent activities when necessary.

96 Chapter 4. Key Concepts

../developapps/chaincodenamespace.html

hyperledger-fabricdocs Documentation, Release master

A channel provides a completely separate communication mechanism between a set of organizations. When a chain-
code definition is committed to a channel, all the smart contracts within the chaincode are made available to the
applications on that channel.

While the smart contract code is installed inside a chaincode package on an organizations peers, channel members can
only execute a smart contract after the chaincode has been defined on a channel. The chaincode definition is a struct
that contains the parameters that govern how a chaincode operates. These parameters include the chaincode name,
version, and the endorsement policy. Each channel member agrees to the parameters of a chaincode by approving a
chaincode definition for their organization. When a sufficient number of organizations (a majority by default) have
approved to the same chaincode definition, the definition can be committed to the channel. The smart contracts inside
the chaincode can then be executed by channel members, subject to the endorsement policy specified in the chaincode
definition. The endorsement policy applies equally to all smart contracts defined within the same chaincode.

In the example above, a car contract is defined on the VEHICLE channel, and an insurance contract is defined on
the INSURANCE channel. The chaincode definition of car specifies an endorsement policy that requires both ORG1
and ORG2 to sign transactions before they can be considered valid. The chaincode definition of the insurance con-
tract specifies that only ORG3 is required to endorse a transaction. ORG1 participates in two networks, the VEHICLE
channel and the INSURANCE network, and can coordinate activity with ORG2 and ORG3 across these two networks.

The chaincode definition provides a way for channel members to agree on the governance of a chaincode before they
start using the smart contract to transact on the channel. Building on the example above, both ORG1 and ORG2 want to
endorse transactions that invoke the car contract. Because the default policy requires that a majority of organizations
approve a chaincode definition, both organizations need to approve an endorsement policy of AND{ORG1,ORG2}.
Otherwise, ORG1 and ORG2 would approve different chaincode definitions and would be unable to commit the chain-
code definition to the channel as a result. This process guarantees that a transaction from the car smart contract needs
to be approved by both organizations.

4.10.8 Intercommunication

A Smart Contract can call other smart contracts both within the same channel and across different channels. It this
way, they can read and write world state data to which they would not otherwise have access due to smart contract
namespaces.

There are limitations to this inter-contract communication, which are described fully in the chaincode namespace
topic.

4.10. Smart Contracts and Chaincode 97

../developapps/chaincodenamespace.html#cross-chaincode-access

hyperledger-fabricdocs Documentation, Release master

4.10.9 System chaincode

The smart contracts defined within a chaincode encode the domain dependent rules for a business process agreed
between a set of blockchain organizations. However, a chaincode can also define low-level program code which
corresponds to domain independent system interactions, unrelated to these smart contracts for business processes.

The following are the different types of system chaincodes and their associated abbreviations:

• _lifecycle runs in all peers and manages the installation of chaincode on your peers, the approval of chain-
code definitions for your organization, and the committing of chaincode definitions to channels. You can read
more about how _lifecycle implements the Fabric chaincode lifecycle process.

• Lifecycle system chaincode (LSCC) manages the chaincode lifecycle for the 1.x releases of Fabric. This version
of lifecycle required that chaincode be instantiated or upgraded on channels. You can still use LSCC to manage
your chaincode if you have the channel application capability set to V1_4_x or below.

• Configuration system chaincode (CSCC) runs in all peers to handle changes to a channel configuration, such
as a policy update. You can read more about this process in the following chaincode topic.

• Query system chaincode (QSCC) runs in all peers to provide ledger APIs which include block query, transac-
tion query etc. You can read more about these ledger APIs in the transaction context topic.

• Endorsement system chaincode (ESCC) runs in endorsing peers to cryptographically sign a transaction re-
sponse. You can read more about how the ESCC implements this process.

• Validation system chaincode (VSCC) validates a transaction, including checking endorsement policy and read-
write set versioning. You can read more about the VSCC implements this process.

It is possible for low level Fabric developers and administrators to modify these system chaincodes for their own uses.
However, the development and management of system chaincodes is a specialized activity, quite separate from the
development of smart contracts, and is not normally necessary. Changes to system chaincodes must be handled with
extreme care as they are fundamental to the correct functioning of a Hyperledger Fabric network. For example, if
a system chaincode is not developed correctly, one peer node may update its copy of the world state or blockchain
differently compared to another peer node. This lack of consensus is one form of a ledger fork, a very undesirable
situation.

4.11 Fabric chaincode lifecycle

4.11.1 What is Chaincode?

Chaincode is a program, written in Go, Node.js, or Java that implements a prescribed interface. Chaincode runs in a
secured Docker container isolated from the endorsing peer process. Chaincode initializes and manages ledger state
through transactions submitted by applications.

A chaincode typically handles business logic agreed to by members of the network, so it may be considered as a “smart
contract”. Ledger updates created by a chaincode are scoped exclusively to that chaincode and can’t be accessed
directly by another chaincode. However, within the same network, given the appropriate permission a chaincode may
invoke another chaincode to access its state.

In this concept topic, we will explore chaincode through the eyes of a blockchain network operator rather than an
application developer. Chaincode operators can use this topic as a guide to how to use the Fabric chaincode lifecycle
to deploy and manage chaincode on their network.

98 Chapter 4. Key Concepts

../chaincode_lifecycle.html
../configtx.html#configuration-updates
../developapps/transactioncontext.html
../peers/peers.html#phase-1-proposal
../peers/peers.html#phase-3-validation
https://golang.org
https://nodejs.org
https://java.com/en/

hyperledger-fabricdocs Documentation, Release master

4.11.2 Deploying a chaincode

The Fabric chaincode lifecycle is a process that allows multiple organizations to agree on how a chaincode will be
operated before it can be used on a channel. A network operator would use the Fabric lifecycle to perform the
following tasks:

• Install and define a chaincode

• Upgrade a chaincode

• Deployment Scenarios

• Migrate to the new Fabric lifecycle

You can use the Fabric chaincode lifecycle by creating a new channel and setting the channel capabilities to V2_0. You
will not be able to use the old lifecycle to install, instantiate, or update a chaincode on channels with V2_0 capabilities
enabled. However, you can still invoke chaincode installed using the previous lifecycle model after you enable V2_0
capabilities. If you are upgrading from a v1.4.x network and need to edit your channel configurations to enable the
new lifecycle, check out Enabling the new chaincode lifecycle.

4.11.3 Install and define a chaincode

Fabric chaincode lifecycle requires that organizations agree to the parameters that define a chaincode, such as name,
version, and the chaincode endorsement policy. Channel members come to agreement using the following four steps.
Not every organization on a channel needs to complete each step.

1. Package the chaincode: This step can be completed by one organization or by each organization.

2. Install the chaincode on your peers: Every organization that will use the chaincode to endorse a transaction
or query the ledger needs to complete this step.

3. Approve a chaincode definition for your organization: Every organization that will use the chaincode needs
to complete this step. The chaincode definition needs to be approved by a sufficient number of organizations to
satisfy the channel’s LifecycleEndorsment policy (a majority, by default) before the chaincode can be started on
the channel.

4. Commit the chaincode definition to the channel: The commit transaction needs to be submitted by one orga-
nization once the required number of organizations on the channel have approved. The submitter first collects
endorsements from enough peers of the organizations that have approved, and then submits the transaction to
commit the chaincode definition.

This topic provides a detailed overview of the operations of the Fabric chaincode lifecycle rather than the specific
commands. To learn more about how to use the Fabric lifecycle using the Peer CLI, see the Deploying a smart
contract to a channel tutorial or the peer lifecycle command reference.

Step One: Packaging the smart contract

Chaincode needs to be packaged in a tar file before it can be installed on your peers. You can package a chaincode using
the Fabric peer binaries, the Node Fabric SDK, or a third party tool such as GNU tar. When you create a chaincode
package, you need to provide a chaincode package label to create a succinct and human readable description of the
package.

If you use a third party tool to package the chaincode, the resulting file needs to be in the format below. The Fabric
peer binaries and the Fabric SDKs will automatically create a file in this format.

• The chaincode needs to be packaged in a tar file, ending with a .tar.gz file extension.

• The tar file needs to contain two files (no directory): a metadata file “metadata.json” and another tar “code.tar.gz”
containing the chaincode files.

4.11. Fabric chaincode lifecycle 99

./enable_cc_lifecycle.html
deploy_chaincode.html
deploy_chaincode.html
commands/peerlifecycle.html

hyperledger-fabricdocs Documentation, Release master

• “metadata.json” contains JSON that specifies the chaincode language, code path, and package label. You can
see an example of a metadata file below:

{"Path":"fabric-samples/chaincode/fabcar/go","Type":"golang","Label":"fabcarv1"}

The chaincode is packaged separately by Org1 and Org2. Both organizations use MYCC_1 as their package label in
order to identify the package using the name and version. It is not necessary for organizations to use the same package
label.

Step Two: Install the chaincode on your peers

You need to install the chaincode package on every peer that will execute and endorse transactions. Whether using the
CLI or an SDK, you need to complete this step using your Peer Administrator. Your peer will build the chaincode
after the chaincode is installed, and return a build error if there is a problem with your chaincode. It is recommended
that organizations only package a chaincode once, and then install the same package on every peer that belongs to their
org. If a channel wants to ensure that each organization is running the same chaincode, one organization can package
a chaincode and send it to other channel members out of band.

A successful install command will return a chaincode package identifier, which is the package label combined with a
hash of the package. This package identifier is used to associate a chaincode package installed on your peers with a
chaincode definition approved by your organization. Save the identifier for next step. You can also find the package
identifier by querying the packages installed on your peer using the Peer CLI.

A peer administrator from Org1 and Org2 installs the chaincode package MYCC_1 on the peers joined to the channel.
Installing the chaincode package builds the chaincode and creates a package identifier of MYCC_1:hash.

Step Three: Approve a chaincode definition for your organization

The chaincode is governed by a chaincode definition. When channel members approve a chaincode definition, the
approval acts as a vote by an organization on the chaincode parameters it accepts. These approved organization

100 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

definitions allow channel members to agree on a chaincode before it can be used on a channel. The chaincode definition
includes the following parameters, which need to be consistent across organizations:

• Name: The name that applications will use when invoking the chaincode.

• Version: A version number or value associated with a given chaincodes package. If you upgrade the chaincode
binaries, you need to change your chaincode version as well.

• Sequence: The number of times the chaincode has been defined. This value is an integer, and is used to
keep track of chaincode upgrades. For example, when you first install and approve a chaincode definition, the
sequence number will be 1. When you next upgrade the chaincode, the sequence number will be incremented
to 2.

• Endorsement Policy: Which organizations need to execute and validate the transaction output. The endorse-
ment policy can be expressed as a string passed to the CLI, or it can reference a policy in the channel config.
By default, the endorsement policy is set to Channel/Application/Endorsement, which defaults to
require that a majority of organizations in the channel endorse a transaction.

• Collection Configuration: The path to a private data collection definition file associated with your chaincode.
For more information about private data collections, see the Private Data architecture reference.

• ESCC/VSCC Plugins: The name of a custom endorsement or validation plugin to be used by this chaincode.

• Initialization: If you use the low level APIs provided by the Fabric Chaincode Shim API, your chaincode needs
to contain an Init function that is used to initialize the chaincode. This function is required by the chaincode
interface, but does not necessarily need to invoked by your applications. When you approve a chaincode defini-
tion, you can specify whether Init must be called prior to Invokes. If you specify that Init is required, Fabric
will ensure that the Init function is invoked before any other function in the chaincode and is only invoked
once. Requesting the execution of the Init function allows you to implement logic that is run when the chain-
code is initialized, for example to set some initial state. You will need to call Init to initialize the chaincode
every time you increment the version of a chaincode, assuming the chaincode definition that increments the
version indicates that Init is required.

If you are using the Fabric peer CLI, you can use the --init-required flag when you approve and commit
the chaincode definition to indicate that the Init function must be called to initialize the new chaincode ver-
sion. To call Init using the Fabric peer CLI, use the peer chaincode invoke command and pass the
--isInit flag.

If you are using the Fabric contract API, you do not need to include an Init method in your chaincode.
However, you can still use the --init-required flag to request that the chaincode be initialized by a call
from your applications. If you use the --init-required flag, you will need to pass the --isInit flag
or parameter to a chaincode call in order to initialize the chaincode every time you increment the chaincode
version. You can pass --isInit and initialize the chaincode using any function in your chaincode.

The chaincode definition also includes the Package Identifier. This is a required parameter for each organization that
wants to use the chaincode. The package ID does not need to be the same for all organizations. An organization can
approve a chaincode definition without installing a chaincode package or including the identifier in the definition.

Each channel member that wants to use the chaincode needs to approve a chaincode definition for their organization.
This approval needs to be submitted to the ordering service, after which it is distributed to all peers. This approval
needs to be submitted by your Organization Administrator. After the approval transaction has been successfully
submitted, the approved definition is stored in a collection that is available to all the peers of your organization. As a
result you only need to approve a chaincode for your organization once, even if you have multiple peers.

4.11. Fabric chaincode lifecycle 101

https://hyperledger-fabric.readthedocs.io/en/master/private-data-arch.html

hyperledger-fabricdocs Documentation, Release master

An organization administrator from Org1 and Org2 approve the chaincode definition of MYCC for their organization.
The chaincode definition includes the chaincode name, version, and the endorsement policy, among other fields. Since
both organizations will use the chaincode to endorse transactions, the approved definitions for both organizations
need to include the packageID.

Step Four: Commit the chaincode definition to the channel

Once a sufficient number of channel members have approved a chaincode definition, one organization can commit
the definition to the channel. You can use the checkcommitreadiness command to check whether committing
the chaincode definition should be successful based on which channel members have approved a definition before
committing it to the channel using the peer CLI. The commit transaction proposal is first sent to the peers of channel
members, who query the chaincode definition approved for their organizations and endorse the definition if their
organization has approved it. The transaction is then submitted to the ordering service, which then commits the
chaincode definition to the channel. The commit definition transaction needs to be submitted as the Organization
Administrator.

The number of organizations that need to approve a definition before it can be successfully committed to the channel
is governed by the Channel/Application/LifecycleEndorsement policy. By default, this policy requires
that a majority of organizations in the channel endorse the transaction. The LifecycleEndorsement policy is separate
from the chaincode endorsement policy. For example, even if a chaincode endorsement policy only requires signatures
from one or two organizations, a majority of channel members still need to approve the chaincode definition according
to the default policy. When committing a channel definition, you need to target enough peer organizations in the
channel to satisfy your LifecycleEndorsement policy. You can learn more about the Fabric chaincode lifecycle policies
in the Policies concept topic.

You can also set the Channel/Application/LifecycleEndorsement policy to be a signature policy and
explicitly specify the set of organizations on the channel that can approve a chaincode definition. This allows you
to create a channel where a select number of organizations act as chaincode administrators and govern the business
logic used by the channel. You can also use a signature policy if your channel has a large number Idemix organiza-
tions, which cannot approve chaincode definitions or endorse chaincode and may prevent the channel from reaching a
majority as a result.

102 Chapter 4. Key Concepts

policies/policies.html

hyperledger-fabricdocs Documentation, Release master

One organization administrator from Org1 or Org2 commits the chaincode definition to the channel. The definition on
the channel does not include the packageID.

An organization can approve a chaincode definition without installing the chaincode package. If an organization does
not need to use the chaincode, they can approve a chaincode definition without a package identifier to ensure that the
Lifecycle Endorsement policy is satisfied.

After the chaincode definition has been committed to the channel, the chaincode container will launch on all of the
peers where the chaincode has been installed, allowing channel members to start using the chaincode. It may take
a few minutes for the chaincode container to start. You can use the chaincode definition to require the invocation of
the Init function to initialize the chaincode. If the invocation of the Init function is requested, the first invoke
of the chaincode must be a call to the Init function. The invoke of the Init function is subject to the chaincode
endorsement policy.

Once MYCC is defined on the channel, Org1 and Org2 can start using the chaincode. The first invoke of the chaincode

4.11. Fabric chaincode lifecycle 103

hyperledger-fabricdocs Documentation, Release master

on each peer starts the chaincode container on that peer.

4.11.4 Upgrade a chaincode

You can upgrade a chaincode using the same Fabric lifecycle process as you used to install and start the chaincode. You
can upgrade the chaincode binaries, or only update the chaincode policies. Follow these steps to upgrade a chaincode:

1. Repackage the chaincode: You only need to complete this step if you are upgrading the chaincode binaries.

Org1 and Org2 upgrade the chaincode binaries and repackage the chaincode. Both organizations use a different
package label.

2. Install the new chaincode package on your peers: Once again, you only need to complete this step if you are
upgrading the chaincode binaries. Installing the new chaincode package will generate a package ID, which you
will need to pass to the new chaincode definition. You also need to change the chaincode version, which is used
by the lifecycle process to track if the chaincode binaries have been upgraded.

Org1 and Org2 install the new package on their peers. The installation creates a new packageID.

3. Approve a new chaincode definition: If you are upgrading the chaincode binaries, you need to update the
chaincode version and the package ID in the chaincode definition. You can also update your chaincode endorse-
ment policy without having to repackage your chaincode binaries. Channel members simply need to approve a
definition with the new policy. The new definition needs to increment the sequence variable in the definition by
one.

104 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Organization administrators from Org1 and Org2 approve the new chaincode definition for their respective
organizations. The new definition references the new packageID and changes the chaincode version. Since this
is the first update of the chaincode, the sequence is incremented from one to two.

4. Commit the definition to the channel: When a sufficient number of channel members have approved the new
chaincode definition, one organization can commit the new definition to upgrade the chaincode definition to the
channel. There is no separate upgrade command as part of the lifecycle process.

An organization administrator from Org1 or Org2 commits the new chaincode definition to the channel.

After you commit the chaincode definition, a new chaincode container will launch with the code from the upgraded
chaincode binaries. If you requested the execution of the Init function in the chaincode definition, you need to
initialize the upgraded chaincode by invoking the Init function again after the new definition is successfully com-
mitted. If you updated the chaincode definition without changing the chaincode version, the chaincode container will
remain the same and you do not need to invoke Init function.

4.11. Fabric chaincode lifecycle 105

hyperledger-fabricdocs Documentation, Release master

Once the new definition has been committed to the channel, each peer will automatically start the new chaincode
container.

The Fabric chaincode lifecycle uses the sequence in the chaincode definition to keep track of upgrades. All channel
members need to increment the sequence number by one and approve a new definition to upgrade the chaincode.
The version parameter is used to track the chaincode binaries, and needs to be changed only when you upgrade the
chaincode binaries.

4.11.5 Deployment scenarios

The following examples illustrate how you can use the Fabric chaincode lifecycle to manage channels and chaincode.

Joining a channel

A new organization can join a channel with a chaincode already defined, and start using the chaincode after installing
the chaincode package and approving the chaincode definition that has already been committed to the channel.

106 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Org3 joins the channel and approves the same chaincode definition that was previously committed to the channel by
Org1 and Org2.

After approving the chaincode definition, the new organization can start using the chaincode after the package has
been installed on their peers. The definition does not need to be committed again. If the endorsement policy is set the
default policy that requires endorsements from a majority of channel members, then the endorsement policy will be
updated automatically to include the new organization.

The chaincode container will start after the first invoke of the chaincode on the Org3 peer.

Updating an endorsement policy

You can use the chaincode definition to update an endorsement policy without having to repackage or re-install the
chaincode. Channel members can approve a chaincode definition with a new endorsement policy and commit it to the

4.11. Fabric chaincode lifecycle 107

hyperledger-fabricdocs Documentation, Release master

channel.

Org1, Org2, and Org3 approve a new endorsement policy requiring that all three organizations endorse a transaction.
They increment the definition sequence from one to two, but do not need to update the chaincode version.

The new endorsement policy will take effect after the new definition is committed to the channel. Channel members
do not have to restart the chaincode container by invoking the chaincode or executing the Init function in order to
update the endorsement policy.

One organization commits the new chaincode definition to the channel to update the endorsement policy.

Approving a definition without installing the chaincode

You can approve a chaincode definition without installing the chaincode package. This allows you to endorse a
chaincode definition before it is committed to the channel, even if you do not want to use the chaincode to endorse

108 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

transactions or query the ledger. You need to approve the same parameters as other members of the channel, but not
need to include the packageID as part of the chaincode definition.

Org3 does not install the chaincode package. As a result, they do not need to provide a packageID as part of chaincode
definition. However, Org3 can still endorse the definition of MYCC that has been committed to the channel.

One organization disagrees on the chaincode definition

An organization that does not approve a chaincode definition that has been committed to the channel cannot use the
chaincode. Organizations that have either not approved a chaincode definition, or approved a different chaincode
definition will not be able to execute the chaincode on their peers.

Org3 approves a chaincode definition with a different endorsement policy than Org1 and Org2. As a result, Org3
cannot use the MYCC chaincode on the channel. However, Org1 or Org2 can still get enough endorsements to commit

4.11. Fabric chaincode lifecycle 109

hyperledger-fabricdocs Documentation, Release master

the definition to the channel and use the chaincode. Transactions from the chaincode will still be added to the ledger
and stored on the Org3 peer. However, the Org3 will not be able to endorse transactions.

An organization can approve a new chaincode definition with any sequence number or version. This allows you to
approve the definition that has been committed to the channel and start using the chaincode. You can also approve a
new chaincode definition in order to correct any mistakes made in the process of approving or packaging a chaincode.

The channel does not agree on a chaincode definition

If the organizations on a channel do not agree on a chaincode definition, the definition cannot be committed to the
channel. None of the channel members will be able to use the chaincode.

Org1, Org2, and Org3 all approve different chaincode definitions. As a result, no member of the channel can get
enough endorsements to commit a chaincode definition to the channel. No channel member will be able to use the
chaincode.

Organizations install different chaincode packages

Each organization can use a different packageID when they approve a chaincode definition. This allows channel
members to install different chaincode binaries that use the same endorsement policy and read and write to data in the
same chaincode namespace.

Organizations can use this capability to install smart contracts that contain business logic that is specific to their
organization. Each organization’s smart contract could contain additional validation that the organization requires
before their peers endorse a transaction. Each organization can also write code that helps integrate the smart contract
with data from their existing systems.

110 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Org1 and Org2 each install versions of the MYCC chaincode containing business logic that is specific to their organi-
zation.

Creating multiple chaincodes using one package

You can use one chaincode package to create multiple chaincode instances on a channel by approving and committing
multiple chaincode definitions. Each definition needs to specify a different chaincode name. This allows you to run
multiple instances of a smart contract on a channel, but have the contract be subject to different endorsement policies.

4.11. Fabric chaincode lifecycle 111

hyperledger-fabricdocs Documentation, Release master

Org1 and Org2 use the MYCC_1 chaincode package to approve and commit two different chaincode definitions. As a
result, both peers have two chaincode containers running on their peers. MYCC1 has an endorsement policy of 1 out
of 2, while MYCC2 has an endorsement policy of 2 out of 2.

4.11.6 Migrate to the new Fabric lifecycle

For information about migrating to the new lifecycle, check out Considerations for getting to v2.0.

If you need to update your channel configurations to enable the new lifecycle, check out Enabling the new chaincode
lifecycle.

4.11.7 More information

You can watch video below to learn more about the motivation of the new Fabric chaincode lifecycle and how it is
implemented.

4.12 Private data

4.12.1 What is private data?

In cases where a group of organizations on a channel need to keep data private from other organizations on that
channel, they have the option to create a new channel comprising just the organizations who need access to the data.
However, creating separate channels in each of these cases creates additional administrative overhead (maintaining
chaincode versions, policies, MSPs, etc), and doesn’t allow for use cases in which you want all channel participants to
see a transaction while keeping a portion of the data private.

That’s why Fabric offers the ability to create private data collections, which allow a defined subset of organizations
on a channel the ability to endorse, commit, or query private data without having to create a separate channel.

4.12.2 What is a private data collection?

A collection is the combination of two elements:

1. The actual private data, sent peer-to-peer via gossip protocol to only the organization(s) authorized to see it.
This data is stored in a private state database on the peers of authorized organizations, which can be accessed
from chaincode on these authorized peers. The ordering service is not involved here and does not see the private
data. Note that because gossip distributes the private data peer-to-peer across authorized organizations, it is
required to set up anchor peers on the channel, and configure CORE_PEER_GOSSIP_EXTERNALENDPOINT
on each peer, in order to bootstrap cross-organization communication.

2. A hash of that data, which is endorsed, ordered, and written to the ledgers of every peer on the channel. The
hash serves as evidence of the transaction and is used for state validation and can be used for audit purposes.

The following diagram illustrates the ledger contents of a peer authorized to have private data and one which is not.

112 Chapter 4. Key Concepts

./upgrade_to_newest_version.html#chaincode-lifecycle
./enable_cc_lifecycle.html
./enable_cc_lifecycle.html
../gossip.html

hyperledger-fabricdocs Documentation, Release master

Collection members may decide to share the private data with other parties if they get into a dispute or if they want to
transfer the asset to a third party. The third party can then compute the hash of the private data and see if it matches
the state on the channel ledger, proving that the state existed between the collection members at a certain point in time.

In some cases, you may decide to have a set of collections each comprised of a single organization. For example an
organization may record private data in their own collection, which could later be shared with other channel members
and referenced in chaincode transactions. We’ll see examples of this in the sharing private data topic below.

When to use a collection within a channel vs. a separate channel

• Use channels when entire transactions (and ledgers) must be kept confidential within a set of organizations that
are members of the channel.

• Use collections when transactions (and ledgers) must be shared among a set of organizations, but when only
a subset of those organizations should have access to some (or all) of the data within a transaction. Addition-
ally, since private data is disseminated peer-to-peer rather than via blocks, use private data collections when
transaction data must be kept confidential from ordering service nodes.

4.12.3 A use case to explain collections

Consider a group of five organizations on a channel who trade produce:

• A Farmer selling his goods abroad

• A Distributor moving goods abroad

• A Shipper moving goods between parties

• A Wholesaler purchasing goods from distributors

• A Retailer purchasing goods from shippers and wholesalers

The Distributor might want to make private transactions with the Farmer and Shipper to keep the terms of the trades
confidential from the Wholesaler and the Retailer (so as not to expose the markup they’re charging).

4.12. Private data 113

hyperledger-fabricdocs Documentation, Release master

The Distributor may also want to have a separate private data relationship with the Wholesaler because it charges
them a lower price than it does the Retailer.

The Wholesaler may also want to have a private data relationship with the Retailer and the Shipper.

Rather than defining many small channels for each of these relationships, multiple private data collections (PDC) can
be defined to share private data between:

1. PDC1: Distributor, Farmer and Shipper

2. PDC2: Distributor and Wholesaler

3. PDC3: Wholesaler, Retailer and Shipper

Using this example, peers owned by the Distributor will have multiple private databases inside their ledger which
includes the private data from the Distributor, Farmer and Shipper relationship and the Distributor and Wholesaler
relationship.

114 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

4.12.4 Transaction flow with private data

When private data collections are referenced in chaincode, the transaction flow is slightly different in order to protect
the confidentiality of the private data as transactions are proposed, endorsed, and committed to the ledger.

For details on transaction flows that don’t use private data refer to our documentation on transaction flow.

1. The client application submits a proposal request to invoke a chaincode function (reading or writing private data)
to endorsing peers which are part of authorized organizations of the collection. The private data, or data used to
generate private data in chaincode, is sent in a transient field of the proposal.

2. The endorsing peers simulate the transaction and store the private data in a transient data store (a
temporary storage local to the peer). They distribute the private data, based on the collection policy, to authorized
peers via gossip.

3. The endorsing peer sends the proposal response back to the client. The proposal response includes the endorsed
read/write set, which includes public data, as well as a hash of any private data keys and values. No private data
is sent back to the client. For more information on how endorsement works with private data, click here.

4. The client application submits the transaction (which includes the proposal response with the private data hashes)
to the ordering service. The transactions with the private data hashes get included in blocks as normal. The
block with the private data hashes is distributed to all the peers. In this way, all peers on the channel can validate
transactions with the hashes of the private data in a consistent way, without knowing the actual private data.

5. At block commit time, authorized peers use the collection policy to determine if they are authorized to have
access to the private data. If they do, they will first check their local transient data store to determine
if they have already received the private data at chaincode endorsement time. If not, they will attempt to pull
the private data from another authorized peer. Then they will validate the private data against the hashes in the
public block and commit the transaction and the block. Upon validation/commit, the private data is moved to
their copy of the private state database and private writeset storage. The private data is then deleted from the
transient data store.

4.12. Private data 115

../txflow.html
../gossip.html
../private-data-arch.html#endorsement

hyperledger-fabricdocs Documentation, Release master

4.12.5 Sharing private data

In many scenarios private data keys/values in one collection may need to be shared with other channel members or
with other private data collections, for example when you need to transact on private data with a channel member or
group of channel members who were not included in the original private data collection. The receiving parties will
typically want to verify the private data against the on-chain hashes as part of the transaction.

There are several aspects of private data collections that enable the sharing and verification of private data:

• First, you don’t necessarily have to be a member of a collection to write to a key in a collection, as long as
the endorsement policy is satisfied. Endorsement policy can be defined at the chaincode level, key level (using
state-based endorsement), or collection level (starting in Fabric v2.0).

• Second, starting in v1.4.2 there is a chaincode API GetPrivateDataHash() that allows chaincode on non-member
peers to read the hash value of a private key. This is an important feature as you will see later, because it allows
chaincode to verify private data against the on-chain hashes that were created from private data in previous
transactions.

This ability to share and verify private data should be considered when designing applications and the associated
private data collections. While you can certainly create sets of multilateral private data collections to share data
among various combinations of channel members, this approach may result in a large number of collections that
need to be defined. Alternatively, consider using a smaller number of private data collections (e.g. one collection per
organization, or one collection per pair of organizations), and then sharing private data with other channel members, or
with other collections as the need arises. Starting in Fabric v2.0, implicit organization-specific collections are available
for any chaincode to utilize, so that you don’t even have to define these per-organization collections when deploying
chaincode.

Private data sharing patterns

When modeling private data collections per organization, multiple patterns become available for sharing or transferring
private data without the overhead of defining many multilateral collections. Here are some of the sharing patterns that
could be leveraged in chaincode applications:

• Use a corresponding public key for tracking public state - You can optionally have a matching public key for
tracking public state (e.g. asset properties, current ownership. etc), and for every organization that should have
access to the asset’s corresponding private data, you can create a private key/value in each organization’s private
data collection.

• Chaincode access control - You can implement access control in your chaincode, to specify which clients can
query private data in a collection. For example, store an access control list for a private data collection key or
range of keys, then in the chaincode get the client submitter’s credentials (using GetCreator() chaincode API
or CID library API GetID() or GetMSPID()), and verify they have access before returning the private data.
Similarly you could require a client to pass a passphrase into chaincode, which must match a passphrase stored
at the key level, in order to access the private data. Note, this pattern can also be used to restrict client access to
public state data.

• Sharing private data out of band - As an off-chain option, you could share private data out of band with
other organizations, and they can hash the key/value to verify it matches the on-chain hash by using GetPri-
vateDataHash() chaincode API. For example, an organization that wishes to purchase an asset from you may
want to verify an asset’s properties and that you are the legitimate owner by checking the on-chain hash, prior
to agreeing to the purchase.

• Sharing private data with other collections - You could ‘share’ the private data on-chain with chaincode that
creates a matching key/value in the other organization’s private data collection. You’d pass the private data
key/value to chaincode via transient field, and the chaincode could confirm a hash of the passed private data
matches the on-chain hash from your collection using GetPrivateDataHash(), and then write the private data to
the other organization’s private data collection.

116 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

• Transferring private data to other collections - You could ‘transfer’ the private data with chaincode that
deletes the private data key in your collection, and creates it in another organization’s collection. Again, use the
transient field to pass the private data upon chaincode invoke, and in the chaincode use GetPrivateDataHash()
to confirm that the data exists in your private data collection, before deleting the key from your collection and
creating the key in another organization’s collection. To ensure that a transaction always deletes from one
collection and adds to another collection, you may want to require endorsements from additional parties, such
as a regulator or auditor.

• Using private data for transaction approval - If you want to get a counterparty’s approval for a transaction
before it is completed (e.g. an on-chain record that they agree to purchase an asset for a certain price), the
chaincode can require them to ‘pre-approve’ the transaction, by either writing a private key to their private data
collection or your collection, which the chaincode will then check using GetPrivateDataHash(). In fact, this
is exactly the same mechanism that the built-in lifecycle system chaincode uses to ensure organizations agree
to a chaincode definition before it is committed to a channel. Starting with Fabric v2.0, this pattern becomes
more powerful with collection-level endorsement policies, to ensure that the chaincode is executed and endorsed
on the collection owner’s own trusted peer. Alternatively, a mutually agreed key with a key-level endorsement
policy could be used, that is then updated with the pre-approval terms and endorsed on peers from the required
organizations.

• Keeping transactors private - Variations of the prior pattern can also eliminate leaking the transactors for a
given transaction. For example a buyer indicates agreement to buy on their own collection, then in a subsequent
transaction seller references the buyer’s private data in their own private data collection. The proof of transaction
with hashed references is recorded on-chain, only the buyer and seller know that they are the transactors, but
they can reveal the pre-images if a need-to-know arises, such as in a subsequent transaction with another party
who could verify the hashes.

Coupled with the patterns above, it is worth noting that transactions with private data can be bound to the same
conditions as regular channel state data, specifically:

• Key level transaction access control - You can include ownership credentials in a private data value, so that
subsequent transactions can verify that the submitter has ownership privilege to share or transfer the data. In this
case the chaincode would get the submitter’s credentials (e.g. using GetCreator() chaincode API or CID library
API GetID() or GetMSPID()), combine it with other private data that gets passed to the chaincode, hash it, and
use GetPrivateDataHash() to verify that it matches the on-chain hash before proceeding with the transaction.

• Key level endorsement policies - And also as with normal channel state data, you can use state-based en-
dorsement to specify which organizations must endorse transactions that share or transfer private data, using
SetPrivateDataValidationParameter() chaincode API, for example to specify that only an owner’s organization
peer, custodian’s organization peer, or other third party must endorse such transactions.

Example scenario: Asset transfer using private data collections

The private data sharing patterns mentioned above can be combined to enable powerful chaincode-based applica-
tions. For example, consider how an asset transfer scenario could be implemented using per-organization private data
collections:

• An asset may be tracked by a UUID key in public chaincode state. Only the asset’s ownership is recorded,
nothing else is known about the asset.

• The chaincode will require that any transfer request must originate from the owning client, and the key is bound
by state-based endorsement requiring that a peer from the owner’s organization and a regulator’s organization
must endorse any transfer requests.

• The asset owner’s private data collection contains the private details about the asset, keyed by a hash of the
UUID. Other organizations and the ordering service will only see a hash of the asset details.

• Let’s assume the regulator is a member of each collection as well, and therefore persists the private data, although
this need not be the case.

4.12. Private data 117

hyperledger-fabricdocs Documentation, Release master

A transaction to trade the asset would unfold as follows:

1. Off-chain, the owner and a potential buyer strike a deal to trade the asset for a certain price.

2. The seller provides proof of their ownership, by either passing the private details out of band, or by providing
the buyer with credentials to query the private data on their node or the regulator’s node.

3. Buyer verifies a hash of the private details matches the on-chain public hash.

4. The buyer invokes chaincode to record their bid details in their own private data collection. The chaincode is
invoked on buyer’s peer, and potentially on regulator’s peer if required by the collection endorsement policy.

5. The current owner (seller) invokes chaincode to sell and transfer the asset, passing in the private details and
bid information. The chaincode is invoked on peers of the seller, buyer, and regulator, in order to meet the
endorsement policy of the public key, as well as the endorsement policies of the buyer and seller private data
collections.

6. The chaincode verifies that the submitting client is the owner, verifies the private details against the hash in the
seller’s collection, and verifies the bid details against the hash in the buyer’s collection. The chaincode then
writes the proposed updates for the public key (setting ownership to the buyer, and setting endorsement policy
to be the buying organization and regulator), writes the private details to the buyer’s private data collection, and
potentially deletes the private details from seller’s collection. Prior to final endorsement, the endorsing peers
ensure private data is disseminated to any other authorized peers of the seller and regulator.

7. The seller submits the transaction with the public data and private data hashes for ordering, and it is distributed
to all channel peers in a block.

8. Each peer’s block validation logic will consistently verify the endorsement policy was met (buyer, seller, regu-
lator all endorsed), and verify that public and private state that was read in the chaincode has not been modified
by any other transaction since chaincode execution.

9. All peers commit the transaction as valid since it passed validation checks. Buyer peers and regulator peers
retrieve the private data from other authorized peers if they did not receive it at endorsement time, and persist
the private data in their private data state database (assuming the private data matched the hashes from the
transaction).

10. With the transaction completed, the asset has been transferred, and other channel members interested in the asset
may query the history of the public key to understand its provenance, but will not have access to any private
details unless an owner shares it on a need-to-know basis.

The basic asset transfer scenario could be extended for other considerations, for example the transfer chaincode could
verify that a payment record is available to satisfy payment versus delivery requirements, or verify that a bank has
submitted a letter of credit, prior to the execution of the transfer chaincode. And instead of transactors directly hosting
peers, they could transact through custodian organizations who are running peers.

4.12.6 Purging private data

For very sensitive data, even the parties sharing the private data might want — or might be required by government
regulations — to periodically “purge” the data on their peers, leaving behind a hash of the data on the blockchain to
serve as immutable evidence of the private data.

In some of these cases, the private data only needs to exist on the peer’s private database until it can be replicated into
a database external to the peer’s blockchain. The data might also only need to exist on the peers until a chaincode
business process is done with it (trade settled, contract fulfilled, etc).

To support these use cases, private data can be purged if it has not been modified for a configurable number of blocks.
Purged private data cannot be queried from chaincode, and is not available to other requesting peers.

118 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

4.12.7 How a private data collection is defined

For more details on collection definitions, and other low level information about private data and collections, refer to
the private data reference topic.

4.13 Channel capabilities

Audience: Channel administrators, node administrators

Note: this is an advanced Fabric concept that is not necessary for new users or application developers to understand.
However, as channels and networks mature, understanding and managing capabilities becomes vital. Furthermore, it
is important to recognize that updating capabilities is a different, though often related, process to upgrading nodes.
We’ll describe this in detail in this topic.

Because Fabric is a distributed system that will usually involve multiple organizations, it is possible (and typical) that
different versions of Fabric code will exist on different nodes within the network as well as on the channels in that
network. Fabric allows this — it is not necessary for every peer and ordering node to be at the same version level. In
fact, supporting different version levels is what enables rolling upgrades of Fabric nodes.

What is important is that networks and channels process things in the same way, creating deterministic results for
things like channel configuration updates and chaincode invocations. Without deterministic results, one peer on a
channel might invalidate a transaction while another peer may validate it.

To that end, Fabric defines levels of what are called “capabilities”. These capabilities, which are defined in the
configuration of each channel, ensure determinism by defining a level at which behaviors produce consistent results.
As you’ll see, these capabilities have versions which are closely related to node binary versions. Capabilities enable
nodes running at different version levels to behave in a compatible and consistent way given the channel configuration
at a specific block height. You will also see that capabilities exist in many parts of the configuration tree, defined along
the lines of administration for particular tasks.

As you’ll see, sometimes it is necessary to update your channel to a new capability level to enable a new feature.

4.13.1 Node versions and capability versions

If you’re familiar with Hyperledger Fabric, you’re aware that it follows a typical versioning pattern: v1.1, v1.2.1, v2.0,
etc. These versions refer to releases and their related binary versions.

Capabilities follow the same versioning convention. There are v1.1 capabilities and v1.2 capabilities and 2.0 capabili-
ties and so on. But it’s important to note a few distinctions.

• There is not necessarily a new capability level with each release. The need to establish a new capability is
determined on a case by case basis and relies chiefly on the backwards compatibility of new features and older
binary versions. Adding Raft ordering services in v1.4.1, for example, did not change the way either transactions
or ordering service functions were handled and thus did not require the establishment of any new capabilities.
Private Data, on the other hand, could not be handled by peers before v1.2, requiring the establishment of a v1.2
capability level. Because not every release contains a new feature (or a bug fix) that changes the way transactions
are processed, certain releases will not require any new capabilities (for example, v1.4) while others will only
have new capabilities at particular levels (such as v1.2 and v1.3). We’ll discuss the “levels” of capabilities and
where they reside in the configuration tree later.

• Nodes must be at least at the level of certain capabilities in a channel. When a peer joins a channel, it reads
all of the blocks in the ledger sequentially, starting with the genesis block of the channel and continuing through
the transaction blocks and any subsequent configuration blocks. If a node, for example a peer, attempts to read
a block containing an update to a capability it doesn’t understand (for example, a v1.4.x peer trying to read a
block containing a v2.0 application capability), the peer will crash. This crashing behavior is intentional, as

4.13. Channel capabilities 119

../private-data-arch.html
./private-data/private-data.html

hyperledger-fabricdocs Documentation, Release master

a v1.4.x peer should not attempt validate or commit any transactions past this point. Before joining a channel,
make sure the node is at least the Fabric version (binary) level of the capabilities specified in the channel
config relevant to the node. We’ll discuss which capabilities are relevant to which nodes later. However,
because no user wants their nodes to crash, it is strongly recommended to update all nodes to the required level
(preferably, to the latest release) before attempting to update capabilities. This is in line with the default Fabric
recommendation to always be at the latest binary and capability levels.

If users are unable to upgrade their binaries, then capabilities must be left at their lower levels. Lower level binaries
and capabilities will still work together as they’re meant to. However, keep in mind that it is a best practice to always
update to new binaries even if a user chooses not to update their capabilities. Because capabilities themselves also
include bug-fixes, it is always recommended to update capabilities once the network binaries support them.

4.13.2 Capability configuration groupings

As we discussed earlier, there is not a single capability level encompassing an entire channel. Rather, there are three
capabilities, each representing an area of administration.

• Orderer: These capabilities govern tasks and processing exclusive to the ordering service. Because these
capabilities do not involve processes that affect transactions or the peers, updating them falls solely to the
ordering service admins (peers do not need to understand orderer capabilities and will therefore not crash no
matter what the orderer capability is updated to). Note that these capabilities did not change between v1.1 and
v1.4.2. However, as we’ll see in the channel section, this does not mean that v1.1 ordering nodes will work on
all channels with capability levels below v1.4.2.

• Application: These capabilities govern tasks and processing exclusive to the peers. Because ordering service
admins have no role in deciding the nature of transactions between peer organizations, changing this capability
level falls exclusively to peer organizations. For example, Private Data can only be enabled on a channel with
the v1.2 (or higher) application group capability enabled. In the case of Private Data, this is the only capability
that must be enabled, as nothing about the way Private Data works requires a change to channel administration
or the way the ordering service processes transactions.

• Channel: This grouping encompasses tasks that are jointly administered by the peer organizations and the
ordering service. For example, this is the capability that defines the level at which channel configuration updates,
which are initiated by peer organizations and orchestrated by the ordering service, are processed. On a practical
level, this grouping defines the minimum level for all of the binaries in a channel, as both ordering nodes
and peers must be at least at the binary level corresponding to this capability in order to process the
capability.

The orderer and channel capabilities of a channel are inherited by default from the ordering system channel, where
modifying them are the exclusive purview of ordering service admins. As a result, peer organizations should inspect the
genesis block of a channel prior to joining their peers to that channel. Although the channel capability is administered
by the orderers in the orderer system channel (just as the consortium membership is), it is typical and expected that
the ordering admins will coordinate with the consortium admins to ensure that the channel capability is only upgraded
when the consortium is ready for it.

Because the ordering system channel does not define an application capability, this capability must be specified in the
channel profile when creating the genesis block for the channel.

Take caution when specifying or modifying an application capability. Because the ordering service does not validate
that the capability level exists, it will allow a channel to be created (or modified) to contain, for example, a v1.8
application capability even if no such capability exists. Any peer attempting to read a configuration block with this
capability would, as we have shown, crash, and even if it was possible to modify the channel once again to a valid
capability level, it would not matter, as no peer would be able to get past the block with the invalid v1.8 capability.

For a full look at the current valid orderer, application, and channel capabilities check out a sample configtx.yaml
file, which lists them in the “Capabilities” section.

120 Chapter 4. Key Concepts

http://github.com/hyperledger/fabric/blob/master/sampleconfig/configtx.yaml
http://github.com/hyperledger/fabric/blob/master/sampleconfig/configtx.yaml

hyperledger-fabricdocs Documentation, Release master

For more specific information about capabilities and where they reside in the channel configuration, check out defining
capability requirements.

4.14 Use Cases

The Hyperledger Requirements WG is documenting a number of blockchain use cases and maintaining an inventory
here.

4.14. Use Cases 121

capability_requirements.html
capability_requirements.html
https://wiki.hyperledger.org/display/LMDWG/Use+Cases

hyperledger-fabricdocs Documentation, Release master

122 Chapter 4. Key Concepts

CHAPTER 5

Getting Started

5.1 Prerequisites

Before you begin, you should confirm that you have installed all the prerequisites below on the platform where you
will be running Hyperledger Fabric.

Note: These prerequisites are recommended for Fabric users. If you are a Fabric developer you should refer to the
instructions for Setting up the development environment.

5.1.1 Install Git

Download the latest version of git if it is not already installed, or if you have problems running the curl commands.

5.1.2 Install cURL

Download the latest version of the cURL tool if it is not already installed or if you get errors running the curl commands
from the documentation.

Note: If you’re on Windows please see the specific note on Windows extras below.

5.1.3 Docker and Docker Compose

You will need the following installed on the platform on which you will be operating, or developing on (or for),
Hyperledger Fabric:

• MacOSX, *nix, or Windows 10: Docker Docker version 17.06.2-ce or greater is required.

• Older versions of Windows: Docker Toolbox - again, Docker version Docker 17.06.2-ce or greater is required.

123

https://git-scm.com/downloads
https://curl.haxx.se/download.html
https://www.docker.com/get-docker
https://docs.docker.com/toolbox/toolbox_install_windows/

hyperledger-fabricdocs Documentation, Release master

You can check the version of Docker you have installed with the following command from a terminal prompt:

docker --version

Note: The following applies to linux systems running systemd.

Make sure the docker daemon is running.

sudo systemctl start docker

Optional: If you want the docker daemon to start when the system starts, use the following:

sudo systemctl enable docker

Add your user to the docker group.

sudo usermod -a -G docker <username>

Note: Installing Docker for Mac or Windows, or Docker Toolbox will also install Docker Compose. If you already
had Docker installed, you should check that you have Docker Compose version 1.14.0 or greater installed. If not, we
recommend that you install a more recent version of Docker.

You can check the version of Docker Compose you have installed with the following command from a terminal prompt:

docker-compose --version

5.1.4 Windows extras

On Windows 10 you should use the native Docker distribution and you may use the Windows PowerShell. However,
for the binaries command to succeed you will still need to have the uname command available. You can get it as
part of Git but beware that only the 64bit version is supported.

Before running any git clone commands, run the following commands:

git config --global core.autocrlf false
git config --global core.longpaths true

You can check the setting of these parameters with the following commands:

git config --get core.autocrlf
git config --get core.longpaths

These need to be false and true respectively.

The curl command that comes with Git and Docker Toolbox is old and does not handle properly the redirect used in
Getting Started. Make sure you have and use a newer version which can be downloaded from the cURL downloads
page

Note: If you have questions not addressed by this documentation, or run into issues with any of the tutorials, please
visit the Still Have Questions? page for some tips on where to find additional help.

124 Chapter 5. Getting Started

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

hyperledger-fabricdocs Documentation, Release master

5.2 Install Samples, Binaries, and Docker Images

While we work on developing real installers for the Hyperledger Fabric binaries, we provide a script that will download
and install samples and binaries to your system. We think that you’ll find the sample applications installed useful to
learn more about the capabilities and operations of Hyperledger Fabric.

Note: If you are running on Windows you will want to make use of the Docker Quickstart Terminal for the upcoming
terminal commands. Please visit the Prerequisites if you haven’t previously installed it.

If you are using Docker Toolbox or macOS, you will need to use a location under /Users (macOS) when installing
and running the samples.

If you are using Docker for Mac, you will need to use a location under /Users, /Volumes, /private, or /tmp.
To use a different location, please consult the Docker documentation for file sharing.

If you are using Docker for Windows, please consult the Docker documentation for shared drives and use a location
under one of the shared drives.

Determine a location on your machine where you want to place the fabric-samples repository and enter that directory
in a terminal window. The command that follows will perform the following steps:

1. If needed, clone the hyperledger/fabric-samples repository

2. Checkout the appropriate version tag

3. Install the Hyperledger Fabric platform-specific binaries and config files for the version specified into the /bin
and /config directories of fabric-samples

4. Download the Hyperledger Fabric docker images for the version specified

Once you are ready, and in the directory into which you will install the Fabric Samples and binaries, go ahead and
execute the command to pull down the binaries and images.

Note: If you want the latest production release, omit all version identifiers.

curl -sSL https://bit.ly/2ysbOFE | bash -s

Note: If you want a specific release, pass a version identifier for Fabric and Fabric-CA docker images. The command
below demonstrates how to download the latest production releases - Fabric v2.2.0 and Fabric CA v1.4.7

curl -sSL https://bit.ly/2ysbOFE | bash -s -- <fabric_version> <fabric-ca_version>
curl -sSL https://bit.ly/2ysbOFE | bash -s -- 2.2.0 1.4.7

Note: If you get an error running the above curl command, you may have too old a version of curl that does not
handle redirects or an unsupported environment.

Please visit the Prerequisites page for additional information on where to find the latest version of curl and get the right
environment. Alternately, you can substitute the un-shortened URL: https://raw.githubusercontent.com/hyperledger/
fabric/master/scripts/bootstrap.sh

The command above downloads and executes a bash script that will download and extract all of the platform-specific
binaries you will need to set up your network and place them into the cloned repo you created above. It retrieves the
following platform-specific binaries:

5.2. Install Samples, Binaries, and Docker Images 125

https://docs.docker.com/docker-for-mac/#file-sharing
https://docs.docker.com/docker-for-windows/#shared-drives
https://github.com/hyperledger/fabric-samples
https://raw.githubusercontent.com/hyperledger/fabric/master/scripts/bootstrap.sh
https://raw.githubusercontent.com/hyperledger/fabric/master/scripts/bootstrap.sh

hyperledger-fabricdocs Documentation, Release master

• configtxgen,

• configtxlator,

• cryptogen,

• discover,

• idemixgen

• orderer,

• peer,

• fabric-ca-client,

• fabric-ca-server

and places them in the bin sub-directory of the current working directory.

You may want to add that to your PATH environment variable so that these can be picked up without fully qualifying
the path to each binary. e.g.:

export PATH=<path to download location>/bin:$PATH

Finally, the script will download the Hyperledger Fabric docker images from Docker Hub into your local Docker
registry and tag them as ‘latest’.

The script lists out the Docker images installed upon conclusion.

Look at the names for each image; these are the components that will ultimately comprise our Hyperledger Fabric
network. You will also notice that you have two instances of the same image ID - one tagged as “amd64-1.x.x” and
one tagged as “latest”. Prior to 1.2.0, the image being downloaded was determined by uname -m and showed as
“x86_64-1.x.x”.

Note: On different architectures, the x86_64/amd64 would be replaced with the string identifying your architecture.

Note: If you have questions not addressed by this documentation, or run into issues with any of the tutorials, please
visit the Still Have Questions? page for some tips on where to find additional help.

5.3 Using the Fabric test network

After you have downloaded the Hyperledger Fabric Docker images and samples, you can deploy a test network by
using scripts that are provided in the fabric-samples repository. You can use the test network to learn about
Fabric by running nodes on your local machine. More experienced developers can use the network to test their smart
contracts and applications. The network is meant to be used only as a tool for education and testing. It should not be
used as a template for deploying a production network. The test network is being introduced in Fabric v2.0 as the long
term replacement for the first-network sample.

The sample network deploys a Fabric network with Docker Compose. Because the nodes are isolated within a Docker
Compose network, the test network is not configured to connect to other running fabric nodes.

Note: These instructions have been verified to work against the latest stable Docker images and the pre-compiled
setup utilities within the supplied tar file. If you run these commands with images or tools from the current master
branch, it is possible that you will encounter errors.

126 Chapter 5. Getting Started

https://hub.docker.com/u/hyperledger/

hyperledger-fabricdocs Documentation, Release master

5.3.1 Before you begin

Before you can run the test network, you need to clone the fabric-samples repository and download the Fabric
images. Make sure that you have installed the Prerequisites and Installed the Samples, Binaries and Docker Images.

5.3.2 Bring up the test network

You can find the scripts to bring up the network in the test-network directory of the fabric-samples reposi-
tory. Navigate to the test network directory by using the following command:

cd fabric-samples/test-network

In this directory, you can find an annotated script, network.sh, that stands up a Fabric network using the Docker
images on your local machine. You can run ./network.sh -h to print the script help text:

Usage:
network.sh <Mode> [Flags]
<Mode>

- 'up' - bring up fabric orderer and peer nodes. No channel is created
- 'up createChannel' - bring up fabric network with one channel
- 'createChannel' - create and join a channel after the network is created
- 'deployCC' - deploy the fabcar chaincode on the channel
- 'down' - clear the network with docker-compose down
- 'restart' - restart the network

Flags:
-ca <use CAs> - create Certificate Authorities to generate the crypto material
-c <channel name> - channel name to use (defaults to "mychannel")
-s <dbtype> - the database backend to use: goleveldb (default) or couchdb
-r <max retry> - CLI times out after certain number of attempts (defaults to 5)
-d <delay> - delay duration in seconds (defaults to 3)
-l <language> - the programming language of the chaincode to deploy: go (default),

→˓ java, javascript, typescript
-v <version> - chaincode version. Must be a round number, 1, 2, 3, etc
-i <imagetag> - the tag to be used to launch the network (defaults to "latest")
-cai <ca_imagetag> - the image tag to be used for CA (defaults to "1.4.6")
-verbose - verbose mode

network.sh -h (print this message)

Possible Mode and flags
network.sh up -ca -c -r -d -s -i -verbose
network.sh up createChannel -ca -c -r -d -s -i -verbose
network.sh createChannel -c -r -d -verbose
network.sh deployCC -l -v -r -d -verbose

Taking all defaults:
network.sh up

Examples:
network.sh up createChannel -ca -c mychannel -s couchdb -i 2.0.0
network.sh createChannel -c channelName
network.sh deployCC -l javascript

From inside the test-network directory, run the following command to remove any containers or artifacts from
any previous runs:

5.3. Using the Fabric test network 127

prereqs.html
install.html

hyperledger-fabricdocs Documentation, Release master

./network.sh down

You can then bring up the network by issuing the following command. You will experience problems if you try to run
the script from another directory:

./network.sh up

This command creates a Fabric network that consists of two peer nodes, one ordering node. No channel is created
when you run ./network.sh up, though we will get there in a future step. If the command completes successfully,
you will see the logs of the nodes being created:

Creating network "net_test" with the default driver
Creating volume "net_orderer.example.com" with default driver
Creating volume "net_peer0.org1.example.com" with default driver
Creating volume "net_peer0.org2.example.com" with default driver
Creating orderer.example.com ... done
Creating peer0.org2.example.com ... done
Creating peer0.org1.example.com ... done
CONTAINER ID IMAGE COMMAND CREATED
→˓ STATUS PORTS NAMES
8d0c74b9d6af hyperledger/fabric-orderer:latest "orderer" 4 seconds
→˓ago Up Less than a second 0.0.0.0:7050->7050/tcp orderer.
→˓example.com
ea1cf82b5b99 hyperledger/fabric-peer:latest "peer node start" 4 seconds
→˓ago Up Less than a second 0.0.0.0:7051->7051/tcp peer0.org1.
→˓example.com
cd8d9b23cb56 hyperledger/fabric-peer:latest "peer node start" 4 seconds
→˓ago Up 1 second 7051/tcp, 0.0.0.0:9051->9051/tcp peer0.org2.
→˓example.com

If you don’t get this result, jump down to Troubleshooting for help on what might have gone wrong. By default, the
network uses the cryptogen tool to bring up the network. However, you can also bring up the network with Certificate
Authorities.

The components of the test network

After your test network is deployed, you can take some time to examine its components. Run the following command
to list all of Docker containers that are running on your machine. You should see the three nodes that were created by
the network.sh script:

docker ps -a

Each node and user that interacts with a Fabric network needs to belong to an organization that is a network member.
The group of organizations that are members of a Fabric network are often referred to as the consortium. The test
network has two consortium members, Org1 and Org2. The network also includes one orderer organization that
maintains the ordering service of the network.

Peers are the fundamental components of any Fabric network. Peers store the blockchain ledger and validate transac-
tions before they are committed to the ledger. Peers run the smart contracts that contain the business logic that is used
to manage the assets on the blockchain ledger.

Every peer in the network needs to belong to a member of the consortium. In the test network, each organization
operates one peer each, peer0.org1.example.com and peer0.org2.example.com.

Every Fabric network also includes an ordering service. While peers validate transactions and add blocks of transac-
tions to the blockchain ledger, they do not decide on the order of transactions or include them into new blocks. On a

128 Chapter 5. Getting Started

peers/peers.html
orderer/ordering_service.html

hyperledger-fabricdocs Documentation, Release master

distributed network, peers may be running far away from each other and not have a common view of when a transac-
tion was created. Coming to consensus on the order of transactions is a costly process that would create overhead for
the peers.

An ordering service allows peers to focus on validating transactions and committing them to the ledger. After ordering
nodes receive endorsed transactions from clients, they come to consensus on the order of transactions and then add
them to blocks. The blocks are then distributed to peer nodes, which add the blocks the blockchain ledger. Ordering
nodes also operate the system channel that defines the capabilities of a Fabric network, such as how blocks are made
and which version of Fabric that nodes can use. The system channel defines which organizations are members of the
consortium.

The sample network uses a single node Raft ordering service that is operated by the ordering organization. You can
see the ordering node running on your machine as orderer.example.com. While the test network only uses a
single node ordering service, a real network would have multiple ordering nodes, operated by one or multiple orderer
organizations. The different ordering nodes would use the Raft consensus algorithm to come to agreement on the order
of transactions across the network.

5.3.3 Creating a channel

Now that we have peer and orderer nodes running on our machine, we can use the script to create a Fabric channel
for transactions between Org1 and Org2. Channels are a private layer of communication between specific network
members. Channels can be used only by organizations that are invited to the channel, and are invisible to other
members of the network. Each channel has a separate blockchain ledger. Organizations that have been invited “join”
their peers to the channel to store the channel ledger and validate the transactions on the channel.

You can use the network.sh script to create a channel between Org1 and Org2 and join their peers to the channel.
Run the following command to create a channel with the default name of mychannel:

./network.sh createChannel

If the command was successful, you can see the following message printed in your logs:

========= Channel successfully joined ===========

You can also use the channel flag to create a channel with custom name. As an example, the following command
would create a channel named channel1:

./network.sh createChannel -c channel1

The channel flag also allows you to create multiple channels by specifying different channel names. After you create
mychannel or channel1, you can use the command below to create a second channel named channel2:

./network.sh createChannel -c channel2

If you want to bring up the network and create a channel in a single step, you can use the up and createChannel
modes together:

./network.sh up createChannel

5.3.4 Starting a chaincode on the channel

After you have created a channel, you can start using smart contracts to interact with the channel ledger. Smart
contracts contain the business logic that governs assets on the blockchain ledger. Applications run by members of
the network can invoke smart contracts to create assets on the ledger, as well as change and transfer those assets.
Applications also query smart contracts to read data on the ledger.

5.3. Using the Fabric test network 129

smartcontract/smartcontract.html

hyperledger-fabricdocs Documentation, Release master

To ensure that transactions are valid, transactions created using smart contracts typically need to be signed by multiple
organizations to be committed to the channel ledger. Multiple signatures are integral to the trust model of Fabric.
Requiring multiple endorsements for a transaction prevents one organization on a channel from tampering with the
ledger on their peer or using business logic that was not agreed to. To sign a transaction, each organization needs to
invoke and execute the smart contract on their peer, which then signs the output of the transaction. If the output is
consistent and has been signed by enough organizations, the transaction can be committed to the ledger. The policy that
specifies the set organizations on the channel that need to execute the smart contract is referred to as the endorsement
policy, which is set for each chaincode as part of the chaincode definition.

In Fabric, smart contracts are deployed on the network in packages referred to as chaincode. A Chaincode is installed
on the peers of an organization and then deployed to a channel, where it can then be used to endorse transactions and
interact with the blockchain ledger. Before a chaincode can be deployed to a channel, the members of the channel need
to agree on a chaincode definition that establishes chaincode governance. When the required number of organizations
agree, the chaincode definition can be committed to the channel, and the chaincode is ready to be used.

After you have used the network.sh to create a channel, you can start a chaincode on the channel using the follow-
ing command:

./network.sh deployCC

The deployCC subcommand will install the fabcar chaincode on peer0.org1.example.com and peer0.
org2.example.com and then deploy the chaincode on the channel specified using the channel flag (or
mychannel if no channel is specified). If you are deploying a chaincode for the first time, the script will install
the chaincode dependencies. By default, The script installs the Go version of the fabcar chaincode. However, you
can use the language flag, -l, to install the Java or javascript versions of the chaincode. You can find the Fabcar
chaincode in the chaincode folder of the fabric-samples directory. This folder contains sample chaincode
that are provided as examples and used by tutorials to highlight Fabric features.

After the fabcar chaincode definition has been committed to the channel, the script initializes the chaincode by invok-
ing the init function and then invokes the chaincode to put an initial list of cars on the ledger. The script then queries
the chaincode to verify that the data was added. If the chaincode was installed, deployed, and invoked correctly, you
should see the following list of cars printed in your logs:

[{"Key":"CAR0", "Record":{"make":"Toyota","model":"Prius","colour":"blue","owner":
→˓"Tomoko"}},
{"Key":"CAR1", "Record":{"make":"Ford","model":"Mustang","colour":"red","owner":"Brad
→˓"}},
{"Key":"CAR2", "Record":{"make":"Hyundai","model":"Tucson","colour":"green","owner":
→˓"Jin Soo"}},
{"Key":"CAR3", "Record":{"make":"Volkswagen","model":"Passat","colour":"yellow","owner
→˓":"Max"}},
{"Key":"CAR4", "Record":{"make":"Tesla","model":"S","colour":"black","owner":"Adriana
→˓"}},
{"Key":"CAR5", "Record":{"make":"Peugeot","model":"205","colour":"purple","owner":
→˓"Michel"}},
{"Key":"CAR6", "Record":{"make":"Chery","model":"S22L","colour":"white","owner":"Aarav
→˓"}},
{"Key":"CAR7", "Record":{"make":"Fiat","model":"Punto","colour":"violet","owner":"Pari
→˓"}},
{"Key":"CAR8", "Record":{"make":"Tata","model":"Nano","colour":"indigo","owner":
→˓"Valeria"}},
{"Key":"CAR9", "Record":{"make":"Holden","model":"Barina","colour":"brown","owner":
→˓"Shotaro"}}]
===================== Query successful on peer0.org1 on channel 'mychannel'
→˓=====================

130 Chapter 5. Getting Started

hyperledger-fabricdocs Documentation, Release master

5.3.5 Interacting with the network

After you bring up the test network, you can use the peer CLI to interact with your network. The peer CLI allows
you to invoke deployed smart contracts, update channels, or install and deploy new smart contracts from the CLI.

Make sure that you are operating from the test-network directory. If you followed the instructions to install the
Samples, Binaries and Docker Images, You can find the peer binaries in the bin folder of the fabric-samples
repository. Use the following command to add those binaries to your CLI Path:

export PATH=${PWD}/../bin:$PATH

You also need to set the FABRIC_CFG_PATH to point to the core.yaml file in the fabric-samples repository:

export FABRIC_CFG_PATH=$PWD/../config/

You can now set the environment variables that allow you to operate the peer CLI as Org1:

Environment variables for Org1

export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051

The CORE_PEER_TLS_ROOTCERT_FILE and CORE_PEER_MSPCONFIGPATH environment variables point to
the Org1 crypto material in the organizations folder.

If you used ./network.sh deployCC to install and start the fabcar chaincode, you can now query the ledger
from your CLI. Run the following command to get the list of cars that were added to your channel ledger:

peer chaincode query -C mychannel -n fabcar -c '{"Args":["queryAllCars"]}'

If the command is successful, you can see the same list of cars that were printed in the logs when you ran the script:

[{"Key":"CAR0", "Record":{"make":"Toyota","model":"Prius","colour":"blue","owner":
→˓"Tomoko"}},
{"Key":"CAR1", "Record":{"make":"Ford","model":"Mustang","colour":"red","owner":"Brad
→˓"}},
{"Key":"CAR2", "Record":{"make":"Hyundai","model":"Tucson","colour":"green","owner":
→˓"Jin Soo"}},
{"Key":"CAR3", "Record":{"make":"Volkswagen","model":"Passat","colour":"yellow","owner
→˓":"Max"}},
{"Key":"CAR4", "Record":{"make":"Tesla","model":"S","colour":"black","owner":"Adriana
→˓"}},
{"Key":"CAR5", "Record":{"make":"Peugeot","model":"205","colour":"purple","owner":
→˓"Michel"}},
{"Key":"CAR6", "Record":{"make":"Chery","model":"S22L","colour":"white","owner":"Aarav
→˓"}},
{"Key":"CAR7", "Record":{"make":"Fiat","model":"Punto","colour":"violet","owner":"Pari
→˓"}},
{"Key":"CAR8", "Record":{"make":"Tata","model":"Nano","colour":"indigo","owner":
→˓"Valeria"}},
{"Key":"CAR9", "Record":{"make":"Holden","model":"Barina","colour":"brown","owner":
→˓"Shotaro"}}]

5.3. Using the Fabric test network 131

install.html
install.html

hyperledger-fabricdocs Documentation, Release master

Chaincodes are invoked when a network member wants to transfer or change an asset on the ledger. Use the following
command to change the owner of a car on the ledger by invoking the fabcar chaincode:

peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓fabcar --peerAddresses localhost:7051 --tlsRootCertFiles ${PWD}/organizations/
→˓peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt --
→˓peerAddresses localhost:9051 --tlsRootCertFiles ${PWD}/organizations/
→˓peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt -c '{
→˓"function":"changeCarOwner","Args":["CAR9","Dave"]}'

If the command is successful, you should see the following response:

2019-12-04 17:38:21.048 EST [chaincodeCmd] chaincodeInvokeOrQuery -> INFO 001
→˓Chaincode invoke successful. result: status:200

Note: If you deployed the Java chaincode, run the invoke command with the following arguments instead:
'{"function":"changeCarOwner","Args":["CAR009","Dave"]}' The Fabcar chaincode written in
Java uses a different index than the chaincode written in Javascipt or Go.

Because the endorsement policy for the fabcar chaincode requires the transaction to be signed by Org1 and Org2, the
chaincode invoke command needs to target both peer0.org1.example.com and peer0.org2.example.
com using the --peerAddresses flag. Because TLS is enabled for the network, the command also needs to
reference the TLS certificate for each peer using the --tlsRootCertFiles flag.

After we invoke the chaincode, we can use another query to see how the invoke changed the assets on the blockchain
ledger. Since we already queried the Org1 peer, we can take this opportunity to query the chaincode running on the
Org2 peer. Set the following environment variables to operate as Org2:

Environment variables for Org2

export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org2MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
→˓example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.
→˓com/users/Admin@org2.example.com/msp
export CORE_PEER_ADDRESS=localhost:9051

You can now query the fabcar chaincode running on peer0.org2.example.com:

peer chaincode query -C mychannel -n fabcar -c '{"Args":["queryCar","CAR9"]}'

The result will show that "CAR9" was transferred to Dave:

{"make":"Holden","model":"Barina","colour":"brown","owner":"Dave"}

5.3.6 Bring down the network

When you are finished using the test network, you can bring down the network with the following command:

./network.sh down

The command will stop and remove the node and chaincode containers, delete the organization crypto material, and
remove the chaincode images from your Docker Registry. The command also removes the channel artifacts and docker
volumes from previous runs, allowing you to run ./network.sh up again if you encountered any problems.

132 Chapter 5. Getting Started

hyperledger-fabricdocs Documentation, Release master

5.3.7 Next steps

Now that you have used the test network to deploy Hyperledger Fabric on your local machine, you can use the tutorials
to start developing your own solution:

• Learn how to deploy your own smart contracts to the test network using the Deploying a smart contract to a
channel tutorial.

• Visit the Writing Your First Application tutorial to learn how to use the APIs provided by the Fabric SDKs to
invoke smart contracts from your client applications.

• If you are ready to deploy a more complicated smart contract to the network, follow the commercial paper
tutorial to explore a use case in which two organizations use a blockchain network to trade commercial paper.

You can find the complete list of Fabric tutorials on the tutorials page.

5.3.8 Bring up the network with Certificate Authorities

Hyperledger Fabric uses public key infrastructure (PKI) to verify the actions of all network participants. Every node,
network administrator, and user submitting transactions needs to have a public certificate and private key to verify
their identity. These identities need to have a valid root of trust, establishing that the certificates were issued by an
organization that is a member of the network. The network.sh script creates all of the cryptographic material that
is required to deploy and operate the network before it creates the peer and ordering nodes.

By default, the script uses the cryptogen tool to create the certificates and keys. The tool is provided for development
and testing, and can quickly create the required crypto material for Fabric organizations with a valid root of trust.
When you run ./network.sh up, you can see the cryptogen tool creating the certificates and keys for Org1, Org2,
and the Orderer Org.

creating Org1, Org2, and ordering service organization with crypto from 'cryptogen'

/Usr/fabric-samples/test-network/../bin/cryptogen

##
Generate certificates using cryptogen tool
##

##
############ Create Org1 Identities ######################
##
+ cryptogen generate --config=./organizations/cryptogen/crypto-config-org1.yaml --
→˓output=organizations
org1.example.com
+ res=0
+ set +x
##
############ Create Org2 Identities ######################
##
+ cryptogen generate --config=./organizations/cryptogen/crypto-config-org2.yaml --
→˓output=organizations
org2.example.com
+ res=0
+ set +x
##
############ Create Orderer Org Identities ###############
##
+ cryptogen generate --config=./organizations/cryptogen/crypto-config-orderer.yaml --
→˓output=organizations

(continues on next page)

5.3. Using the Fabric test network 133

deploy_chaincode.html
deploy_chaincode.html
write_first_app.html
tutorial/commercial_paper.html
tutorial/commercial_paper.html
tutorials.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

+ res=0
+ set +x

However, the test network script also provides the option to bring up the network using Certificate Authorities (CAs).
In a production network, each organization operates a CA (or multiple intermediate CAs) that creates the identities that
belong to their organization. All of the identities created by a CA run by the organization share the same root of trust.
Although it takes more time than using cryptogen, bringing up the test network using CAs provides an introduction
to how a network is deployed in production. Deploying CAs also allows you to enroll client identities with the Fabric
SDKs and create a certificate and private key for your applications.

If you would like to bring up a network using Fabric CAs, first run the following command to bring down any running
networks:

./network.sh down

You can then bring up the network with the CA flag:

./network.sh up -ca

After you issue the command, you can see the script bringing up three CAs, one for each organization in the network.

##
Generate certificates using Fabric CA's
##
Creating network "net_default" with the default driver
Creating ca_org2 ... done
Creating ca_org1 ... done
Creating ca_orderer ... done

It is worth taking time to examine the logs generated by the ./network.sh script after the CAs have been deployed.
The test network uses the Fabric CA client to register node and user identities with the CA of each organization.
The script then uses the enroll command to generate an MSP folder for each identity. The MSP folder contains the
certificate and private key for each identity, and establishes the identity’s role and membership in the organization that
operated the CA. You can use the following command to examine the MSP folder of the Org1 admin user:

tree organizations/peerOrganizations/org1.example.com/users/Admin@org1.example.com/

The command will reveal the MSP folder structure and configuration file:

organizations/peerOrganizations/org1.example.com/users/Admin@org1.example.com/
msp

IssuerPublicKey
IssuerRevocationPublicKey
cacerts

localhost-7054-ca-org1.pem
config.yaml
keystore

58e81e6f1ee8930df46841bf88c22a08ae53c1332319854608539ee78ed2fd65_sk
signcerts

cert.pem
user

You can find the certificate of the admin user in the signcerts folder and the private key in the keystore folder.
To learn more about MSPs, see the Membership Service Provider concept topic.

Both cryptogen and the Fabric CAs generate the cryptographic material for each organization in the
organizations folder. You can find the commands that are used to set up the network in the registerEnroll.

134 Chapter 5. Getting Started

membership/membership.html

hyperledger-fabricdocs Documentation, Release master

sh script in the organizations/fabric-ca directory. To learn more about how you would use the Fabric CA
to deploy a Fabric network, visit the Fabric CA operations guide. You can learn more about how Fabric uses PKI by
visiting the identity and membership concept topics.

5.3.9 What’s happening behind the scenes?

If you are interested in learning more about the sample network, you can investigate the files and scripts in the
test-network directory. The steps below provide a guided tour of what happens when you issue the command of
./network.sh up.

• ./network.sh creates the certificates and keys for two peer organizations and the orderer organization.
By default, the script uses the cryptogen tool using the configuration files located in the organizations/
cryptogen folder. If you use the -ca flag to create Certificate Authorities, the script uses Fabric CA server
configuration files and registerEnroll.sh script located in the organizations/fabric-ca folder.
Both cryptogen and the Fabric CAs create the crypto material and MSP folders for all three organizations in the
organizations folder.

• The script uses configtxgen tool to create the system channel genesis block. Configtxgen consumes the
TwoOrgsOrdererGenesis channel profile in the configtx/configtx.yaml file to create the gen-
esis block. The block is stored in the system-genesis-block folder.

• Once the organization crypto material and the system channel genesis block have been generated, the
network.sh can bring up the nodes of the network. The script uses the docker-compose-test-net.
yaml file in the docker folder to create the peer and orderer nodes. The docker folder also contains the
docker-compose-e2e.yaml file that brings up the nodes of the network alongside three Fabric CAs. This
file is meant to be used to run end-to-end tests by the Fabric SDK. Refer to the Node SDK repo for details on
running these tests.

• If you use the createChannel subcommand, ./network.sh runs the createChannel.sh script in the
scripts folder to create a channel using the supplied channel name. The script uses the configtx.yaml
file to create the channel creation transaction, as well as two anchor peer update transactions. The script uses
the peer cli to create the channel, join peer0.org1.example.com and peer0.org2.example.com to
the channel, and make both of the peers anchor peers.

• If you issue the deployCC command, ./network.sh runs the deployCC.sh script to install the fabcar
chaincode on both peers and then define then chaincode on the channel. Once the chaincode definition is
committed to the channel, the peer cli initializes the chaincode using the Init and invokes the chaincode to put
initial data on the ledger.

5.3.10 Troubleshooting

If you have any problems with the tutorial, review the following:

• You should always start your network fresh. You can use the following command to remove the artifacts, crypto
material, containers, volumes, and chaincode images from previous runs:

./network.sh down

You will see errors if you do not remove old containers, images, and volumes.

• If you see Docker errors, first check your Docker version (Prerequisites), and then try restarting your Docker
process. Problems with Docker are oftentimes not immediately recognizable. For example, you may see errors
that are the result of your node not being able to access the crypto material mounted within a container.

If problems persist, you can remove your images and start from scratch:

5.3. Using the Fabric test network 135

https://hyperledger-fabric-ca.readthedocs.io/en/latest/operations_guide.html
identity/identity.html
membership/membership.html
https://github.com/hyperledger/fabric-sdk-node
prereqs.html

hyperledger-fabricdocs Documentation, Release master

docker rm -f $(docker ps -aq)
docker rmi -f $(docker images -q)

• If you see errors on your create, approve, commit, invoke or query commands, make sure you have properly
updated the channel name and chaincode name. There are placeholder values in the supplied sample commands.

• If you see the error below:

Error: Error endorsing chaincode: rpc error: code = 2 desc = Error installing
→˓chaincode code mycc:1.0(chaincode /var/hyperledger/production/chaincodes/mycc.1.
→˓0 exits)

You likely have chaincode images (e.g. dev-peer1.org2.example.com-fabcar-1.0 or
dev-peer0.org1.example.com-fabcar-1.0) from prior runs. Remove them and try again.

docker rmi -f $(docker images | grep dev-peer[0-9] | awk '{print $3}')

• If you see the below error:

[configtx/tool/localconfig] Load -> CRIT 002 Error reading configuration:
→˓Unsupported Config Type ""
panic: Error reading configuration: Unsupported Config Type ""

Then you did not set the FABRIC_CFG_PATH environment variable properly. The configtxgen tool needs this
variable in order to locate the configtx.yaml. Go back and execute an export FABRIC_CFG_PATH=$PWD/
configtx/configtx.yaml, then recreate your channel artifacts.

• If you see an error stating that you still have “active endpoints”, then prune your Docker networks. This will
wipe your previous networks and start you with a fresh environment:

docker network prune

You will see the following message:

WARNING! This will remove all networks not used by at least one container.
Are you sure you want to continue? [y/N]

Select y.

• If you see an error similar to the following:

/bin/bash: ./scripts/createChannel.sh: /bin/bash^M: bad interpreter: No such file
→˓or directory

Ensure that the file in question (createChannel.sh in this example) is encoded in the Unix format. This was
most likely caused by not setting core.autocrlf to false in your Git configuration (see Windows extras).
There are several ways of fixing this. If you have access to the vim editor for instance, open the file:

vim ./fabric-samples/test-network/scripts/createChannel.sh

Then change its format by executing the following vim command:

:set ff=unix

• If your orderer exits upon creation or if you see that the create channel command fails due to an inability to
connect to your ordering service, use the docker logs command to read the logs from the ordering node.
You may see the following message:

136 Chapter 5. Getting Started

prereqs.html#windows-extras

hyperledger-fabricdocs Documentation, Release master

PANI 007 [channel system-channel] config requires unsupported orderer
→˓capabilities: Orderer capability V2_0 is required but not supported: Orderer
→˓capability V2_0 is required but not supported

This occurs when you are trying to run the network using Fabric version 1.4.x docker images. The test network
needs to run using Fabric version 2.x.

If you continue to see errors, share your logs on the fabric-questions channel on Hyperledger Rocket Chat or on
StackOverflow.

Before we begin, if you haven’t already done so, you may wish to check that you have all the Prerequisites installed
on the platform(s) on which you’ll be developing blockchain applications and/or operating Hyperledger Fabric.

Once you have the prerequisites installed, you are ready to download and install HyperLedger Fabric. While we work
on developing real installers for the Fabric binaries, we provide a script that will Install Samples, Binaries, and Docker
Images to your system. The script also will download the Docker images to your local registry.

After you have downloaded the Fabric Samples and Docker images to your local machine, you can get started working
with Fabric with the Using the Fabric test network tutorial.

5.4 Hyperledger Fabric smart contract (chaincode) APIs

Hyperledger Fabric offers a number of APIs to support developing smart contracts (chaincode) in various programming
languages. Smart contract APIs are available for Go, Node.js, and Java:

• Go contract-api.

• Node.js contract API and Node.js contract API documentation.

• Java contract API and Java contract API documentation.

5.5 Hyperledger Fabric application SDKs

Hyperledger Fabric offers a number of SDKs to support developing applications in various programming languages.
SDKs are available for Node.js and Java:

• Node.js SDK and Node.js SDK documentation.

• Java SDK and Java SDK documentation.

Prerequisites for developing with the SDKs can be found in the Node.js SDK README and Java SDK
README.

In addition, there are two more application SDKs that have not yet been officially released (for Python and Go), but
they are still available for downloading and testing:

• Python SDK.

• Go SDK.

Currently, Node.js, Java and Go support the new application programming model delivered in Hyperledger Fabric
v1.4.

5.4. Hyperledger Fabric smart contract (chaincode) APIs 137

https://chat.hyperledger.org/home
https://stackoverflow.com/questions/tagged/hyperledger-fabric
https://github.com/hyperledger/fabric-contract-api-go
https://github.com/hyperledger/fabric-chaincode-node
https://hyperledger.github.io/fabric-chaincode-node/
https://github.com/hyperledger/fabric-chaincode-java
https://hyperledger.github.io/fabric-chaincode-java/
https://github.com/hyperledger/fabric-sdk-node
https://hyperledger.github.io/fabric-sdk-node/
https://github.com/hyperledger/fabric-gateway-java
https://hyperledger.github.io/fabric-gateway-java/
https://github.com/hyperledger/fabric-sdk-node#build-and-test
https://github.com/hyperledger/fabric-gateway-java/blob/master/README.md
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-go

hyperledger-fabricdocs Documentation, Release master

5.6 Hyperledger Fabric CA

Hyperledger Fabric provides an optional certificate authority service that you may choose to use to generate the
certificates and key material to configure and manage identity in your blockchain network. However, any CA that
can generate ECDSA certificates may be used.

138 Chapter 5. Getting Started

http://hyperledger-fabric-ca.readthedocs.io/en/latest

CHAPTER 6

Developing Applications

6.1 The scenario

Audience: Architects, Application and smart contract developers, Business professionals

In this topic, we’re going to describe a business scenario involving six organizations who use PaperNet, a commercial
paper network built on Hyperledger Fabric, to issue, buy and redeem commercial paper. We’re going to use the
scenario to outline requirements for the development of commercial paper applications and smart contracts used by
the participant organizations.

6.1.1 PaperNet network

PaperNet is a commercial paper network that allows suitably authorized participants to issue, trade, redeem and rate
commercial paper.

139

hyperledger-fabricdocs Documentation, Release master

The PaperNet commercial paper network. Six organizations currently use PaperNet network to issue, buy, sell, redeem
and rate commercial paper. MagentoCorp issues and redeems commercial paper. DigiBank, BigFund, BrokerHouse
and HedgeMatic all trade commercial paper with each other. RateM provides various measures of risk for commercial
paper.

Let’s see how MagnetoCorp uses PaperNet and commercial paper to help its business.

6.1.2 Introducing the actors

MagnetoCorp is a well-respected company that makes self-driving electric vehicles. In early April 2020, MagnetoCorp
won a large order to manufacture 10,000 Model D cars for Daintree, a new entrant in the personal transport market.
Although the order represents a significant win for MagnetoCorp, Daintree will not have to pay for the vehicles until
they start to be delivered on November 1, six months after the deal was formally agreed between MagnetoCorp and
Daintree.

To manufacture the vehicles, MagnetoCorp will need to hire 1000 workers for at least 6 months. This puts a short term
strain on its finances – it will require an extra 5M USD each month to pay these new employees. Commercial paper
is designed to help MagnetoCorp overcome its short term financing needs – to meet payroll every month based on the
expectation that it will be cash rich when Daintree starts to pay for its new Model D cars.

At the end of May, MagnetoCorp needs 5M USD to meet payroll for the extra workers it hired on May 1. To do this, it
issues a commercial paper with a face value of 5M USD with a maturity date 6 months in the future – when it expects
to see cash flow from Daintree. DigiBank thinks that MagnetoCorp is creditworthy, and therefore doesn’t require much
of a premium above the central bank base rate of 2%, which would value 4.95M USD today at 5M USD in 6 months
time. It therefore purchases the MagnetoCorp 6 month commercial paper for 4.94M USD – a slight discount compared
to the 4.95M USD it is worth. DigiBank fully expects that it will be able to redeem 5M USD from MagnetoCorp in
6 months time, making it a profit of 10K USD for bearing the increased risk associated with this commercial paper.
This extra 10K means it receives a 2.4% return on investment – significantly better than the risk free return of 2%.

At the end of June, when MagnetoCorp issues a new commercial paper for 5M USD to meet June’s payroll, it is
purchased by BigFund for 4.94M USD. That’s because the commercial conditions are roughly the same in June as
they are in May, resulting in BigFund valuing MagnetoCorp commercial paper at the same price that DigiBank did in
May.

Each subsequent month, MagnetoCorp can issue new commercial paper to meet its payroll obligations, and these may
be purchased by DigiBank, or any other participant in the PaperNet commercial paper network – BigFund, HedgeMatic
or BrokerHouse. These organizations may pay more or less for the commercial paper depending on two factors – the

140 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

central bank base rate, and the risk associated with MagnetoCorp. This latter figure depends on a variety of factors
such as the production of Model D cars, and the creditworthiness of MagnetoCorp as assessed by RateM, a ratings
agency.

The organizations in PaperNet have different roles, MagnetoCorp issues paper, DigiBank, BigFund, HedgeMatic
and BrokerHouse trade paper and RateM rates paper. Organizations of the same role, such as DigiBank, Bigfund,
HedgeMatic and BrokerHouse are competitors. Organizations of different roles are not necessarily competitors, yet
might still have opposing business interest, for example MagentoCorp will desire a high rating for its papers to sell
them at a high price, while DigiBank would benefit from a low rating, such that it can buy them at a low price. As
can be seen, even a seemingly simple network such as PaperNet can have complex trust relationships. A blockchain
can help establish trust among organizations that are competitors or have opposing business interests that might lead
to disputes. Fabric in particular has the means to capture even fine-grained trust relationships.

Let’s pause the MagnetoCorp story for a moment, and develop the client applications and smart contracts that Pa-
perNet uses to issue, buy, sell and redeem commercial paper as well as capture the trust relationships between the
organizations. We’ll come back to the role of the rating agency, RateM, a little later.

6.2 Analysis

Audience: Architects, Application and smart contract developers, Business professionals

Let’s analyze commercial paper in a little more detail. PaperNet participants such as MagnetoCorp and DigiBank use
commercial paper transactions to achieve their business objectives – let’s examine the structure of a commercial paper
and the transactions that affect it over time. We will also consider which organizations in PaperNet need to sign off on
a transaction based on the trust relationships among the organizations in the network. Later we’ll focus on how money
flows between buyers and sellers; for now, let’s focus on the first paper issued by MagnetoCorp.

6.2.1 Commercial paper lifecycle

A paper 00001 is issued by MagnetoCorp on May 31. Spend a few moments looking at the first state of this paper,
with its different properties and values:

Issuer = MagnetoCorp
Paper = 00001
Owner = MagnetoCorp
Issue date = 31 May 2020
Maturity = 30 November 2020
Face value = 5M USD
Current state = issued

This paper state is a result of the issue transaction and it brings MagnetoCorp’s first commercial paper into existence!
Notice how this paper has a 5M USD face value for redemption later in the year. See how the Issuer and Owner are
the same when paper 00001 is issued. Notice that this paper could be uniquely identified as MagnetoCorp00001 –
a composition of the Issuer and Paper properties. Finally, see how the property Current state = issued
quickly identifies the stage of MagnetoCorp paper 00001 in its lifecycle.

Shortly after issuance, the paper is bought by DigiBank. Spend a few moments looking at how the same commercial
paper has changed as a result of this buy transaction:

Issuer = MagnetoCorp
Paper = 00001
Owner = DigiBank
Issue date = 31 May 2020
Maturity date = 30 November 2020

(continues on next page)

6.2. Analysis 141

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Face value = 5M USD
Current state = trading

The most significant change is that of Owner – see how the paper initially owned by MagnetoCorp is now owned
by DigiBank. We could imagine how the paper might be subsequently sold to BrokerHouse or HedgeMatic, and
the corresponding change to Owner. Note how Current state allow us to easily identify that the paper is now
trading.

After 6 months, if DigiBank still holds the commercial paper, it can redeem it with MagnetoCorp:

Issuer = MagnetoCorp
Paper = 00001
Owner = MagnetoCorp
Issue date = 31 May 2020
Maturity date = 30 November 2020
Face value = 5M USD
Current state = redeemed

This final redeem transaction has ended the commercial paper’s lifecycle – it can be considered closed. It is often
mandatory to keep a record of redeemed commercial papers, and the redeemed state allows us to quickly identify
these. The value of Owner of a paper can be used to perform access control on the redeem transaction, by comparing
the Owner against the identity of the transaction creator. Fabric supports this through the getCreator() chaincode
API. If Go is used as a chaincode language, the client identity chaincode library can be used to retrieve additional
attributes of the transaction creator.

6.2.2 Transactions

We’ve seen that paper 00001’s lifecycle is relatively straightforward – it moves between issued, trading and
redeemed as a result of an issue, buy, or redeem transaction.

These three transactions are initiated by MagnetoCorp and DigiBank (twice), and drive the state changes of paper
00001. Let’s have a look at the transactions that affect this paper in a little more detail:

Issue

Examine the first transaction initiated by MagnetoCorp:

Txn = issue
Issuer = MagnetoCorp
Paper = 00001
Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020
Face value = 5M USD

See how the issue transaction has a structure with properties and values. This transaction structure is different to, but
closely matches, the structure of paper 00001. That’s because they are different things – paper 00001 reflects a state of
PaperNet that is a result of the issue transaction. It’s the logic behind the issue transaction (which we cannot see) that
takes these properties and creates this paper. Because the transaction creates the paper, it means there’s a very close
relationship between these structures.

The only organization that is involved in the issue transaction is MagnetoCorp. Naturally, MagnetoCorp needs to sign
off on the transaction. In general, the issuer of a paper is required to sign off on a transaction that issues a new paper.

142 Chapter 6. Developing Applications

https://github.com/hyperledger/fabric-chaincode-node/blob/master/fabric-shim/lib/stub.js#L293
https://github.com/hyperledger/fabric-chaincode-node/blob/master/fabric-shim/lib/stub.js#L293
https://github.com/hyperledger/fabric-chaincode-go/blob/master/pkg/cid/README.md

hyperledger-fabricdocs Documentation, Release master

Buy

Next, examine the buy transaction which transfers ownership of paper 00001 from MagnetoCorp to DigiBank:

Txn = buy
Issuer = MagnetoCorp
Paper = 00001
Current owner = MagnetoCorp
New owner = DigiBank
Purchase time = 31 May 2020 10:00:00 EST
Price = 4.94M USD

See how the buy transaction has fewer properties that end up in this paper. That’s because this transaction only
modifies this paper. It’s only New owner = DigiBank that changes as a result of this transaction; everything else
is the same. That’s OK – the most important thing about the buy transaction is the change of ownership, and indeed
in this transaction, there’s an acknowledgement of the current owner of the paper, MagnetoCorp.

You might ask why the Purchase time and Price properties are not captured in paper 00001? This comes
back to the difference between the transaction and the paper. The 4.94 M USD price tag is actually a property of the
transaction, rather than a property of this paper. Spend a little time thinking about this difference; it is not as obvious as
it seems. We’re going to see later that the ledger will record both pieces of information – the history of all transactions
that affect this paper, as well its latest state. Being clear on this separation of information is really important.

It’s also worth remembering that paper 00001 may be bought and sold many times. Although we’re skipping ahead a
little in our scenario, let’s examine what transactions we might see if paper 00001 changes ownership.

If we have a purchase by BigFund:

Txn = buy
Issuer = MagnetoCorp
Paper = 00001
Current owner = DigiBank
New owner = BigFund
Purchase time = 2 June 2020 12:20:00 EST
Price = 4.93M USD

Followed by a subsequent purchase by HedgeMatic:

Txn = buy
Issuer = MagnetoCorp
Paper = 00001
Current owner = BigFund
New owner = HedgeMatic
Purchase time = 3 June 2020 15:59:00 EST
Price = 4.90M USD

See how the paper owners changes, and how in our example, the price changes. Can you think of a reason why the
price of MagnetoCorp commercial paper might be falling?

Intuitively, a buy transaction demands that both the selling as well as the buying organization need to sign off on such
a transaction such that there is proof of the mutual agreement among the two parties that are part of the deal.

Redeem

The redeem transaction for paper 00001 represents the end of its lifecycle. In our relatively simple example, Hedge-
Matic initiates the transaction which transfers the commercial paper back to MagnetoCorp:

6.2. Analysis 143

hyperledger-fabricdocs Documentation, Release master

Txn = redeem
Issuer = MagnetoCorp
Paper = 00001
Current owner = HedgeMatic
Redeem time = 30 Nov 2020 12:00:00 EST

Again, notice how the redeem transaction has very few properties; all of the changes to paper 00001 can be calculated
data by the redeem transaction logic: the Issuer will become the new owner, and the Current state will
change to redeemed. The Current owner property is specified in our example, so that it can be checked against
the current holder of the paper.

From a trust perspective, the same reasoning of the buy transaction also applies to the redeem instruction: both
organizations involved in the transaction are required to sign off on it.

6.2.3 The Ledger

In this topic, we’ve seen how transactions and the resultant paper states are the two most important concepts in
PaperNet. Indeed, we’ll see these two fundamental elements in any Hyperledger Fabric distributed ledger – a world
state, that contains the current value of all objects, and a blockchain that records the history of all transactions that
resulted in the current world state.

The required sign-offs on transactions are enforced through rules, which are evaluated before appending a transaction
to the ledger. Only if the required signatures are present, Fabric will accept a transaction as valid.

You’re now in a great place translate these ideas into a smart contract. Don’t worry if your programming is a little
rusty, we’ll provide tips and pointers to understand the program code. Mastering the commercial paper smart contract
is the first big step towards designing your own application. Or, if you’re a business analyst who’s comfortable with a
little programming, don’t be afraid to keep dig a little deeper!

6.3 Process and Data Design

Audience: Architects, Application and smart contract developers, Business professionals

This topic shows you how to design the commercial paper processes and their related data structures in PaperNet.
Our analysis highlighted that modelling PaperNet using states and transactions provided a precise way to understand
what’s happening. We’re now going to elaborate on these two strongly related concepts to help us subsequently design
the smart contracts and applications of PaperNet.

6.3.1 Lifecycle

As we’ve seen, there are two important concepts that concern us when dealing with commercial paper; states and
transactions. Indeed, this is true for all blockchain use cases; there are conceptual objects of value, modeled as states,
whose lifecycle transitions are described by transactions. An effective analysis of states and transactions is an essential
starting point for a successful implementation.

We can represent the life cycle of a commercial paper using a state transition diagram:

144 Chapter 6. Developing Applications

../ledger/ledger.html
./analysis.html

hyperledger-fabricdocs Documentation, Release master

The state transition diagram for commercial paper. Commercial papers transition between issued, trading and re-
deemed states by means of the issue, buy and redeem transactions.

See how the state diagram describes how commercial papers change over time, and how specific transactions govern
the life cycle transitions. In Hyperledger Fabric, smart contracts implement transaction logic that transition commercial
papers between their different states. Commercial paper states are actually held in the ledger world state; so let’s take
a closer look at them.

6.3.2 Ledger state

Recall the structure of a commercial paper:

A commercial paper can be represented as a set of properties, each with a value. Typically, some combination of these
properties will provide a unique key for each paper.

See how a commercial paper Paper property has value 00001, and the Face value property has value 5M USD.
Most importantly, the Current state property indicates whether the commercial paper is issued,trading or
redeemed. In combination, the full set of properties make up the state of a commercial paper. Moreover, the entire
collection of these individual commercial paper states constitutes the ledger world state.

All ledger state share this form; each has a set of properties, each with a different value. This multi-property aspect
of states is a powerful feature – it allows us to think of a Fabric state as a vector rather than a simple scalar. We
then represent facts about whole objects as individual states, which subsequently undergo transitions controlled by
transaction logic. A Fabric state is implemented as a key/value pair, in which the value encodes the object properties
in a format that captures the object’s multiple properties, typically JSON. The ledger database can support advanced
query operations against these properties, which is very helpful for sophisticated object retrieval.

See how MagnetoCorp’s paper 00001 is represented as a state vector that transitions according to different transaction
stimuli:

6.3. Process and Data Design 145

../ledger/ledger.html#world-state
../ledger/ledger.html#ledger-world-state-database-options

hyperledger-fabricdocs Documentation, Release master

A commercial paper state is brought into existence and transitions as a result of different transactions. Hyperledger
Fabric states have multiple properties, making them vectors rather than scalars.

Notice how each individual paper starts with the empty state, which is technically a nil state for the paper, as it
doesn’t exist! See how paper 00001 is brought into existence by the issue transaction, and how it is subsequently
updated as a result of the buy and redeem transactions.

Notice how each state is self-describing; each property has a name and a value. Although all our commercial papers
currently have the same properties, this need not be the case for all time, as Hyperledger Fabric supports different
states having different properties. This allows the same ledger world state to contain different forms of the same asset
as well as different types of asset. It also makes it possible to update a state’s structure; imagine a new regulation that
requires an additional data field. Flexible state properties support the fundamental requirement of data evolution over
time.

6.3.3 State keys

In most practical applications, a state will have a combination of properties that uniquely identify it in a given context
– it’s key. The key for a PaperNet commercial paper is formed by a concatenation of the Issuer and paper
properties; so for MagnetoCorp’s first paper, it’s MagnetoCorp00001.

A state key allows us to uniquely identify a paper; it is created as a result of the issue transaction and subsequently
updated by buy and redeem. Hyperledger Fabric requires each state in a ledger to have a unique key.

When a unique key is not available from the available set of properties, an application-determined unique key is
specified as an input to the transaction that creates the state. This unique key is usually with some form of UUID,
which although less readable, is a standard practice. What’s important is that every individual state object in a ledger
must have a unique key.

Note: You should avoid using U+0000 (nil byte) in keys.

6.3.4 Multiple states

As we’ve seen, commercial papers in PaperNet are stored as state vectors in a ledger. It’s a reasonable requirement to
be able to query different commercial papers from the ledger; for example: find all the papers issued by MagnetoCorp,
or: find all the papers issued by MagnetoCorp in the redeemed state.

To make these kinds of search tasks possible, it’s helpful to group all related papers together in a logical list. The
PaperNet design incorporates the idea of a commercial paper list – a logical container which is updated whenever
commercial papers are issued or otherwise changed.

Logical representation

It’s helpful to think of all PaperNet commercial papers being in a single list of commercial papers:

146 Chapter 6. Developing Applications

https://en.wikipedia.org/wiki/Null_(SQL)
https://en.wikipedia.org/wiki/Universally_unique_identifier

hyperledger-fabricdocs Documentation, Release master

MagnetoCorp’s newly created commercial paper 00004 is added to the list of existing commercial papers.

New papers can be added to the list as a result of an issue transaction, and papers already in the list can be updated
with buy or redeem transactions. See how the list has a descriptive name: org.papernet.papers; it’s a really
good idea to use this kind of DNS name because well-chosen names will make your blockchain designs intuitive to
other people. This idea applies equally well to smart contract names.

Physical representation

While it’s correct to think of a single list of papers in PaperNet – org.papernet.papers – lists are best imple-
mented as a set of individual Fabric states, whose composite key associates the state with its list. In this way, each
state’s composite key is both unique and supports effective list query.

Representing a list of PaperNet commercial papers as a set of distinct Hyperledger Fabric states

Notice how each paper in the list is represented by a vector state, with a unique composite key formed by the concate-
nation of org.papernet.paper, Issuer and Paper properties. This structure is helpful for two reasons:

• It allows us to examine any state vector in the ledger to determine which list it’s in, without reference to a
separate list. It’s analogous to looking at set of sports fans, and identifying which team they support by the
colour of the shirt they are wearing. The sports fans self-declare their allegiance; we don’t need a list of fans.

• Hyperledger Fabric internally uses a concurrency control mechanism to update a ledger, such that keeping
papers in separate state vectors vastly reduces the opportunity for shared-state collisions. Such collisions require
transaction re-submission, complicate application design, and decrease performance.

6.3. Process and Data Design 147

https://en.wikipedia.org/wiki/Domain_Name_System
./contractname.html

hyperledger-fabricdocs Documentation, Release master

This second point is actually a key take-away for Hyperledger Fabric; the physical design of state vectors is very
important to optimum performance and behaviour. Keep your states separate!

6.3.5 Trust relationships

We have discussed how the different roles in a network, such as issuer, trader or rating agencies as well as different
business interests determine who needs to sign off on a transaction. In Fabric, these rules are captured by so-called
endorsement policies. The rules can be set on a chaincode granularity, as well as for individual state keys.

This means that in PaperNet, we can set one rule for the whole namespace that determines which organizations can
issue new papers. Later, rules can be set and updated for individual papers to capture the trust relationships of buy and
redeem transactions.

In the next topic, we will show you how to combine these design concepts to implement the PaperNet commercial
paper smart contract, and then an application in exploits it!

6.4 Smart Contract Processing

Audience: Architects, Application and smart contract developers

At the heart of a blockchain network is a smart contract. In PaperNet, the code in the commercial paper smart contract
defines the valid states for commercial paper, and the transaction logic that transition a paper from one state to another.
In this topic, we’re going to show you how to implement a real world smart contract that governs the process of issuing,
buying and redeeming commercial paper.

We’re going to cover:

• What is a smart contract and why it’s important

• How to define a smart contract

• How to define a transaction

• How to implement a transaction

• How to represent a business object in a smart contract

• How to store and retrieve an object in the ledger

If you’d like, you can download the sample and even run it locally. It is written in JavaScript and Java, but the logic
is quite language independent, so you’ll easily be able to see what’s going on! (The sample will become available for
Go as well.)

6.4.1 Smart Contract

A smart contract defines the different states of a business object and governs the processes that move the object between
these different states. Smart contracts are important because they allow architects and smart contract developers
to define the key business processes and data that are shared across the different organizations collaborating in a
blockchain network.

In the PaperNet network, the smart contract is shared by the different network participants, such as MagnetoCorp and
DigiBank. The same version of the smart contract must be used by all applications connected to the network so that
they jointly implement the same shared business processes and data.

148 Chapter 6. Developing Applications

endorsementpolicies.html
../install.html
../tutorial/commercial_paper.html

hyperledger-fabricdocs Documentation, Release master

6.4.2 Implementation Languages

There are two runtimes that are supported, the Java Virtual Machine and Node.js. This gives the opportunity to use
one of JavaScript, TypeScript, Java or any other language that can run on one of these supported runtimes.

In Java and TypeScript, annotations or decorators are used to provide information about the smart contract and it’s
structure. This allows for a richer development experience — for example, author information or return types can
be enforced. Within JavaScript, conventions must be followed, therefore, there are limitations around what can be
determined automatically.

Examples here are given in both JavaScript and Java.

6.4.3 Contract class

A copy of the PaperNet commercial paper smart contract is contained in a single file. View it with your browser, or
open it in your favorite editor if you’ve downloaded it.

• papercontract.js - JavaScript version

• CommercialPaperContract.java - Java version

You may notice from the file path that this is MagnetoCorp’s copy of the smart contract. MagnetoCorp and DigiBank
must agree on the version of the smart contract that they are going to use. For now, it doesn’t matter which organiza-
tion’s copy you use, they are all the same.

Spend a few moments looking at the overall structure of the smart contract; notice that it’s quite short! Towards the
top of the file, you’ll see that there’s a definition for the commercial paper smart contract:

JavaScript

class CommercialPaperContract extends Contract {...}

Java

@Contract(...)
@Default
public class CommercialPaperContract implements ContractInterface {...}

The CommercialPaperContract class contains the transaction definitions for commercial paper – issue, buy and
redeem. It’s these transactions that bring commercial papers into existence and move them through their lifecycle.
We’ll examine these transactions soon, but for now notice for JavaScript, that the CommericalPaperContract
extends the Hyperledger Fabric Contract class.

With Java, the class must be decorated with the @Contract(...) annotation. This provides the opportunity to
supply additional information about the contract, such as license and author. The @Default() annotation indicates
that this contract class is the default contract class. Being able to mark a contract class as the default contract class is
useful in some smart contracts which have multiple contract classes.

If you are using a TypeScript implementation, there are similar @Contract(...) annotations that fulfill the same
purpose as in Java.

For more information on the available annotations, consult the available API documentation:

• API documentation for Java smart contracts

• API documentation for Node.js smart contracts

The Fabric contract class is also available for smart contracts written in Go. While we do not discuss the Go contract
API in this topic, it uses similar concepts as the API for Java and JavaScript:

• API documentation for Go smart contracts

6.4. Smart Contract Processing 149

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/papercontract.js
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp//contract-java/src/main/java/org/example/CommercialPaperContract.java
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-contract-api.Contract.html
https://hyperledger.github.io/fabric-chaincode-java/
https://hyperledger.github.io/fabric-chaincode-node/
https://github.com/hyperledger/fabric-contract-api-go

hyperledger-fabricdocs Documentation, Release master

These classes, annotations, and the Context class, were brought into scope earlier:

JavaScript

const { Contract, Context } = require('fabric-contract-api');

Java

import org.hyperledger.fabric.contract.Context;
import org.hyperledger.fabric.contract.ContractInterface;
import org.hyperledger.fabric.contract.annotation.Contact;
import org.hyperledger.fabric.contract.annotation.Contract;
import org.hyperledger.fabric.contract.annotation.Default;
import org.hyperledger.fabric.contract.annotation.Info;
import org.hyperledger.fabric.contract.annotation.License;
import org.hyperledger.fabric.contract.annotation.Transaction;

Our commercial paper contract will use built-in features of these classes, such as automatic method invocation, a
per-transaction context, transaction handlers, and class-shared state.

Notice also how the JavaScript class constructor uses its superclass to initialize itself with an explicit contract name:

constructor() {
super('org.papernet.commercialpaper');

}

With the Java class, the constructor is blank as the explicit contract name can be specified in the @Contract()
annotation. If it’s absent, then the name of the class is used.

Most importantly, org.papernet.commercialpaper is very descriptive – this smart contract is the agreed
definition of commercial paper for all PaperNet organizations.

Usually there will only be one smart contract per file – contracts tend to have different lifecycles, which makes it sen-
sible to separate them. However, in some cases, multiple smart contracts might provide syntactic help for applications,
e.g. EuroBond, DollarBond, YenBond, but essentially provide the same function. In such cases, smart contracts
and transactions can be disambiguated.

6.4.4 Transaction definition

Within the class, locate the issue method.

JavaScript

async issue(ctx, issuer, paperNumber, issueDateTime, maturityDateTime, faceValue) {...
→˓}

Java

@Transaction
public CommercialPaper issue(CommercialPaperContext ctx,

String issuer,
String paperNumber,
String issueDateTime,
String maturityDateTime,
int faceValue) {...}

The Java annotation @Transaction is used to mark this method as a transaction definition; TypeScript has an
equivalent annotation.

150 Chapter 6. Developing Applications

./transactioncontext.html
./transactionhandler.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/super
./contractname.html

hyperledger-fabricdocs Documentation, Release master

This function is given control whenever this contract is called to issue a commercial paper. Recall how commercial
paper 00001 was created with the following transaction:

Txn = issue
Issuer = MagnetoCorp
Paper = 00001
Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020
Face value = 5M USD

We’ve changed the variable names for programming style, but see how these properties map almost directly to the
issue method variables.

The issue method is automatically given control by the contract whenever an application makes a request to issue a
commercial paper. The transaction property values are made available to the method via the corresponding variables.
See how an application submits a transaction using the Hyperledger Fabric SDK in the application topic, using a
sample application program.

You might have noticed an extra variable in the issue definition – ctx. It’s called the transaction context, and it’s
always first. By default, it maintains both per-contract and per-transaction information relevant to transaction logic.
For example, it would contain MagnetoCorp’s specified transaction identifier, a MagnetoCorp issuing user’s digital
certificate, as well as access to the ledger API.

See how the smart contract extends the default transaction context by implementing its own createContext()
method rather than accepting the default implementation:

JavaScript

createContext() {
return new CommercialPaperContext()

}

Java

@Override
public Context createContext(ChaincodeStub stub) {

return new CommercialPaperContext(stub);
}

This extended context adds a custom property paperList to the defaults:

JavaScript

class CommercialPaperContext extends Context {

constructor() {
super();
// All papers are held in a list of papers
this.paperList = new PaperList(this);

}

Java

class CommercialPaperContext extends Context {
public CommercialPaperContext(ChaincodeStub stub) {

super(stub);
this.paperList = new PaperList(this);

}

(continues on next page)

6.4. Smart Contract Processing 151

./application.html
./transactioncontext.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

public PaperList paperList;
}

We’ll soon see how ctx.paperList can be subsequently used to help store and retrieve all PaperNet commercial
papers.

To solidify your understanding of the structure of a smart contract transaction, locate the buy and redeem transaction
definitions, and see if you can see how they map to their corresponding commercial paper transactions.

The buy transaction:

Txn = buy
Issuer = MagnetoCorp
Paper = 00001
Current owner = MagnetoCorp
New owner = DigiBank
Purchase time = 31 May 2020 10:00:00 EST
Price = 4.94M USD

JavaScript

async buy(ctx, issuer, paperNumber, currentOwner, newOwner, price, purchaseTime) {...}

Java

@Transaction
public CommercialPaper buy(CommercialPaperContext ctx,

String issuer,
String paperNumber,
String currentOwner,
String newOwner,
int price,
String purchaseDateTime) {...}

The redeem transaction:

Txn = redeem
Issuer = MagnetoCorp
Paper = 00001
Redeemer = DigiBank
Redeem time = 31 Dec 2020 12:00:00 EST

JavaScript

async redeem(ctx, issuer, paperNumber, redeemingOwner, redeemDateTime) {...}

Java

@Transaction
public CommercialPaper redeem(CommercialPaperContext ctx,

String issuer,
String paperNumber,
String redeemingOwner,
String redeemDateTime) {...}

In both cases, observe the 1:1 correspondence between the commercial paper transaction and the smart contract method
definition.

152 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

All of the JavaScript functions use the async and await keywords which allow JavaScript functions to be treated as
if they were synchronous function calls.

6.4.5 Transaction logic

Now that you’ve seen how contracts are structured and transactions are defined, let’s focus on the logic within the
smart contract.

Recall the first issue transaction:

Txn = issue
Issuer = MagnetoCorp
Paper = 00001
Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020
Face value = 5M USD

It results in the issue method being passed control:

JavaScript

async issue(ctx, issuer, paperNumber, issueDateTime, maturityDateTime, faceValue) {

// create an instance of the paper
let paper = CommercialPaper.createInstance(issuer, paperNumber, issueDateTime,

→˓maturityDateTime, faceValue);

// Smart contract, rather than paper, moves paper into ISSUED state
paper.setIssued();

// Newly issued paper is owned by the issuer
paper.setOwner(issuer);

// Add the paper to the list of all similar commercial papers in the ledger world
→˓state
await ctx.paperList.addPaper(paper);

// Must return a serialized paper to caller of smart contract
return paper.toBuffer();

}

Java

@Transaction
public CommercialPaper issue(CommercialPaperContext ctx,

String issuer,
String paperNumber,
String issueDateTime,
String maturityDateTime,
int faceValue) {

System.out.println(ctx);

// create an instance of the paper
CommercialPaper paper = CommercialPaper.createInstance(issuer, paperNumber,

→˓issueDateTime, maturityDateTime,
faceValue,issuer,"");

(continues on next page)

6.4. Smart Contract Processing 153

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

// Smart contract, rather than paper, moves paper into ISSUED state
paper.setIssued();

// Newly issued paper is owned by the issuer
paper.setOwner(issuer);

System.out.println(paper);
// Add the paper to the list of all similar commercial papers in the ledger
// world state
ctx.paperList.addPaper(paper);

// Must return a serialized paper to caller of smart contract
return paper;

}

The logic is simple: take the transaction input variables, create a new commercial paper paper, add it to the list of all
commercial papers using paperList, and return the new commercial paper (serialized as a buffer) as the transaction
response.

See how paperList is retrieved from the transaction context to provide access to the list of commercial papers.
issue(), buy() and redeem() continually re-access ctx.paperList to keep the list of commercial papers
up-to-date.

The logic for the buy transaction is a little more elaborate:

JavaScript

async buy(ctx, issuer, paperNumber, currentOwner, newOwner, price, purchaseDateTime) {

// Retrieve the current paper using key fields provided
let paperKey = CommercialPaper.makeKey([issuer, paperNumber]);
let paper = await ctx.paperList.getPaper(paperKey);

// Validate current owner
if (paper.getOwner() !== currentOwner) {

throw new Error('Paper ' + issuer + paperNumber + ' is not owned by ' +
→˓currentOwner);
}

// First buy moves state from ISSUED to TRADING
if (paper.isIssued()) {

paper.setTrading();
}

// Check paper is not already REDEEMED
if (paper.isTrading()) {

paper.setOwner(newOwner);
} else {

throw new Error('Paper ' + issuer + paperNumber + ' is not trading. Current
→˓state = ' +paper.getCurrentState());
}

// Update the paper
await ctx.paperList.updatePaper(paper);
return paper.toBuffer();

}

154 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

Java

@Transaction
public CommercialPaper buy(CommercialPaperContext ctx,

String issuer,
String paperNumber,
String currentOwner,
String newOwner,
int price,
String purchaseDateTime) {

// Retrieve the current paper using key fields provided
String paperKey = State.makeKey(new String[] { paperNumber });
CommercialPaper paper = ctx.paperList.getPaper(paperKey);

// Validate current owner
if (!paper.getOwner().equals(currentOwner)) {

throw new RuntimeException("Paper " + issuer + paperNumber + " is not owned
→˓by " + currentOwner);

}

// First buy moves state from ISSUED to TRADING
if (paper.isIssued()) {

paper.setTrading();
}

// Check paper is not already REDEEMED
if (paper.isTrading()) {

paper.setOwner(newOwner);
} else {

throw new RuntimeException(
"Paper " + issuer + paperNumber + " is not trading. Current state = "

→˓+ paper.getState());
}

// Update the paper
ctx.paperList.updatePaper(paper);
return paper;

}

See how the transaction checks currentOwner and that paper is TRADING before changing the owner with
paper.setOwner(newOwner). The basic flow is simple though – check some pre-conditions, set the new owner,
update the commercial paper on the ledger, and return the updated commercial paper (serialized as a buffer) as the
transaction response.

Why don’t you see if you can understand the logic for the redeem transaction?

6.4.6 Representing an object

We’ve seen how to define and implement the issue, buy and redeem transactions using the CommercialPaper and
PaperList classes. Let’s end this topic by seeing how these classes work.

Locate the CommercialPaper class:

JavaScript In the paper.js file:

class CommercialPaper extends State {...}

6.4. Smart Contract Processing 155

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/paper.js

hyperledger-fabricdocs Documentation, Release master

Java In the CommercialPaper.java file:

@DataType()
public class CommercialPaper extends State {...}

This class contains the in-memory representation of a commercial paper state. See how the createInstance
method initializes a new commercial paper with the provided parameters:

JavaScript

static createInstance(issuer, paperNumber, issueDateTime, maturityDateTime,
→˓faceValue) {
return new CommercialPaper({ issuer, paperNumber, issueDateTime, maturityDateTime,

→˓faceValue });
}

Java

public static CommercialPaper createInstance(String issuer, String paperNumber,
→˓String issueDateTime,

String maturityDateTime, int faceValue, String owner, String state) {
return new CommercialPaper().setIssuer(issuer).setPaperNumber(paperNumber).

→˓setMaturityDateTime(maturityDateTime)
.setFaceValue(faceValue).setKey().setIssueDateTime(issueDateTime).

→˓setOwner(owner).setState(state);
}

Recall how this class was used by the issue transaction:

JavaScript

let paper = CommercialPaper.createInstance(issuer, paperNumber, issueDateTime,
→˓maturityDateTime, faceValue);

Java

CommercialPaper paper = CommercialPaper.createInstance(issuer, paperNumber,
→˓issueDateTime, maturityDateTime,

faceValue,issuer,"");

See how every time the issue transaction is called, a new in-memory instance of a commercial paper is created con-
taining the transaction data.

A few important points to note:

• This is an in-memory representation; we’ll see later how it appears on the ledger.

• The CommercialPaper class extends the State class. State is an application-defined class which creates
a common abstraction for a state. All states have a business object class which they represent, a composite key,
can be serialized and de-serialized, and so on. State helps our code be more legible when we are storing more
than one business object type on the ledger. Examine the State class in the state.js file.

• A paper computes its own key when it is created – this key will be used when the ledger is accessed. The key is
formed from a combination of issuer and paperNumber.

constructor(obj) {
super(CommercialPaper.getClass(), [obj.issuer, obj.paperNumber]);
Object.assign(this, obj);

}

156 Chapter 6. Developing Applications

https://github.com/hyperledger/fabric-samples/blob/release-1.4/commercial-paper/organization/magnetocorp/contract-java/src/main/java/org/example/CommercialPaper.java
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/ledger-api/state.js

hyperledger-fabricdocs Documentation, Release master

• A paper is moved to the ISSUED state by the transaction, not by the paper class. That’s because it’s the smart
contract that governs the lifecycle state of the paper. For example, an import transaction might create a new
set of papers immediately in the TRADING state.

The rest of the CommercialPaper class contains simple helper methods:

getOwner() {
return this.owner;

}

Recall how methods like this were used by the smart contract to move the commercial paper through its lifecycle. For
example, in the redeem transaction we saw:

if (paper.getOwner() === redeemingOwner) {
paper.setOwner(paper.getIssuer());
paper.setRedeemed();

}

6.4.7 Access the ledger

Now locate the PaperList class in the paperlist.js file:

class PaperList extends StateList {

This utility class is used to manage all PaperNet commercial papers in Hyperledger Fabric state database. The Pa-
perList data structures are described in more detail in the architecture topic.

Like the CommercialPaper class, this class extends an application-defined StateList class which creates a
common abstraction for a list of states – in this case, all the commercial papers in PaperNet.

The addPaper() method is a simple veneer over the StateList.addState() method:

async addPaper(paper) {
return this.addState(paper);

}

You can see in the StateList.js file how the StateList class uses the Fabric API putState() to write the
commercial paper as state data in the ledger:

async addState(state) {
let key = this.ctx.stub.createCompositeKey(this.name, state.getSplitKey());
let data = State.serialize(state);
await this.ctx.stub.putState(key, data);

}

Every piece of state data in a ledger requires these two fundamental elements:

• Key: key is formed with createCompositeKey() using a fixed name and the key of state. The name
was assigned when the PaperList object was constructed, and state.getSplitKey() determines each
state’s unique key.

• Data: data is simply the serialized form of the commercial paper state, created using the State.
serialize() utility method. The State class serializes and deserializes data using JSON, and the State’s
business object class as required, in our case CommercialPaper, again set when the PaperList object
was constructed.

6.4. Smart Contract Processing 157

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/paperlist.js
./architecture.html
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/ledger-api/statelist.js

hyperledger-fabricdocs Documentation, Release master

Notice how a StateList doesn’t store anything about an individual state or the total list of states – it delegates all
of that to the Fabric state database. This is an important design pattern – it reduces the opportunity for ledger MVCC
collisions in Hyperledger Fabric.

The StateList getState() and updateState() methods work in similar ways:

async getState(key) {
let ledgerKey = this.ctx.stub.createCompositeKey(this.name, State.splitKey(key));
let data = await this.ctx.stub.getState(ledgerKey);
let state = State.deserialize(data, this.supportedClasses);
return state;

}

async updateState(state) {
let key = this.ctx.stub.createCompositeKey(this.name, state.getSplitKey());
let data = State.serialize(state);
await this.ctx.stub.putState(key, data);

}

See how they use the Fabric APIs putState(), getState() and createCompositeKey() to access the
ledger. We’ll expand this smart contract later to list all commercial papers in paperNet – what might the method look
like to implement this ledger retrieval?

That’s it! In this topic you’ve understood how to implement the smart contract for PaperNet. You can move to the next
sub topic to see how an application calls the smart contract using the Fabric SDK.

6.5 Application

Audience: Architects, Application and smart contract developers

An application can interact with a blockchain network by submitting transactions to a ledger or querying ledger con-
tent. This topic covers the mechanics of how an application does this; in our scenario, organizations access PaperNet
using applications which invoke issue, buy and redeem transactions defined in a commercial paper smart contract.
Even though MagnetoCorp’s application to issue a commercial paper is basic, it covers all the major points of under-
standing.

In this topic, we’re going to cover:

• The application flow to invoke a smart contract

• How an application uses a wallet and identity

• How an application connects using a gateway

• How to access a particular network

• How to construct a transaction request

• How to submit a transaction

• How to process a transaction response

To help your understanding, we’ll make reference to the commercial paper sample application provided with Hyper-
ledger Fabric. You can download it and run it locally. It is written in both JavaScript and Java, but the logic is quite
language independent, so you’ll easily be able to see what’s going on! (The sample will become available for Go as
well.)

158 Chapter 6. Developing Applications

../readwrite.html
../readwrite.html
../install.html
../tutorial/commercial_paper.html

hyperledger-fabricdocs Documentation, Release master

6.5.1 Basic Flow

An application interacts with a blockchain network using the Fabric SDK. Here’s a simplified diagram of how an
application invokes a commercial paper smart contract:

A PaperNet application invokes the commercial paper smart contract to submit an issue transaction request.

An application has to follow six basic steps to submit a transaction:

• Select an identity from a wallet

• Connect to a gateway

• Access the desired network

• Construct a transaction request for a smart contract

• Submit the transaction to the network

• Process the response

You’re going to see how a typical application performs these six steps using the Fabric SDK. You’ll find the application
code in the issue.js file. View it in your browser, or open it in your favourite editor if you’ve downloaded it. Spend
a few moments looking at the overall structure of the application; even with comments and spacing, it’s only 100 lines
of code!

6.5.2 Wallet

Towards the top of issue.js, you’ll see two Fabric classes are brought into scope:

const { Wallets, Gateway } = require('fabric-network');

You can read about the fabric-network classes in the node SDK documentation, but for now, let’s see how they
are used to connect MagnetoCorp’s application to PaperNet. The application uses the Fabric Wallet class as follows:

const wallet = await Wallets.newFileSystemWallet('../identity/user/isabella/wallet');

See how wallet locates a wallet in the local filesystem. The identity retrieved from the wallet is clearly for a user
called Isabella, who is using the issue application. The wallet holds a set of identities – X.509 digital certificates –

6.5. Application 159

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/application/issue.js
https://hyperledger.github.io/fabric-sdk-node/master/module-fabric-network.html
./wallet.html

hyperledger-fabricdocs Documentation, Release master

which can be used to access PaperNet or any other Fabric network. If you run the tutorial, and look in this directory,
you’ll see the identity credentials for Isabella.

Think of a wallet holding the digital equivalents of your government ID, driving license or ATM card. The X.509
digital certificates within it will associate the holder with a organization, thereby entitling them to rights in a network
channel. For example, Isabella might be an administrator in MagnetoCorp, and this could give her more privileges
than a different user – Balaji from DigiBank. Moreover, a smart contract can retrieve this identity during smart
contract processing using the transaction context.

Note also that wallets don’t hold any form of cash or tokens – they hold identities.

6.5.3 Gateway

The second key class is a Fabric Gateway. Most importantly, a gateway identifies one or more peers that provide
access to a network – in our case, PaperNet. See how issue.js connects to its gateway:

await gateway.connect(connectionProfile, connectionOptions);

gateway.connect() has two important parameters:

• connectionProfile: the file system location of a connection profile that identifies a set of peers as a gateway to
PaperNet

• connectionOptions: a set of options used to control how issue.js interacts with PaperNet

See how the client application uses a gateway to insulate itself from the network topology, which might change. The
gateway takes care of sending the transaction proposal to the right peer nodes in the network using the connection
profile and connection options.

Spend a few moments examining the connection profile ./gateway/connectionProfile.yaml. It uses
YAML, making it easy to read.

It was loaded and converted into a JSON object:

let connectionProfile = yaml.safeLoad(file.readFileSync('./gateway/connectionProfile.
→˓yaml', 'utf8'));

Right now, we’re only interested in the channels: and peers: sections of the profile: (We’ve modified the details
slightly to better explain what’s happening.)

channels:
papernet:
peers:

peer1.magnetocorp.com:
endorsingPeer: true
eventSource: true

peer2.digibank.com:
endorsingPeer: true
eventSource: true

peers:
peer1.magnetocorp.com:
url: grpcs://localhost:7051
grpcOptions:

ssl-target-name-override: peer1.magnetocorp.com
request-timeout: 120

tlsCACerts:

(continues on next page)

160 Chapter 6. Developing Applications

./wallet.html
./transactioncontext.html
./gateway.html
./connectionprofile.html
./connectionprofile.html
./connectionprofile.html
./connectionoptions.html
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml
http://yaml.org/spec/1.2/spec.html#Preview

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

path: certificates/magnetocorp/magnetocorp.com-cert.pem

peer2.digibank.com:
url: grpcs://localhost:8051
grpcOptions:

ssl-target-name-override: peer1.digibank.com
tlsCACerts:

path: certificates/digibank/digibank.com-cert.pem

See how channel: identifies the PaperNet: network channel, and two of its peers. MagnetoCorp has peer1.
magenetocorp.com and DigiBank has peer2.digibank.com, and both have the role of endorsing peers. Link
to these peers via the peers: key, which contains details about how to connect to them, including their respective
network addresses.

The connection profile contains a lot of information – not just peers – but network channels, network orderers, organi-
zations, and CAs, so don’t worry if you don’t understand all of it!

Let’s now turn our attention to the connectionOptions object:

let connectionOptions = {
identity: userName,
wallet: wallet,
discovery: { enabled:true, asLocalhost: true }

};

See how it specifies that identity, userName, and wallet, wallet, should be used to connect to a gateway. These
were assigned values earlier in the code.

There are other connection options which an application could use to instruct the SDK to act intelligently on its behalf.
For example:

let connectionOptions = {
identity: userName,
wallet: wallet,
eventHandlerOptions: {
commitTimeout: 100,
strategy: EventStrategies.MSPID_SCOPE_ANYFORTX

},
}

Here, commitTimeout tells the SDK to wait 100 seconds to hear whether a transaction has been commit-
ted. And strategy: EventStrategies.MSPID_SCOPE_ANYFORTX specifies that the SDK can no-
tify an application after a single MagnetoCorp peer has confirmed the transaction, in contrast to strategy:
EventStrategies.NETWORK_SCOPE_ALLFORTX which requires that all peers from MagnetoCorp and Di-
giBank to confirm the transaction.

If you’d like to, read more about how connection options allow applications to specify goal-oriented behaviour without
having to worry about how it is achieved.

6.5.4 Network channel

The peers defined in the gateway connectionProfile.yaml provide issue.js with access to PaperNet. Be-
cause these peers can be joined to multiple network channels, the gateway actually provides the application with access
to multiple network channels!

See how the application selects a particular channel:

6.5. Application 161

./connectionoptions.html
./connectionoptions.html

hyperledger-fabricdocs Documentation, Release master

const network = await gateway.getNetwork('PaperNet');

From this point onwards, network will provide access to PaperNet. Moreover, if the application wanted to access
another network, BondNet, at the same time, it is easy:

const network2 = await gateway.getNetwork('BondNet');

Now our application has access to a second network, BondNet, simultaneously with PaperNet!

We can see here a powerful feature of Hyperledger Fabric – applications can participate in a network of networks, by
connecting to multiple gateway peers, each of which is joined to multiple network channels. Applications will have
different rights in different channels according to their wallet identity provided in gateway.connect().

6.5.5 Construct request

The application is now ready to issue a commercial paper. To do this, it’s going to use
CommercialPaperContract and again, its fairly straightforward to access this smart contract:

const contract = await network.getContract('papercontract', 'org.papernet.
→˓commercialpaper');

Note how the application provides a name – papercontract – and an explicit contract name: org.papernet.
commercialpaper! We see how a contract name picks out one contract from the papercontract.js chain-
code file that contains many contracts. In PaperNet, papercontract.js was installed and deployed to the channel
with the name papercontract, and if you’re interested, read how to deploy a chaincode containing multiple smart
contracts.

If our application simultaneously required access to another contract in PaperNet or BondNet this would be easy:

const euroContract = await network.getContract('EuroCommercialPaperContract');

const bondContract = await network2.getContract('BondContract');

In these examples, note how we didn’t use a qualifying contract name – we have only one smart contract per file, and
getContract() will use the first contract it finds.

Recall the transaction MagnetoCorp uses to issue its first commercial paper:

Txn = issue
Issuer = MagnetoCorp
Paper = 00001
Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020
Face value = 5M USD

Let’s now submit this transaction to PaperNet!

6.5.6 Submit transaction

Submitting a transaction is a single method call to the SDK:

const issueResponse = await contract.submitTransaction('issue', 'MagnetoCorp', '00001
→˓', '2020-05-31', '2020-11-30', '5000000');

162 Chapter 6. Developing Applications

./contractname.html
../chaincode_lifecycle.html

hyperledger-fabricdocs Documentation, Release master

See how the submitTransaction() parameters match those of the transaction request. It’s these values that
will be passed to the issue() method in the smart contract, and used to create a new commercial paper. Recall its
signature:

async issue(ctx, issuer, paperNumber, issueDateTime, maturityDateTime, faceValue) {...
→˓}

It might appear that a smart contract receives control shortly after the application issues submitTransaction(),
but that’s not the case. Under the covers, the SDK uses the connectionOptions and connectionProfile
details to send the transaction proposal to the right peers in the network, where it can get the required endorsements.
But the application doesn’t need to worry about any of this – it just issues submitTransaction and the SDK takes
care of it all!

Note that the submitTransaction API includes a process for listening for transaction commits. Listening for
commits is required because without it, you will not know whether your transaction has successfully been orderered,
validated, and committed to the ledger.

Let’s now turn our attention to how the application handles the response!

6.5.7 Process response

Recall from papercontract.js how the issue transaction returns a commercial paper response:

return paper.toBuffer();

You’ll notice a slight quirk – the new paper needs to be converted to a buffer before it is returned to the application.
Notice how issue.js uses the class method CommercialPaper.fromBuffer() to rehydrate the response
buffer as a commercial paper:

let paper = CommercialPaper.fromBuffer(issueResponse);

This allows paper to be used in a natural way in a descriptive completion message:

console.log(`${paper.issuer} commercial paper : ${paper.paperNumber} successfully
→˓issued for value ${paper.faceValue}`);

See how the same paper class has been used in both the application and smart contract – if you structure your code
like this, it’ll really help readability and reuse.

As with the transaction proposal, it might appear that the application receives control soon after the smart contract
completes, but that’s not the case. Under the covers, the SDK manages the entire consensus process, and notifies the
application when it is complete according to the strategy connectionOption. If you’re interested in what the SDK
does under the covers, read the detailed transaction flow.

That’s it! In this topic you’ve understood how to call a smart contract from a sample application by examining how
MagnetoCorp’s application issues a new commercial paper in PaperNet. Now examine the key ledger and smart
contract data structures are designed by in the architecture topic behind them.

6.6 Application design elements

This section elaborates the key features for client application and smart contract development found in Hyperledger
Fabric. A solid understanding of the features will help you design and implement efficient and effective solutions.

6.6. Application design elements 163

../../txflow.html
./architecture.html

hyperledger-fabricdocs Documentation, Release master

6.6.1 Contract names

Audience: Architects, application and smart contract developers, administrators

A chaincode is a generic container for deploying code to a Hyperledger Fabric blockchain network. One or more
related smart contracts are defined within a chaincode. Every smart contract has a name that uniquely identifies it
within a chaincode. Applications access a particular smart contract within a chaincode using its contract name.

In this topic, we’re going to cover:

• How a chaincode contains multiple smart contracts

• How to assign a smart contract name

• How to use a smart contract from an application

• The default smart contract

Chaincode

In the Developing Applications topic, we can see how the Fabric SDKs provide high level programming abstractions
which help application and smart contract developers to focus on their business problem, rather than the low level
details of how to interact with a Fabric network.

Smart contracts are one example of a high level programming abstraction, and it is possible to define smart contracts
within in a chaincode container. When a chaincode is installed on your peer and deployed to a channel, all the smart
contracts within it are made available to your applications.

Multiple smart contracts can be defined within a chaincode. Each is uniquely identified by their name within a
chaincode.

In the diagram above, chaincode A has three smart contracts defined within it, whereas chaincode B has four smart
contracts. See how the chaincode name is used to fully qualify a particular smart contract.

The ledger structure is defined by a set of deployed smart contracts. That’s because the ledger contains facts about the
business objects of interest to the network (such as commercial paper within PaperNet), and these business objects are
moved through their lifecycle (e.g. issue, buy, redeem) by the transaction functions defined within a smart contract.

In most cases, a chaincode will only have one smart contract defined within it. However, it can make sense to keep
related smart contracts together in a single chaincode. For example, commercial papers denominated in different cur-
rencies might have contracts EuroPaperContract, DollarPaperContract, YenPaperContract which
might need to be kept synchronized with each other in the channel to which they are deployed.

164 Chapter 6. Developing Applications

./developing_applications.html

hyperledger-fabricdocs Documentation, Release master

Name

Each smart contract within a chaincode is uniquely identified by its contract name. A smart contract can explicitly
assign this name when the class is constructed, or let the Contract class implicitly assign a default name.

Examine the papercontract.js chaincode file:

class CommercialPaperContract extends Contract {

constructor() {
// Unique name when multiple contracts per chaincode file
super('org.papernet.commercialpaper');

}

See how the CommercialPaperContract constructor specifies the contract name as org.papernet.
commercialpaper. The result is that within the papercontract chaincode, this smart contract is now as-
sociated with the contract name org.papernet.commercialpaper.

If an explicit contract name is not specified, then a default name is assigned – the name of the class. In our example,
the default contract name would be CommercialPaperContract.

Choose your names carefully. It’s not just that each smart contract must have a unique name; a well-chosen name
is illuminating. Specifically, using an explicit DNS-style naming convention is recommended to help organize clear
and meaningful names; org.papernet.commercialpaper conveys that the PaperNet network has defined a
standard commercial paper smart contract.

Contract names are also helpful to disambiguate different smart contract transaction functions with the same name in
a given chaincode. This happens when smart contracts are closely related; their transaction names will tend to be the
same. We can see that a transaction is uniquely defined within a channel by the combination of its chaincode and smart
contract name.

Contract names must be unique within a chaincode file. Some code editors will detect multiple definitions of the same
class name before deployment. Regardless the chaincode will return an error if multiple classes with the same contract
name are explicitly or implicitly specified.

Application

Once a chaincode has been installed on a peer and deployed to a channel, the smart contracts in it are accessible to an
application:

const network = await gateway.getNetwork(`papernet`);

const contract = await network.getContract('papercontract', 'org.papernet.
→˓commercialpaper');

const issueResponse = await contract.submitTransaction('issue', 'MagnetoCorp', '00001
→˓', '2020-05-31', '2020-11-30', '5000000');

See how the application accesses the smart contract with the network.getContract() method. The
papercontract chaincode name org.papernet.commercialpaper returns a contract reference which
can be used to submit transactions to issue commercial paper with the contract.submitTransaction() API.

Default contract

The first smart contract defined in a chaincode is called the default smart contract. A default is helpful because a
chaincode will usually have one smart contract defined within it; a default allows the application to access those
transactions directly – without specifying a contract name.

6.6. Application design elements 165

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/papercontract.js#L31

hyperledger-fabricdocs Documentation, Release master

A default smart contract is the first contract defined in a chaincode.

In this diagram, CommercialPaperContract is the default smart contract. Even though we have two smart
contracts, the default smart contract makes our previous example easier to write:

const network = await gateway.getNetwork(`papernet`);

const contract = await network.getContract('papercontract');

const issueResponse = await contract.submitTransaction('issue', 'MagnetoCorp', '00001
→˓', '2020-05-31', '2020-11-30', '5000000');

This works because the default smart contract in papercontract is CommercialPaperContract and it has
an issue transaction. Note that the issue transaction in BondContract can only be invoked by explicitly
addressing it. Likewise, even though the cancel transaction is unique, because BondContract is not the default
smart contract, it must also be explicitly addressed.

In most cases, a chaincode will only contain a single smart contract, so careful naming of the chaincode can reduce the
need for developers to care about chaincode as a concept. In the example code above it feels like papercontract
is a smart contract.

In summary, contract names are a straightforward mechanism to identify individual smart contracts within a given
chaincode. Contract names make it easy for applications to find a particular smart contract and use it to access the
ledger.

6.6.2 Chaincode namespace

Audience: Architects, application and smart contract developers, administrators

A chaincode namespace allows it to keep its world state separate from other chaincodes. Specifically, smart contracts
in the same chaincode share direct access to the same world state, whereas smart contracts in different chaincodes
cannot directly access each other’s world state. If a smart contract needs to access another chaincode world state, it
can do this by performing a chaincode-to-chaincode invocation. Finally, a blockchain can contain transactions which
relate to different world states.

In this topic, we’re going to cover:

• The importance of namespaces

• What is a chaincode namespace

• Channels and namespaces

• How to use chaincode namespaces

166 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

• How to access world states across smart contracts

• Design considerations for chaincode namespaces

Motivation

A namespace is a common concept. We understand that Park Street, New York and Park Street, Seattle are different
streets even though they have the same name. The city forms a namespace for Park Street, simultaneously providing
freedom and clarity.

It’s the same in a computer system. Namespaces allow different users to program and operate different parts of a
shared system, without getting in each other’s way. Many programming languages have namespaces so that programs
can freely assign unique identifiers, such as variable names, without worrying about other programs doing the same.
We’ll see that Hyperledger Fabric uses namespaces to help smart contracts keep their ledger world state separate from
other smart contracts.

Scenario

Let’s examine how the ledger world state organizes facts about business objects that are important to the organizations
in a channel using the diagram below. Whether these objects are commercial papers, bonds, or vehicle registrations,
and wherever they are in their lifecycle, they are maintained as states within the ledger world state database. A smart
contract manages these business objects by interacting with the ledger (world state and blockchain), and in most cases
this will involve it querying or updating the ledger world state.

It’s vitally important to understand that the ledger world state is partitioned according to the chaincode of the smart
contract that accesses it, and this partitioning, or namespacing is an important design consideration for architects,
administrators and programmers.

The ledger world state is separated into different namespaces according to the chaincode that accesses it. Within
a given channel, smart contracts in the same chaincode share the same world state, and smart contracts in different
chaincodes cannot directly access each other’s world state. Likewise, a blockchain can contain transactions that relate
to different chaincode world states.

In our example, we can see four smart contracts defined in two different chaincodes, each of which is in their own
chaincode container. The euroPaper and yenPaper smart contracts are defined in the papers chaincode. The
situation is similar for the euroBond and yenBond smart contracts – they are defined in the bonds chaincode. This
design helps application programmers understand whether they are working with commercial papers or bonds priced

6.6. Application design elements 167

hyperledger-fabricdocs Documentation, Release master

in Euros or Yen, and because the rules for each financial product don’t really change for different currencies, it makes
sense to manage their deployment in the same chaincode.

The diagram also shows the consequences of this deployment choice. The database management system (DBMS)
creates different world state databases for the papers and bonds chaincodes and the smart contracts contained
within them. World state A and world state B are each held within distinct databases; the data are isolated
from each other such that a single world state query (for example) cannot access both world states. The world state is
said to be namespaced according to its chaincode.

See how world state A contains two lists of commercial papers paperListEuro and paperListYen. The
states PAP11 and PAP21 are instances of each paper managed by the euroPaper and yenPaper smart contracts
respectively. Because they share the same chaincode namespace, their keys (PAPxyz) must be unique within the
namespace of the papers chaincode, a little like a street name is unique within a town. Notice how it would be
possible to write a smart contract in the papers chaincode that performed an aggregate calculation over all the
commercial papers – whether priced in Euros or Yen – because they share the same namespace. The situation is
similar for bonds – they are held within world state B which maps to a separate bonds database, and their keys
must be unique.

Just as importantly, namespaces mean that euroPaper and yenPaper cannot directly access world state B,
and that euroBond and yenBond cannot directly access world state A. This isolation is helpful, as commercial
papers and bonds are very distinct financial instruments; they have different attributes and are subject to different rules.
It also means that papers and bonds could have the same keys, because they are in different namespaces. This is
helpful; it provides a significant degree of freedom for naming. Use this freedom to name different business objects
meaningfully.

Most importantly, we can see that a blockchain is associated with the peer operating in a particular channel, and that
it contains transactions that affect both world state A and world state B. That’s because the blockchain is
the most fundamental data structure contained in a peer. The set of world states can always be recreated from this
blockchain, because they are the cumulative results of the blockchain’s transactions. A world state helps simplify
smart contracts and improve their efficiency, as they usually only require the current value of a state. Keeping world
states separate via namespaces helps smart contracts isolate their logic from other smart contracts, rather than having
to worry about transactions that correspond to different world states. For example, a bonds contract does not need to
worry about paper transactions, because it cannot see their resultant world state.

It’s also worth noticing that the peer, chaincode containers and DBMS all are logically different processes. The peer
and all its chaincode containers are always in physically separate operating system processes, but the DBMS can be
configured to be embedded or separate, depending on its type. For LevelDB, the DBMS is wholly contained within
the peer, but for CouchDB, it is a separate operating system process.

It’s important to remember that namespace choices in this example are the result of a business requirement to share
commercial papers in different currencies but isolate them separate from bonds. Think about how the namespace
structure would be modified to meet a business requirement to keep every financial asset class separate, or share all
commercial papers and bonds?

Channels

If a peer is joined to multiple channels, then a new blockchain is created and managed for each channel. Moreover,
every time a chaincode is deployed to a new channel, a new world state database is created for it. It means that the
channel also forms a kind of namespace alongside that of the chaincode for the world state.

However, the same peer and chaincode container processes can be simultaneously joined to multiple channels – unlike
blockchains, and world state databases, these processes do not increase with the number of channels joined.

For example, if you deployed the papers and bonds chaincode to a new channel, there would a totally separate
blockchain created, and two new world state databases created. However, the peer and chaincode containers would
not increase; each would just be connected to multiple channels.

168 Chapter 6. Developing Applications

../ledger/ledger.html#world-state-database-options

hyperledger-fabricdocs Documentation, Release master

Usage

Let’s use our commercial paper example to show how an application uses a smart contract with namespaces. It’s worth
noting that an application communicates with the peer, and the peer routes the request to the appropriate chaincode
container which then accesses the DBMS. This routing is done by the peer core component shown in the diagram.

Here’s the code for an application that uses both commercial papers and bonds, priced in Euros and Yen. The code is
fairly self-explanatory:

const euroPaper = network.getContract(papers, euroPaper);
paper1 = euroPaper.submit(issue, PAP11);

const yenPaper = network.getContract(papers, yenPaper);
paper2 = yenPaper.submit(redeem, PAP21);

const euroBond = network.getContract(bonds, euroBond);
bond1 = euroBond.submit(buy, BON31);

const yenBond = network.getContract(bonds, yenBond);
bond2 = yenBond.submit(sell, BON41);

See how the application:

• Accesses the euroPaper and yenPaper contracts using the getContract()API specifying the papers
chaincode. See interaction points 1a and 2a.

• Accesses the euroBond and yenBond contracts using the getContract() API specifying the bonds
chaincode. See interaction points 3a and 4a.

• Submits an issue transaction to the network for commercial paper PAP11 using the euroPaper contract.
See interaction point 1a. This results in the creation of a commercial paper represented by state PAP11 in
world state A; interaction point 1b. This operation is captured as a transaction in the blockchain at inter-
action point 1c.

• Submits a redeem transaction to the network for commercial paper PAP21 using the yenPaper contract. See
interaction point 2a. This results in the creation of a commercial paper represented by state PAP21 in world
state A; interaction point 2b. This operation is captured as a transaction in the blockchain at interaction point
2c.

• Submits a buy transaction to the network for bond BON31 using the euroBond contract. See interaction point
3a. This results in the creation of a bond represented by state BON31 in world state B; interaction point
3b. This operation is captured as a transaction in the blockchain at interaction point 3c.

• Submits a sell transaction to the network for bond BON41 using the yenBond contract. See interaction point
4a. This results in the creation of a bond represented by state BON41 in world state B; interaction point
4b. This operation is captured as a transaction in the blockchain at interaction point 4c.

See how smart contracts interact with the world state:

• euroPaper and yenPaper contracts can directly access world state A, but cannot directly access
world state B. World state A is physically held in the papers database in the database manage-
ment system (DBMS) corresponding to the papers chaincode.

• euroBond and yenBond contracts can directly access world state B, but cannot directly access world
state A. World state B is physically held in the bonds database in the database management system
(DBMS) corresponding to the bonds chaincode.

See how the blockchain captures transactions for all world states:

• Interactions 1c and 2c correspond to transactions create and update commercial papers PAP11 and PAP21
respectively. These are both contained within world state A.

6.6. Application design elements 169

hyperledger-fabricdocs Documentation, Release master

• Interactions 3c and 4c correspond to transactions both update bonds BON31 and BON41. These are both con-
tained within world state B.

• If world state A or world state Bwere destroyed for any reason, they could be recreated by replaying
all the transactions in the blockchain.

Cross chaincode access

As we saw in our example scenario, euroPaper and yenPaper cannot directly access world state B. That’s
because we have designed our chaincodes and smart contracts so that these chaincodes and world states are kept
separately from each other. However, let’s imagine that euroPaper needs to access world state B.

Why might this happen? Imagine that when a commercial paper was issued, the smart contract wanted to price the
paper according to the current return on bonds with a similar maturity date. In this case it will be necessary for the
euroPaper contract to be able to query the price of bonds in world state B. Look at the following diagram to
see how we might structure this interaction.

How chaincodes and smart contracts can indirectly access another world state – via its chaincode.

Notice how:

• the application submits an issue transaction in the euroPaper smart contract to issue PAP11. See interac-
tion 1a.

• the issue transaction in the euroPaper smart contract calls the query transaction in the euroBond smart
contract. See interaction point 1b.

• the queryin euroBond can retrieve information from world state B. See interaction point 1c.

• when control returns to the issue transaction, it can use the information in the response to price the paper and
update world state A with information. See interaction point 1d.

• the flow of control for issuing commercial paper priced in Yen is the same. See interaction points 2a, 2b, 2c and
2d.

Control is passed between chaincode using the invokeChaincode() API.

This API passes control from one chaincode to another chaincode.

Although we have only discussed query transactions in the example, it is possible to invoke a smart contract which
will update the called chaincode’s world state. See the considerations below.

170 Chapter 6. Developing Applications

https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#invokeChaincode__anchor

hyperledger-fabricdocs Documentation, Release master

Considerations

• In general, each chaincode will have a single smart contract in it.

• Multiple smart contracts should only be deployed in the same chaincode if they are very closely related. Usually,
this is only necessary if they share the same world state.

• Chaincode namespaces provide isolation between different world states. In general it makes sense to isolate
unrelated data from each other. Note that you cannot choose the chaincode namespace; it is assigned by Hyper-
ledger Fabric, and maps directly to the name of the chaincode.

• For chaincode to chaincode interactions using the invokeChaincode() API, both chaincodes must be in-
stalled on the same peer.

– For interactions that only require the called chaincode’s world state to be queried, the invocation can be in
a different channel to the caller’s chaincode.

– For interactions that require the called chaincode’s world state to be updated, the invocation must be in the
same channel as the caller’s chaincode.

6.6.3 Transaction context

Audience: Architects, application and smart contract developers

A transaction context performs two functions. Firstly, it allows a developer to define and maintain user variables
across transaction invocations within a smart contract. Secondly, it provides access to a wide range of Fabric APIs
that allow smart contract developers to perform operations relating to detailed transaction processing. These range
from querying or updating the ledger, both the immutable blockchain and the modifiable world state, to retrieving the
transaction-submitting application’s digital identity.

A transaction context is created when a smart contract is deployed to a channel and made available to every subse-
quent transaction invocation. A transaction context helps smart contract developers write programs that are powerful,
efficient and easy to reason about.

• Why a transaction context is important

• How to use a transaction context

• What’s in a transaction context

• Using a context stub

• Using a context clientIdentity

Scenario

In the commercial paper sample, papercontract initially defines the name of the list of commercial papers for which
it’s responsible. Each transaction subsequently refers to this list; the issue transaction adds new papers to it, the buy
transaction changes its owner, and the redeem transaction marks it as complete. This is a common pattern; when
writing a smart contract it’s often helpful to initialize and recall particular variables in sequential transactions.

6.6. Application design elements 171

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/papercontract.js

hyperledger-fabricdocs Documentation, Release master

A smart contract transaction context allows smart contracts to define and maintain user variables across transaction
invocations. Refer to the text for a detailed explanation.

Programming

When a smart contract is constructed, a developer can optionally override the built-in Context class
createContext method to create a custom context:

createContext() {
new CommercialPaperContext();

}

In our example, the CommercialPaperContext is specialized for CommercialPaperContract. See how
the custom context, addressed through this, adds the specific variable PaperList to itself:

CommercialPaperContext extends Context {
constructor () {

this.paperList = new PaperList(this);
}

}

When the createContext() method returns at point (1) in the diagram above, a custom context ctx has been created
which contains paperList as one of its variables.

Subsequently, whenever a smart contract transaction such as issue, buy or redeem is called, this context will be passed
to it. See how at points (2), (3) and (4) the same commercial paper context is passed into the transaction method using
the ctx variable.

See how the context is then used at point (5):

ctx.paperList.addPaper(...);
ctx.stub.putState(...);

Notice how paperList created in CommercialPaperContext is available to the issue transaction. See how
paperList is similarly used by the redeem and buy transactions; ctx makes the smart contracts efficient and easy
to reason about.

172 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

You can also see that there’s another element in the context – ctx.stub – which was not explicitly added by
CommercialPaperContext. That’s because stub and other variables are part of the built-in context. Let’s
now examine the structure of this built-in context, these implicit variables and how to use them.

Structure

As we’ve seen from the example, a transaction context can contain any number of user variables such as paperList.

The transaction context also contains two built-in elements that provide access to a wide range of Fabric functionality
ranging from the client application that submitted the transaction to ledger access.

• ctx.stub is used to access APIs that provide a broad range of transaction processing operations from
putState() and getState() to access the ledger, to getTxID() to retrieve the current transaction ID.

• ctx.clientIdentity is used to get information about the identity of the user who submitted the transac-
tion.

We’ll use the following diagram to show you what a smart contract can do using the stub and clientIdentity
using the APIs available to it:

A smart contract can access a range of functionality in a smart contract via the transaction context stub and
clientIdentity. Refer to the text for a detailed explanation.

Stub

The APIs in the stub fall into the following categories:

• World state data APIs. See interaction point (1). These APIs enable smart contracts to get, put and delete state
corresponding to individual objects from the world state, using their key:

– getState()

– putState()

– deleteState()

These basic APIs are complemented by query APIs which enable contracts to retrieve a set of states, rather than
an individual state. See interaction point (2). The set is either defined by a range of key values, using full or

6.6. Application design elements 173

https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getState__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#putState__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#deleteState__anchor

hyperledger-fabricdocs Documentation, Release master

partial keys, or a query according to values in the underlying world state database. For large queries, the result
sets can be paginated to reduce storage requirements:

– getStateByRange()

– getStateByRangeWithPagination()

– getStateByPartialCompositeKey()

– getStateByPartialCompositeKeyWithPagination()

– getQueryResult()

– getQueryResultWithPagination()

• Private data APIs. See interaction point (3). These APIs enable smart contracts to interact with a private data
collection. They are analogous to the APIs for world state interactions, but for private data. There are APIs to
get, put and delete a private data state by its key:

– getPrivateData()

– putPrivateData()

– deletePrivateData()

This set is complemented by set of APIs to query private data (4). These APIs allow smart contracts to retrieve
a set of states from a private data collection, according to a range of key values, either full or partial keys, or
a query according to values in the underlying world state database. There are currently no pagination APIs for
private data collections.

– getPrivateDataByRange()

– getPrivateDataByPartialCompositeKey()

– getPrivateDataQueryResult()

• Transaction APIs. See interaction point (5). These APIs are used by a smart contract to retrieve details about
the current transaction proposal being processed by the smart contract. This includes the transaction identifier
and the time when the transaction proposal was created.

– getTxID() returns the identifier of the current transaction proposal (5).

– getTxTimestamp() returns the timestamp when the current transaction proposal was created by the appli-
cation (5).

– getCreator() returns the raw identity (X.509 or otherwise) of the creator of transaction proposal. If this is
an X.509 certificate then it is often more appropriate to use ctx.ClientIdentity .

– getSignedProposal() returns a signed copy of the current transaction proposal being processed by the smart
contract.

– getBinding() is used to prevent transactions being maliciously or accidentally replayed using a nonce. (For
practical purposes, a nonce is a random number generated by the client application and incorporated in a
cryptographic hash.) For example, this API could be used by a smart contract at (1) to detect a replay of
the transaction (5).

– getTransient() allows a smart contract to access the transient data an application passes to a smart contract.
See interaction points (9) and (10). Transient data is private to the application-smart contract interaction.
It is not recorded on the ledger and is often used in conjunction with private data collections (3).

• Key APIs are used by smart contracts to manipulate state key in the world state or a private data collection. See
interaction points 2 and 4.

The simplest of these APIs allows smart contracts to form and split composite keys from their individual com-
ponents. Slightly more advanced are the ValidationParameter() APIs which get and set the state based

174 Chapter 6. Developing Applications

../ledger/ledger.html#world-state-database-options
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getStateByRange__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getStateByRangeWithPagination__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getStateByPartialCompositeKey__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getStateByPartialCompositeKeyWithPagination__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getQueryResult__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getQueryResultWithPagination__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getPrivateData__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#putPrivateData__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#deletePrivateData__anchor
../ledger/ledger.html#world-state-database-options
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getPrivateDataByRange__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getPrivateDataByPartialCompositeKey__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getPrivateDataQueryResult__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getTxID__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getTxTimestamp__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getCreator__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getSignedProposal__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getBinding__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getTransient__anchor

hyperledger-fabricdocs Documentation, Release master

endorsement policies for world state (2) and private data (4). Finally, getHistoryForKey() retrieves the
history for a state by returning the set of stored values, including the transaction identifiers that performed the
state update, allowing the transactions to be read from the blockchain (10).

– createCompositeKey()

– splitCompositeKey()

– setStateValidationParameter()

– getStateValidationParameter()

– getPrivateDataValidationParameter()

– setPrivateDataValidationParameter()

– getHistoryForKey()

• Event APIs are used to manage event processing in a smart contract.

– setEvent()

Smart contracts use this API to add user events to a transaction response. See interaction point (5). These
events are ultimately recorded on the blockchain and sent to listening applications at interaction point (11).

• Utility APIs are a collection of useful APIs that don’t easily fit in a pre-defined category, so we’ve grouped
them together! They include retrieving the current channel name and passing control to a different chaincode
on the same peer.

– getChannelID()

See interaction point (13). A smart contract running on any peer can use this API to determined on which
channel the application invoked the smart contract.

– invokeChaincode()

See interaction point (14). Peer3 owned by MagnetoCorp has multiple smart contracts installed on it.
These smart contracts are able to call each other using this API. The smart contracts must be collocated; it
is not possible to call a smart contract on a different peer.

Some of these utility APIs are only used if you’re using low-level chaincode, rather than smart contracts. These
APIs are primarily for the detailed manipulation of chaincode input; the smart contract Contract class does
all of this parameter marshalling automatically for developers.

– getFunctionAndParameters()

– getStringArgs()

– getArgs()

ClientIdentity

In most cases, the application submitting a transaction will be using an X.509 certificate. In the example, an X.509
certificate (6) issued by CA1 (7) is being used by Isabella (8) in her application to sign the proposal in transaction
t6 (5).

ClientIdentity takes the information returned by getCreator() and puts a set of X.509 utility APIs on top
of it to make it easier to use for this common use case.

• getX509Certificate() returns the full X.509 certificate of the transaction submitter, including all its attributes and
their values. See interaction point (6).

• getAttributeValue() returns the value of a particular X.509 attribute, for example, the organizational unit OU, or
distinguished name DN. See interaction point (6).

6.6. Application design elements 175

https://hyperledger.github.io/fabric-chaincode-node/\protect \T1\textbraceleft BRACNH\protect \T1\textbraceright /api/fabric-shim.ChaincodeStub.html#createCompositeKey__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#splitCompositeKey__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#setStateValidationParameter__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getStateValidationParameter__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getPrivateDataValidationParameter__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#setPrivateDataValidationParameter__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getHistoryForKey__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#setEvent__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getChannelID__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#invokeChaincode__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getFunctionAndParameters__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getStringArgs__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getArgs__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ClientIdentity.html#getX509Certificate__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ClientIdentity.html#getAttributeValue__anchor

hyperledger-fabricdocs Documentation, Release master

• assertAttributeValue() returns TRUE if the specified attribute of the X.509 attribute has a specified value. See
interaction point (6).

• getID() returns the unique identity of the transaction submitter, according to their distinguished name and the
issuing CA’s distinguished name. The format is x509::{subject DN}::{issuer DN}. See interaction
point (6).

• getMSPID() returns the channel MSP of the transaction submitter. This allows a smart contract to make pro-
cessing decisions based on the submitter’s organizational identity. See interaction point (15) or (16).

6.6.4 Transaction handlers

Audience: Architects, Application and smart contract developers

Transaction handlers allow smart contract developers to define common processing at key points during the interaction
between an application and a smart contract. Transaction handlers are optional but, if defined, they will receive control
before or after every transaction in a smart contract is invoked. There is also a specific handler which receives control
when a request is made to invoke a transaction not defined in a smart contract.

Here’s an example of transaction handlers for the commercial paper smart contract sample:

Before, After and Unknown transaction handlers. In this example, beforeTransaction() is called before the
issue, buy and redeem transactions. afterTransaction() is called after the issue, buy and redeem transactions.
unknownTransaction() is only called if a request is made to invoke a transaction not defined in the smart
contract. (The diagram is simplified by not repeating beforeTransaction and afterTransaction boxes for
each transaction.)

Types of handler

There are three types of transaction handlers which cover different aspects of the interaction between an application
and a smart contract:

• Before handler: is called before every smart contract transaction is invoked. The handler will usually modify
the transaction context to be used by the transaction. The handler has access to the full range of Fabric APIs;
for example, it can issue getState() and putState().

176 Chapter 6. Developing Applications

https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ClientIdentity.html#assertAttributeValue__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ClientIdentity.html#getID__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ClientIdentity.html#getMSPID__anchor
./smartcontract.html

hyperledger-fabricdocs Documentation, Release master

• After handler: is called after every smart contract transaction is invoked. The handler will usually perform
post-processing common to all transactions, and also has full access to the Fabric APIs.

• Unknown handler: is called if an attempt is made to invoke a transaction that is not defined in a smart contract.
Typically, the handler will record the failure for subsequent processing by an administrator. The handler has full
access to the Fabric APIs.

Defining a transaction handler is optional; a smart contract will perform correctly without handlers being defined. A
smart contract can define at most one handler of each type.

Defining a handler

Transaction handlers are added to the smart contract as methods with well defined names. Here’s an example which
adds a handler of each type:

CommercialPaperContract extends Contract {

...

async beforeTransaction(ctx) {
// Write the transaction ID as an informational to the console
console.info(ctx.stub.getTxID());

};

async afterTransaction(ctx, result) {
// This handler interacts with the ledger
ctx.stub.cpList.putState(...);

};

async unknownTransaction(ctx) {
// This handler throws an exception
throw new Error('Unknown transaction function');

};

}

The form of a transaction handler definition is the similar for all handler types, but notice how the
afterTransaction(ctx, result) also receives any result returned by the transaction. The API documenta-
tion shows you the exact form of these handlers.

Handler processing

Once a handler has been added to the smart contract, it will be invoked during transaction processing. During process-
ing, the handler receives ctx, the transaction context, performs some processing, and returns control as it completes.
Processing continues as follows:

• Before handler: If the handler completes successfully, the transaction is called with the updated context. If the
handler throws an exception, then the transaction is not called and the smart contract fails with the exception
error message.

• After handler: If the handler completes successfully, then the smart contract completes as determined by the
invoked transaction. If the handler throws an exception, then the transaction fails with the exception error
message.

• Unknown handler: The handler should complete by throwing an exception with the required error message. If
an Unknown handler is not specified, or an exception is not thrown by it, there is sensible default processing;
the smart contract will fail with an unknown transaction error message.

6.6. Application design elements 177

https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-contract-api.Contract.html
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-contract-api.Contract.html
./transationcontext.md

hyperledger-fabricdocs Documentation, Release master

If the handler requires access to the function and parameters, then it is easy to do this:

async beforeTransaction(ctx) {
// Retrieve details of the transaction
let txnDetails = ctx.stub.getFunctionAndParameters();

console.info(`Calling function: ${txnDetails.fcn} `);
console.info(util.format(`Function arguments : %j ${stub.getArgs()} ``);

}

See how this handler uses the utility API getFunctionAndParameters via the transaction context.

Multiple handlers

It is only possible to define at most one handler of each type for a smart contract. If a smart contract needs to invoke
multiple functions during before, after or unknown handling, it should coordinate this from within the appropriate
function.

6.6.5 Endorsement policies

Audience: Architects, Application and smart contract developers

Endorsement policies define the smallest set of organizations that are required to endorse a transaction in order for it
to be valid. To endorse, an organization’s endorsing peer needs to run the smart contract associated with the transac-
tion and sign its outcome. When the ordering service sends the transaction to the committing peers, they will each
individually check whether the endorsements in the transaction fulfill the endorsement policy. If this is not the case,
the transaction is invalidated and it will have no effect on world state.

Endorsement policies work at two different granularities: they can be set for an entire namespace, as well as for
individual state keys. They are formulated using basic logic expressions such as AND and OR. For example, in Pa-
perNet this could be used as follows: the endorsement policy for a paper that has been sold from MagnetoCorp to
DigiBank could be set to AND(MagnetoCorp.peer, DigiBank.peer), requiring any changes to this paper
to be endorsed by both MagnetoCorp and DigiBank.

6.6.6 Connection Profile

Audience: Architects, application and smart contract developers

A connection profile describes a set of components, including peers, orderers and certificate authorities in a Hyper-
ledger Fabric blockchain network. It also contains channel and organization information relating to these components.
A connection profile is primarily used by an application to configure a gateway that handles all network interactions,
allowing it to focus on business logic. A connection profile is normally created by an administrator who understands
the network topology.

In this topic, we’re going to cover:

• Why connection profiles are important

• How applications use a connection profile

• How to define a connection profile

178 Chapter 6. Developing Applications

./transactioncontext.html#stub
./gateway.html

hyperledger-fabricdocs Documentation, Release master

Scenario

A connection profile is used to configure a gateway. Gateways are important for many reasons, the primary being to
simplify an application’s interaction with a network channel.

Two applications, issue and buy, use gateways 1&2 configured with connection profiles 1&2. Each profile describes a
different subset of MagnetoCorp and DigiBank network components. Each connection profile must contain sufficient
information for a gateway to interact with the network on behalf of the issue and buy applications. See the text for a
detailed explanation.

A connection profile contains a description of a network view, expressed in a technical syntax, which can either be
JSON or YAML. In this topic, we use the YAML representation, as it’s easier for you to read. Static gateways need
more information than dynamic gateways because the latter can use service discovery to dynamically augment the
information in a connection profile.

A connection profile should not be an exhaustive description of a network channel; it just needs to contain enough
information sufficient for a gateway that’s using it. In the network above, connection profile 1 needs to contain at least
the endorsing organizations and peers for the issue transaction, as well as identifying the peers that will notify the
gateway when the transaction has been committed to the ledger.

It’s easiest to think of a connection profile as describing a view of the network. It could be a comprehensive view, but
that’s unrealistic for a few reasons:

• Peers, orderers, certificate authorities, channels, and organizations are added and removed according to demand.

• Components can start and stop, or fail unexpectedly (e.g. power outage).

• A gateway doesn’t need a view of the whole network, only what’s necessary to successfully handle transaction
submission or event notification for example.

• Service Discovery can augment the information in a connection profile. Specifically, dynamic gateways can be
configured with minimal Fabric topology information; the rest can be discovered.

A static connection profile is normally created by an administrator who understands the network topology in detail.
That’s because a static profile can contain quite a lot of information, and an administrator needs to capture this in
the corresponding connection profile. In contrast, dynamic profiles minimize the amount of definition required and
therefore can be a better choice for developers who want to get going quickly, or administrators who want to create
a more responsive gateway. Connection profiles are created in either the YAML or JSON format using an editor of
choice.

6.6. Application design elements 179

./gateway.html
../discovery-overview.html

hyperledger-fabricdocs Documentation, Release master

Usage

We’ll see how to define a connection profile in a moment; let’s first see how it is used by a sample MagnetoCorp
issue application:

const yaml = require('js-yaml');
const { Gateway } = require('fabric-network');

const connectionProfile = yaml.safeLoad(fs.readFileSync('../gateway/paperNet.yaml',
→˓'utf8'));

const gateway = new Gateway();

await gateway.connect(connectionProfile, connectionOptions);

After loading some required classes, see how the paperNet.yaml gateway file is loaded from the file system,
converted to a JSON object using the yaml.safeLoad() method, and used to configure a gateway using its
connect() method.

By configuring a gateway with this connection profile, the issue application is providing the gateway with the relevant
network topology it should use to process transactions. That’s because the connection profile contains sufficient infor-
mation about the PaperNet channels, organizations, peers, orderers and CAs to ensure transactions can be successfully
processed.

It’s good practice for a connection profile to define more than one peer for any given organization – it prevents a single
point of failure. This practice also applies to dynamic gateways; to provide more than one starting point for service
discovery.

A DigiBank buy application would typically configure its gateway with a similar connection profile, but with some
important differences. Some elements will be the same, such as the channel; some elements will overlap, such as the
endorsing peers. Other elements will be completely different, such as notification peers or certificate authorities for
example.

The connectionOptions passed to a gateway complement the connection profile. They allow an application
to declare how it would like the gateway to use the connection profile. They are interpreted by the SDK to control
interaction patterns with network components, for example to select which identity to connect with, or which peers to
use for event notifications. Read about the list of available connection options and when to use them.

Structure

To help you understand the structure of a connection profile, we’re going to step through an example for the network
shown above. Its connection profile is based on the PaperNet commercial paper sample, and stored in the GitHub
repository. For convenience, we’ve reproduced it below. You will find it helpful to display it in another browser
window as you now read about it:

• Line 9: name: "papernet.magnetocorp.profile.sample"

This is the name of the connection profile. Try to use DNS style names; they are a very easy way to convey
meaning.

• Line 16: x-type: "hlfv1"

Users can add their own x- properties that are “application-specific” – just like with HTTP headers. They are
provided primarily for future use.

• Line 20: description: "Sample connection profile for documentation topic"

A short description of the connection profile. Try to make this helpful for the reader who might be seeing this
for the first time!

180 Chapter 6. Developing Applications

./connectionoptions.html
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml

hyperledger-fabricdocs Documentation, Release master

• Line 25: version: "1.0"

The schema version for this connection profile. Currently only version 1.0 is supported, and it is not envisioned
that this schema will change frequently.

• Line 32: channels:

This is the first really important line. channels: identifies that what follows are all the channels that this
connection profile describes. However, it is good practice to keep different channels in different connection
profiles, especially if they are used independently of each other.

• Line 36: papernet:

Details of papernet, the first channel in this connection profile, will follow.

• Line 41: orderers:

Details of all the orderers for papernet follow. You can see in line 45 that the orderer for this channel
is orderer1.magnetocorp.example.com. This is just a logical name; later in the connection profile
(lines 134 - 147), there will be details of how to connect to this orderer. Notice that orderer2.digibank.
example.com is not in this list; it makes sense that applications use their own organization’s orderers, rather
than those from a different organization.

• Line 49: peers:

Details of all the peers for papernet will follow.

You can see three peers listed from MagnetoCorp: peer1.magnetocorp.example.com, peer2.
magnetocorp.example.com and peer3.magnetocorp.example.com. It’s not necessary to list all
the peers in MagnetoCorp, as has been done here. You can see only one peer listed from DigiBank: peer9.
digibank.example.com; including this peer starts to imply that the endorsement policy requires Magne-
toCorp and DigiBank to endorse transactions, as we’ll now confirm. It’s good practice to have multiple peers to
avoid single points of failure.

Underneath each peer you can see four non-exclusive roles: endorsingPeer, chaincodeQuery, ledgerQuery
and eventSource. See how peer1 and peer2 can perform all roles as they host papercontract. Contrast
to peer3, which can only be used for notifications, or ledger queries that access the blockchain component
of the ledger rather than the world state, and hence do not need to have smart contracts installed. Notice
how peer9 should not be used for anything other than endorsement, because those roles are better served by
MagnetoCorp peers.

Again, see how the peers are described according to their logical names and their roles. Later in the profile,
we’ll see the physical information for these peers.

• Line 97: organizations:

Details of all the organizations will follow, for all channels. Note that these organizations are for all chan-
nels, even though papernet is currently the only one listed. That’s because organizations can be in multiple
channels, and channels can have multiple organizations. Moreover, some application operations relate to orga-
nizations rather than channels. For example, an application can request notification from one or all peers within
its organization, or all organizations within the network – using connection options. For this, there needs to be
an organization to peer mapping, and this section provides it.

• Line 101: MagnetoCorp:

All peers that are considered part of MagnetoCorp are listed: peer1, peer2 and peer3. Likewise for Cer-
tificate Authorities. Again, note the logical name usages, the same as the channels: section; physical infor-
mation will follow later in the profile.

• Line 121: DigiBank:

Only peer9 is listed as part of DigiBank, and no Certificate Authorities. That’s because these other peers and
the DigiBank CA are not relevant for users of this connection profile.

6.6. Application design elements 181

./connectoptions.html

hyperledger-fabricdocs Documentation, Release master

• Line 134: orderers:

The physical information for orderers is now listed. As this connection profile only mentioned one orderer
for papernet, you see orderer1.magnetocorp.example.com details listed. These include its IP
address and port, and gRPC options that can override the defaults used when communicating with the orderer,
if necessary. As with peers:, for high availability, specifying more than one orderer is a good idea.

• Line 152: peers:

The physical information for all previous peers is now listed. This connection profile has three peers for Mag-
netoCorp: peer1, peer2, and peer3; for DigiBank, a single peer peer9 has its information listed. For
each peer, as with orderers, their IP address and port is listed, together with gRPC options that can override the
defaults used when communicating with a particular peer, if necessary.

• Line 194: certificateAuthorities:

The physical information for certificate authorities is now listed. The connection profile has a single CA listed
for MagnetoCorp, ca1-magnetocorp, and its physical information follows. As well as IP details, the reg-
istrar information allows this CA to be used for Certificate Signing Requests (CSR). These are used to request
new certificates for locally generated public/private key pairs.

Now you’ve understood a connection profile for MagnetoCorp, you might like to look at a corresponding profile
for DigiBank. Locate where the profile is the same as MagnetoCorp’s, see where it’s similar, and finally where it’s
different. Think about why these differences make sense for DigiBank applications.

That’s everything you need to know about connection profiles. In summary, a connection profile defines sufficient
channels, organizations, peers, orderers and certificate authorities for an application to configure a gateway. The
gateway allows the application to focus on business logic rather than the details of the network topology.

Sample

This file is reproduced inline from the GitHub commercial paper sample.

1: ---
2: #
3: # [Required]. A connection profile contains information about a set of network
4: # components. It is typically used to configure gateway, allowing applications
5: # interact with a network channel without worrying about the underlying
6: # topology. A connection profile is normally created by an administrator who
7: # understands this topology.
8: #
9: name: "papernet.magnetocorp.profile.sample"
10: #
11: # [Optional]. Analogous to HTTP, properties with an "x-" prefix are deemed
12: # "application-specific", and ignored by the gateway. For example, property
13: # "x-type" with value "hlfv1" was originally used to identify a connection
14: # profile for Fabric 1.x rather than 0.x.
15: #
16: x-type: "hlfv1"
17: #
18: # [Required]. A short description of the connection profile
19: #
20: description: "Sample connection profile for documentation topic"
21: #
22: # [Required]. Connection profile schema version. Used by the gateway to
23: # interpret these data.
24: #
25: version: "1.0"

(continues on next page)

182 Chapter 6. Developing Applications

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

26: #
27: # [Optional]. A logical description of each network channel; its peer and
28: # orderer names and their roles within the channel. The physical details of
29: # these components (e.g. peer IP addresses) will be specified later in the
30: # profile; we focus first on the logical, and then the physical.
31: #
32: channels:
33: #
34: # [Optional]. papernet is the only channel in this connection profile
35: #
36: papernet:
37: #
38: # [Optional]. Channel orderers for PaperNet. Details of how to connect to
39: # them is specified later, under the physical "orderers:" section
40: #
41: orderers:
42: #
43: # [Required]. Orderer logical name
44: #
45: - orderer1.magnetocorp.example.com
46: #
47: # [Optional]. Peers and their roles
48: #
49: peers:
50: #
51: # [Required]. Peer logical name
52: #
53: peer1.magnetocorp.example.com:
54: #
55: # [Optional]. Is this an endorsing peer? (It must have chaincode
56: # installed.) Default: true
57: #
58: endorsingPeer: true
59: #
60: # [Optional]. Is this peer used for query? (It must have chaincode
61: # installed.) Default: true
62: #
63: chaincodeQuery: true
64: #
65: # [Optional]. Is this peer used for non-chaincode queries? All peers
66: # support these types of queries, which include queryBlock(),
67: # queryTransaction(), etc. Default: true
68: #
69: ledgerQuery: true
70: #
71: # [Optional]. Is this peer used as an event hub? All peers can produce
72: # events. Default: true
73: #
74: eventSource: true
75: #
76: peer2.magnetocorp.example.com:
77: endorsingPeer: true
78: chaincodeQuery: true
79: ledgerQuery: true
80: eventSource: true
81: #
82: peer3.magnetocorp.example.com:

(continues on next page)

6.6. Application design elements 183

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

83: endorsingPeer: false
84: chaincodeQuery: false
85: ledgerQuery: true
86: eventSource: true
87: #
88: peer9.digibank.example.com:
89: endorsingPeer: true
90: chaincodeQuery: false
91: ledgerQuery: false
92: eventSource: false
93: #
94: # [Required]. List of organizations for all channels. At least one organization
95: # is required.
96: #
97: organizations:
98: #
99: # [Required]. Organizational information for MagnetoCorp
100: #
101: MagnetoCorp:
102: #
103: # [Required]. The MSPID used to identify MagnetoCorp
104: #
105: mspid: MagnetoCorpMSP
106: #
107: # [Required]. The MagnetoCorp peers
108: #
109: peers:
110: - peer1.magnetocorp.example.com
111: - peer2.magnetocorp.example.com
112: - peer3.magnetocorp.example.com
113: #
114: # [Optional]. Fabric-CA Certificate Authorities.
115: #
116: certificateAuthorities:
117: - ca-magnetocorp
118: #
119: # [Optional]. Organizational information for DigiBank
120: #
121: DigiBank:
122: #
123: # [Required]. The MSPID used to identify DigiBank
124: #
125: mspid: DigiBankMSP
126: #
127: # [Required]. The DigiBank peers
128: #
129: peers:
130: - peer9.digibank.example.com
131: #
132: # [Optional]. Orderer physical information, by orderer name
133: #
134: orderers:
135: #
136: # [Required]. Name of MagnetoCorp orderer
137: #
138: orderer1.magnetocorp.example.com:
139: #

(continues on next page)

184 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

140: # [Required]. This orderer's IP address
141: #
142: url: grpc://localhost:7050
143: #
144: # [Optional]. gRPC connection properties used for communication
145: #
146: grpcOptions:
147: ssl-target-name-override: orderer1.magnetocorp.example.com
148: #
149: # [Required]. Peer physical information, by peer name. At least one peer is
150: # required.
151: #
152: peers:
153: #
154: # [Required]. First MagetoCorp peer physical properties
155: #
156: peer1.magnetocorp.example.com:
157: #
158: # [Required]. Peer's IP address
159: #
160: url: grpc://localhost:7151
161: #
162: # [Optional]. gRPC connection properties used for communication
163: #
164: grpcOptions:
165: ssl-target-name-override: peer1.magnetocorp.example.com
166: request-timeout: 120001
167: #
168: # [Optional]. Other MagnetoCorp peers
169: #
170: peer2.magnetocorp.example.com:
171: url: grpc://localhost:7251
172: grpcOptions:
173: ssl-target-name-override: peer2.magnetocorp.example.com
174: request-timeout: 120001
175: #
176: peer3.magnetocorp.example.com:
177: url: grpc://localhost:7351
178: grpcOptions:
179: ssl-target-name-override: peer3.magnetocorp.example.com
180: request-timeout: 120001
181: #
182: # [Required]. Digibank peer physical properties
183: #
184: peer9.digibank.example.com:
185: url: grpc://localhost:7951
186: grpcOptions:
187: ssl-target-name-override: peer9.digibank.example.com
188: request-timeout: 120001
189: #
190: # [Optional]. Fabric-CA Certificate Authority physical information, by name.
191: # This information can be used to (e.g.) enroll new users. Communication is via
192: # REST, hence options relate to HTTP rather than gRPC.
193: #
194: certificateAuthorities:
195: #
196: # [Required]. MagnetoCorp CA

(continues on next page)

6.6. Application design elements 185

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

197: #
198: ca1-magnetocorp:
199: #
200: # [Required]. CA IP address
201: #
202: url: http://localhost:7054
203: #
204: # [Optioanl]. HTTP connection properties used for communication
205: #
206: httpOptions:
207: verify: false
208: #
209: # [Optional]. Fabric-CA supports Certificate Signing Requests (CSRs). A
210: # registrar is needed to enroll new users.
211: #
212: registrar:
213: - enrollId: admin
214: enrollSecret: adminpw
215: #
216: # [Optional]. The name of the CA.
217: #
218: caName: ca-magnetocorp

6.6.7 Connection Options

Audience: Architects, administrators, application and smart contract developers

Connection options are used in conjunction with a connection profile to control precisely how a gateway interacts with
a network. Using a gateway allows an application to focus on business logic rather than network topology.

In this topic, we’re going to cover:

• Why connection options are important

• How an application uses connection options

• What each connection option does

• When to use a particular connection option

Scenario

A connection option specifies a particular aspect of a gateway’s behaviour. Gateways are important for many reasons,
the primary being to allow an application to focus on business logic and smart contracts, while it manages interactions
with the many components of a network.

186 Chapter 6. Developing Applications

./gateway.html

hyperledger-fabricdocs Documentation, Release master

The different interaction points where connection options control behaviour. These options are explained fully in the
text.

One example of a connection option might be to specify that the gateway used by the issue application should use
identity Isabella to submit transactions to the papernet network. Another might be that a gateway should wait
for all three nodes from MagnetoCorp to confirm a transaction has been committed returning control. Connection
options allow applications to specify the precise behaviour of a gateway’s interaction with the network. Without a
gateway, applications need to do a lot more work; gateways save you time, make your application more readable, and
less error prone.

Usage

We’ll describe the full set of connection options available to an application in a moment; let’s first see how they are
specified by the sample MagnetoCorp issue application:

const userName = 'User1@org1.example.com';
const wallet = new FileSystemWallet('../identity/user/isabella/wallet');

const connectionOptions = {
identity: userName,
wallet: wallet,
eventHandlerOptions: {
commitTimeout: 100,
strategy: EventStrategies.MSPID_SCOPE_ANYFORTX
}

};

await gateway.connect(connectionProfile, connectionOptions);

See how the identity and wallet options are simple properties of the connectionOptions object. They
have values userName and wallet respectively, which were set earlier in the code. Contrast these options with the
eventHandlerOptions option which is an object in its own right. It has two properties: commitTimeout:
100 (measured in seconds) and strategy: EventStrategies.MSPID_SCOPE_ANYFORTX.

See how connectionOptions is passed to a gateway as a complement to connectionProfile; the network
is identified by the connection profile and the options specify precisely how the gateway should interact with it. Let’s
now look at the available options.

6.6. Application design elements 187

hyperledger-fabricdocs Documentation, Release master

Options

Here’s a list of the available options and what they do.

• wallet identifies the wallet that will be used by the gateway on behalf of the application. See interaction 1;
the wallet is specified by the application, but it’s actually the gateway that retrieves identities from it.

A wallet must be specified; the most important decision is the type of wallet to use, whether that’s file system,
in-memory, HSM or database.

• identity is the user identity that the application will use from wallet. See interaction 2a; the user identity
is specified by the application and represents the user of the application, Isabella, 2b. The identity is actually
retrieved by the gateway.

In our example, Isabella’s identity will be used by different MSPs (2c, 2d) to identify her as being from Mag-
netoCorp, and having a particular role within it. These two facts will correspondingly determine her permission
over resources, such as being able to read and write the ledger, for example.

A user identity must be specified. As you can see, this identity is fundamental to the idea that Hyperledger
Fabric is a permissioned network – all actors have an identity, including applications, peers and orderers, which
determines their control over resources. You can read more about this idea in the membership services topic.

• clientTlsIdentity is the identity that is retrieved from a wallet (3a) and used for secure communications
(3b) between the gateway and different channel components, such as peers and orderers.

Note that this identity is different to the user identity. Even though clientTlsIdentity is important for
secure communications, it is not as foundational as the user identity because its scope does not extend beyond
secure network communications.

clientTlsIdentity is optional. You are advised to set it in production environments. You should al-
ways use a different clientTlsIdentity to identity because these identities have very different mean-
ings and lifecycles. For example, if your clientTlsIdentity was compromised, then so would your
identity; it’s more secure to keep them separate.

• eventHandlerOptions.commitTimeout is optional. It specifies, in seconds, the maximum amount
of time the gateway should wait for a transaction to be committed by any peer (4a) before returning control
to the application. The set of peers to use for notification is determined by the eventHandlerOptions.
strategy option. If a commitTimeout is not specified, the gateway will use a timeout of 300 seconds.

• eventHandlerOptions.strategy is optional. It identifies the set of peers that a gateway should use to
listen for notification that a transaction has been committed. For example, whether to listen for a single peer, or
all peers, from its organization. It can take one of the following values:

– EventStrategies.MSPID_SCOPE_ANYFORTX Listen for any peer within the user’s organization.
In our example, see interaction points 4b; any of peer 1, peer 2 or peer 3 from MagnetoCorp can notify the
gateway.

– EventStrategies.MSPID_SCOPE_ALLFORTX This is the default value. Listen for all peers
within the user’s organization. In our example peer, see interaction point 4b. All peers from Magneto-
Corp must all have notified the gateway; peer 1, peer 2 and peer 3. Peers are only counted if they are
known/discovered and available; peers that are stopped or have failed are not included.

– EventStrategies.NETWORK_SCOPE_ANYFORTX Listen for any peer within the entire network
channel. In our example, see interaction points 4b and 4c; any of peer 1-3 from MagnetoCorp or peer
7-9 of DigiBank can notify the gateway.

– EventStrategies.NETWORK_SCOPE_ALLFORTX Listen for all peers within the entire network
channel. In our example, see interaction points 4b and 4c. All peers from MagnetoCorp and DigiBank
must notify the gateway; peers 1-3 and peers 7-9. Peers are only counted if they are known/discovered and
available; peers that are stopped or have failed are not included.

188 Chapter 6. Developing Applications

./wallet.html#type
../membership/membership.html

hyperledger-fabricdocs Documentation, Release master

– <PluginEventHandlerFunction> The name of a user-defined event handler. This allows a user to
define their own logic for event handling. See how to define a plugin event handler, and examine a sample
handler.

A user-defined event handler is only necessary if you have very specific event handling requirements;
in general, one of the built-in event strategies will be sufficient. An example of a user-defined event
handler might be to wait for more than half the peers in an organization to confirm a transaction has been
committed.

If you do specify a user-defined event handler, it does not affect your application logic; it is quite separate
from it. The handler is called by the SDK during processing; it decides when to call it, and uses its results
to select which peers to use for event notification. The application receives control when the SDK has
finished its processing.

If a user-defined event handler is not specified then the default values for EventStrategies are used.

• discovery.enabled is optional and has possible values true or false. The default is true. It deter-
mines whether the gateway uses service discovery to augment the network topology specified in the connection
profile. See interaction point 6; peer’s gossip information used by the gateway.

This value will be overridden by the INITIALIIZE-WITH-DISCOVERY environment variable, which can be
set to true or false.

• discovery.asLocalhost is optional and has possible values true or false. The default is true. It
determines whether IP addresses found during service discovery are translated from the docker network to the
local host.

Typically developers will write applications that use docker containers for their network components such as
peers, orderers and CAs, but that do not run in docker containers themselves. This is why true is the default;
in production environments, applications will likely run in docker containers in the same manner as network
components and therefore address translation is not required. In this case, applications should either explicitly
specify false or use the environment variable override.

This value will be overridden by the DISCOVERY-AS-LOCALHOST environment variable, which can be set to
true or false.

Considerations

The following list of considerations is helpful when deciding how to choose connection options.

• eventHandlerOptions.commitTimeout and eventHandlerOptions.strategy work
together. For example, commitTimeout: 100 and strategy: EventStrategies.
MSPID_SCOPE_ANYFORTX means that the gateway will wait for up to 100 seconds for any peer to
confirm a transaction has been committed. In contrast, specifying strategy: EventStrategies.
NETWORK_SCOPE_ALLFORTX means that the gateway will wait up to 100 seconds for all peers in all
organizations.

• The default value of eventHandlerOptions.strategy: EventStrategies.
MSPID_SCOPE_ALLFORTX will wait for all peers in the application’s organization to commit the transaction.
This is a good default because applications can be sure that all their peers have an up-to-date copy of the ledger,
minimizing concurrency issues

However, as the number of peers in an organization grows, it becomes a little unnecessary to wait for all peers,
in which case using a pluggable event handler can provide a more efficient strategy. For example the same set
of peers could be used to submit transactions and listen for notifications, on the safe assumption that consensus
will keep all ledgers synchronized.

6.6. Application design elements 189

https://hyperledger.github.io/fabric-sdk-node/master/tutorial-transaction-commit-events.html
https://github.com/hyperledger/fabric-sdk-node/blob/master/test/integration/network-e2e/sample-transaction-event-handler.js
https://github.com/hyperledger/fabric-sdk-node/blob/master/test/integration/network-e2e/sample-transaction-event-handler.js
../discovery-overview.html

hyperledger-fabricdocs Documentation, Release master

• Service discovery requires clientTlsIdentity to be set. That’s because the peers exchanging informa-
tion with an application need to be confident that they are exchanging information with entities they trust. If
clientTlsIdentity is not set, then discovery will not be obeyed, regardless of whether or not it is set.

• Although applications can set connection options when they connect to the gateway, it can be necessary for
these options to be overridden by an administrator. That’s because options relate to network interactions, which
can vary over time. For example, an administrator trying to understand the effect of using service discovery on
network performance.

A good approach is to define application overrides in a configuration file which is read by the application when
it configures its connection to the gateway.

Because the discovery options enabled and asLocalHost are most frequently required to
be overridden by administrators, the environment variables INITIALIIZE-WITH-DISCOVERY and
DISCOVERY-AS-LOCALHOST are provided for convenience. The administrator should set these in the pro-
duction runtime environment of the application, which will most likely be a docker container.

6.6.8 Wallet

Audience: Architects, application and smart contract developers

A wallet contains a set of user identities. An application run by a user selects one of these identities when it connects
to a channel. Access rights to channel resources, such as the ledger, are determined using this identity in combination
with an MSP.

In this topic, we’re going to cover:

• Why wallets are important

• How wallets are organized

• Different types of wallet

• Wallet operations

Scenario

When an application connects to a network channel such as PaperNet, it selects a user identity to do so, for example
ID1. The channel MSPs associate ID1 with a role within a particular organization, and this role will ultimately
determine the application’s rights over channel resources. For example, ID1 might identify a user as a member of
the MagnetoCorp organization who can read and write to the ledger, whereas ID2 might identify an administrator in
MagnetoCorp who can add a new organization to a consortium.

190 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

Two users, Isabella and Balaji have wallets containing different identities they can use to connect to different network
channels, PaperNet and BondNet.

Consider the example of two users; Isabella from MagnetoCorp and Balaji from DigiBank. Isabella is going to use
App 1 to invoke a smart contract in PaperNet and a different smart contract in BondNet. Similarly, Balaji is going to
use App 2 to invoke smart contracts, but only in PaperNet. (It’s very easy for applications to access multiple networks
and multiple smart contracts within them.)

See how:

• MagnetoCorp uses CA1 to issue identities and DigiBank uses CA2 to issue identities. These identities are stored
in user wallets.

• Balaji’s wallet holds a single identity, ID4 issued by CA2. Isabella’s wallet has many identities, ID1, ID2 and
ID3, issued by CA1. Wallets can hold multiple identities for a single user, and each identity can be issued by a
different CA.

• Both Isabella and Balaji connect to PaperNet, and its MSPs determine that Isabella is a member of the Magne-
toCorp organization, and Balaji is a member of the DigiBank organization, because of the respective CAs that
issued their identities. (It is possible for an organization to use multiple CAs, and for a single CA to support
multiple organizations.)

• Isabella can use ID1 to connect to both PaperNet and BondNet. In both cases, when Isabella uses this identity,
she is recognized as a member of MangetoCorp.

• Isabella can use ID2 to connect to BondNet, in which case she is identified as an administrator of MagnetoCorp.
This gives Isabella two very different privileges: ID1 identifies her as a simple member of MagnetoCorp who
can read and write to the BondNet ledger, whereas ID2 identities her as a MagnetoCorp administrator who can
add a new organization to BondNet.

• Balaji cannot connect to BondNet with ID4. If he tried to connect, ID4 would not be recognized as belonging
to DigiBank because CA2 is not known to BondNet’s MSP.

Types

There are different types of wallets according to where they store their identities:

6.6. Application design elements 191

./application.html#construct-request
../membership/membership.html#mapping-msps-to-organizations

hyperledger-fabricdocs Documentation, Release master

The three different types of wallet storage: File system, In-memory and CouchDB.

• File system: This is the most common place to store wallets; file systems are pervasive, easy to understand, and
can be network mounted. They are a good default choice for wallets.

• In-memory: A wallet in application storage. Use this type of wallet when your application is running in a
constrained environment without access to a file system; typically a web browser. It’s worth remembering that
this type of wallet is volatile; identities will be lost after the application ends normally or crashes.

• CouchDB: A wallet stored in CouchDB. This is the rarest form of wallet storage, but for those users who want
to use the database back-up and restore mechanisms, CouchDB wallets can provide a useful option to simplify
disaster recovery.

Use factory functions provided by the Wallets class to create wallets.

Hardware Security Module

A Hardware Security Module (HSM) is an ultra-secure, tamper-proof device that stores digital identity information,
particularly private keys. HSMs can be locally attached to your computer or network accessible. Most HSMs provide
the ability to perform on-board encryption with private keys, such that the private keys never leave the HSM.

An HSM can be used with any of the wallet types. In this case the certificate for an identity will be stored in the wallet
and the private key will be stored in the HSM.

To enable the use of HSM-managed identities, an IdentityProvider must be configured with the HSM connec-
tion information and registered with the wallet. For further details, refer to the Using wallets to manage identities
tutorial.

Structure

A single wallet can hold multiple identities, each issued by a particular Certificate Authority. Each identity has a
standard structure comprising a descriptive label, an X.509 certificate containing a public key, a private key, and some
Fabric-specific metadata. Different wallet types map this structure appropriately to their storage mechanism.

192 Chapter 6. Developing Applications

https://hyperledger.github.io/fabric-sdk-node/master/module-fabric-network.Wallets.html
https://hyperledger.github.io/fabric-sdk-node/master/tutorial-wallet.html

hyperledger-fabricdocs Documentation, Release master

A Fabric wallet can hold multiple identities with certificates issued by a different Certificate Authority. Identities
comprise certificate, private key and Fabric metadata.

There’s a couple of key class methods that make it easy to manage wallets and identities:

const identity: X509Identity = {
credentials: {

certificate: certificatePEM,
privateKey: privateKeyPEM,

},
mspId: 'Org1MSP',
type: 'X.509',

};
await wallet.put(identityLabel, identity);

See how an identity is created that has metadata Org1MSP, a certificate and a privateKey. See how
wallet.put() adds this identity to the wallet with a particular identityLabel.

The Gateway class only requires the mspId and type metadata to be set for an identity – Org1MSP and X.509
in the above example. It currently uses the MSP ID value to identify particular peers from a connection profile, for
example when a specific notification strategy is requested. In the DigiBank gateway file networkConnection.
yaml, see how Org1MSP notifications will be associated with peer0.org1.example.com:

organizations:
Org1:
mspid: Org1MSP

peers:
- peer0.org1.example.com

You really don’t need to worry about the internal structure of the different wallet types, but if you’re interested, navigate
to a user identity folder in the commercial paper sample:

magnetocorp/identity/user/isabella/
wallet/

User1@org1.example.com.id

You can examine these files, but as discussed, it’s easier to use the SDK to manipulate these data.

Operations

The different wallet types all implement a common Wallet interface which provides a standard set of APIs to man-
age identities. It means that applications can be made independent of the underlying wallet storage mechanism; for
example, File system and HSM wallets are handled in a very similar way.

6.6. Application design elements 193

./connectionprofile.html
./connectoptions.html
https://hyperledger.github.io/fabric-sdk-node/master/module-fabric-network.Wallet.html

hyperledger-fabricdocs Documentation, Release master

Wallets follow a lifecycle: they can be created or opened, and identities can be read, added and deleted.

An application can use a wallet according to a simple lifecycle. Wallets can be opened or created, and subsequently
identities can be added, updated, read and deleted. Spend a little time on the different Wallet methods in the JSDoc
to see how they work; the commercial paper tutorial provides a nice example in addToWallet.js:

const wallet = await Wallets.newFileSystemWallet('../identity/user/isabella/wallet');

const cert = fs.readFileSync(path.join(credPath, '.../User1@org1.example.com-cert.pem
→˓')).toString();
const key = fs.readFileSync(path.join(credPath, '.../_sk')).toString();

const identityLabel = 'User1@org1.example.com';
const identity = {

credentials: {
certificate: cert,
privateKey: key,

},
mspId: 'Org1MSP',
type: 'X.509',

};

await wallet.put(identityLabel, identity);

Notice how:

• When the program is first run, a wallet is created on the local file system at .../isabella/wallet.

• a certificate cert and private key are loaded from the file system.

• a new X.509 identity is created with cert, key and Org1MSP.

• the new identity is added to the wallet with wallet.put() with a label User1@org1.example.com.

That’s everything you need to know about wallets. You’ve seen how they hold identities that are used by applications
on behalf of users to access Fabric network resources. There are different types of wallets available depending on your
application and security needs, and a simple set of APIs to help applications manage wallets and the identities within
them.

6.6.9 Gateway

Audience: Architects, application and smart contract developers

A gateway manages the network interactions on behalf of an application, allowing it to focus on business logic.
Applications connect to a gateway and then all subsequent interactions are managed using that gateway’s configuration.

194 Chapter 6. Developing Applications

https://hyperledger.github.io/fabric-sdk-node/master/module-fabric-network.Wallet.html

hyperledger-fabricdocs Documentation, Release master

In this topic, we’re going to cover:

• Why gateways are important

• How applications use a gateway

• How to define a static gateway

• How to define a dynamic gateway for service discovery

• Using multiple gateways

Scenario

A Hyperledger Fabric network channel can constantly change. The peer, orderer and CA components, contributed by
the different organizations in the network, will come and go. Reasons for this include increased or reduced business
demand, and both planned and unplanned outages. A gateway relieves an application of this burden, allowing it to
focus on the business problem it is trying to solve.

A MagnetoCorp and DigiBank applications (issue and buy) delegate their respective network interactions to their
gateways. Each gateway understands the network channel topology comprising the multiple peers and orderers of two
organizations MagnetoCorp and DigiBank, leaving applications to focus on business logic. Peers can talk to each
other both within and across organizations using the gossip protocol.

A gateway can be used by an application in two different ways:

• Static: The gateway configuration is completely defined in a connection profile. All the peers, orderers and CAs
available to an application are statically defined in the connection profile used to configure the gateway. For
peers, this includes their role as an endorsing peer or event notification hub, for example. You can read more
about these roles in the connection profile topic.

The SDK will use this static topology, in conjunction with gateway connection options, to manage the transaction
submission and notification processes. The connection profile must contain enough of the network topology to
allow a gateway to interact with the network on behalf of the application; this includes the network channels,
organizations, orderers, peers and their roles.

• Dynamic: The gateway configuration is minimally defined in a connection profile. Typically, one or two peers
from the application’s organization are specified, and they use service discovery to discover the available net-
work topology. This includes peers, orderers, channels, deployed smart contracts and their endorsement policies.
(In production environments, a gateway configuration should specify at least two peers for availability.)

The SDK will use all of the static and discovered topology information, in conjunction with gateway connection
options, to manage the transaction submission and notification processes. As part of this, it will also intelligently

6.6. Application design elements 195

./connectionprofile.html
./connectionprofile.html
../discovery-overview.html

hyperledger-fabricdocs Documentation, Release master

use the discovered topology; for example, it will calculate the minimum required endorsing peers using the
discovered endorsement policy for the smart contract.

You might ask yourself whether a static or dynamic gateway is better? The trade-off is between predictability and
responsiveness. Static networks will always behave the same way, as they perceive the network as unchanging. In
this sense they are predictable – they will always use the same peers and orderers if they are available. Dynamic
networks are more responsive as they understand how the network changes – they can use newly added peers and
orderers, which brings extra resilience and scalability, at potentially some cost in predictability. In general it’s fine to
use dynamic networks, and indeed this the default mode for gateways.

Note that the same connection profile can be used statically or dynamically. Clearly, if a profile is going to be used
statically, it needs to be comprehensive, whereas dynamic usage requires only sparse population.

Both styles of gateway are transparent to the application; the application program design does not change whether
static or dynamic gateways are used. This also means that some applications may use service discovery, while others
may not. In general using dynamic discovery means less definition and more intelligence by the SDK; it is the default.

Connect

When an application connects to a gateway, two options are provided. These are used in subsequent SDK processing:

await gateway.connect(connectionProfile, connectionOptions);

• Connection profile: connectionProfile is the gateway configuration that will be used for transaction
processing by the SDK, whether statically or dynamically. It can be specified in YAML or JSON, though it must
be converted to a JSON object when passed to the gateway:

let connectionProfile = yaml.safeLoad(fs.readFileSync('../gateway/paperNet.yaml',
→˓'utf8'));

Read more about connection profiles and how to configure them.

• Connection options: connectionOptions allow an application to declare rather than implement desired
transaction processing behaviour. Connection options are interpreted by the SDK to control interaction patterns
with network components, for example to select which identity to connect with, or which peers to use for event
notifications. These options significantly reduce application complexity without compromising functionality.
This is possible because the SDK has implemented much of the low level logic that would otherwise be required
by applications; connection options control this logic flow.

Read about the list of available connection options and when to use them.

Static

Static gateways define a fixed view of a network. In the MagnetoCorp scenario, a gateway might identify a single peer
from MagnetoCorp, a single peer from DigiBank, and a MagentoCorp orderer. Alternatively, a gateway might define
all peers and orderers from MagnetCorp and DigiBank. In both cases, a gateway must define a view of the network
sufficient to get commercial paper transactions endorsed and distributed.

Applications can use a gateway statically by explicitly specifying the connect option discovery: {
enabled:false } on the gateway.connect() API. Alternatively, the environment variable setting
FABRIC_SDK_DISCOVERY=false will always override the application choice.

Examine the connection profile used by the MagnetoCorp issue application. See how all the peers, orderers and even
CAs are specified in this file, including their roles.

196 Chapter 6. Developing Applications

./connectionprofile.html
./connectionoptions.html
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml

hyperledger-fabricdocs Documentation, Release master

It’s worth bearing in mind that a static gateway represents a view of a network at a moment in time. As networks
change, it may be important to reflect this in a change to the gateway file. Applications will automatically pick up
these changes when they re-load the gateway file.

Dynamic

Dynamic gateways define a small, fixed starting point for a network. In the MagnetoCorp scenario, a dynamic gateway
might identify just a single peer from MagnetoCorp; everything else will be discovered! (To provide resiliency, it might
be better to define two such bootstrap peers.)

If service discovery is selected by an application, the topology defined in the gateway file is augmented with that
produced by this process. Service discovery starts with the gateway definition, and finds all the connected peers and
orderers within the MagnetoCorp organization using the gossip protocol. If anchor peers have been defined for a
channel, then service discovery will use the gossip protocol across organizations to discover components within the
connected organization. This process will also discover smart contracts installed on peers and their endorsement poli-
cies defined at a channel level. As with static gateways, the discovered network must be sufficient to get commercial
paper transactions endorsed and distributed.

Dynamic gateways are the default setting for Fabric applications. They can be explicitly specified using the connect
option discovery: { enabled:true } on the gateway.connect()API. Alternatively, the environment
variable setting FABRIC_SDK_DISCOVERY=true will always override the application choice.

A dynamic gateway represents an up-to-date view of a network. As networks change, service discovery will ensure that
the network view is an accurate reflection of the topology visible to the application. Applications will automatically
pick up these changes; they do not even need to re-load the gateway file.

Multiple gateways

Finally, it is straightforward for an application to define multiple gateways, both for the same or different networks.
Moreover, applications can use the name gateway both statically and dynamically.

It can be helpful to have multiple gateways. Here are a few reasons:

• Handling requests on behalf of different users.

• Connecting to different networks simultaneously.

• Testing a network configuration, by simultaneously comparing its behaviour with an existing configuration.

This topic covers how to develop a client application and smart contract to solve a business problem using Hyperledger
Fabric. In a real world Commercial Paper scenario, involving multiple organizations, you’ll learn about all the
concepts and tasks required to accomplish this goal. We assume that the blockchain network is already available.

The topic is designed for multiple audiences:

• Solution and application architect

• Client application developer

• Smart contract developer

• Business professional

You can choose to read the topic in order, or you can select individual sections as appropriate. Individual topic sections
are marked according to reader relevance, so whether you’re looking for business or technical information it’ll be clear
when a topic is for you.

The topic follows a typical software development lifecycle. It starts with business requirements, and then covers all
the major technical activities required to develop an application and smart contract to meet these requirements.

6.6. Application design elements 197

../discovery-overview.html
../gossip.html
../glossary.html#anchor-peer

hyperledger-fabricdocs Documentation, Release master

If you’d prefer, you can try out the commercial paper scenario immediately, following an abbreviated explanation, by
running the commercial paper tutorial. You can return to this topic when you need fuller explanations of the concepts
introduced in the tutorial.

198 Chapter 6. Developing Applications

../tutorial/commercial_paper.html

CHAPTER 7

Tutorials

Application developers can use the Fabric tutorials to get started building their own solutions. Start working with
Fabric by deploying the test network on your local machine. You can then use the steps provided by the Deploying
a smart contract to a channel tutorial to deploy and test your smart contracts. The Writing Your First Application
tutorial provides an introduction to how to use the APIs provided by the Fabric SDKs to invoke smart contracts from
your client applications. For an in depth overview of how Fabric applications and smart contracts work together, you
can visit the Developing Applications topic.

Network operators can use the Deploying a smart contract to a channel tutorial and the Creating a channel tutorial
series to learn important aspects of administering a running network. Both network operators and application devel-
opers can use the tutorials on Private data and CouchDB to explore important Fabric features. When you are ready to
deploy Hyperledger Fabric in production, see the guide for Deploying a production network.

There are two tutorials for updating a channel: Updating a channel configuration and Updating the capability level of
a channel, while Upgrading your components shows how to upgrade components like peers, ordering nodes, SDKs,
and more.

Finally, we provide an introduction to how to write a basic smart contract, Chaincode for Developers.

Note: If you have questions not addressed by this documentation, or run into issues with any of the tutorials, please
visit the Still Have Questions? page for some tips on where to find additional help.

7.1 Deploying a smart contract to a channel

End users interact with the blockchain ledger by invoking smart contracts. In Hyperledger Fabric, smart contracts are
deployed in packages referred to as chaincode. Organizations that want to validate transactions or query the ledger
need to install a chaincode on their peers. After a chaincode has been installed on the peers joined to a channel,
channel members can deploy the chaincode to the channel and use the smart contracts in the chaincode to create or
update assets on the channel ledger.

A chaincode is deployed to a channel using a process known as the Fabric chaincode lifecycle. The Fabric chaincode
lifecycle allows multiple organizations to agree how a chaincode will be operated before it can be used to create

199

./test_network.html
./private_data_tutorial.html
./couchdb_tutorial.html

hyperledger-fabricdocs Documentation, Release master

transactions. For example, while an endorsement policy specifies which organizations need to execute a chaincode
to validate a transaction, channel members need to use the Fabric chaincode lifecycle to agree on the chaincode
endorsement policy. For a more in-depth overview about how to deploy and manage a chaincode on a channel, see
Fabric chaincode lifecycle.

You can use this tutorial to learn how to use the peer lifecycle chaincode commands to deploy a chaincode to a channel
of the Fabric test network. Once you have an understanding of the commands, you can use the steps in this tutorial to
deploy your own chaincode to the test network, or to deploy chaincode to a production network. In this tutorial, you
will deploy the Fabcar chaincode that is used by the Writing your first application tutorial.

Note: These instructions use the Fabric chaincode lifecycle introduced in the v2.0 release. If you would like to use
the previous lifecycle to install and instantiate a chaincode, visit the v1.4 version of the Fabric documentation.

7.1.1 Start the network

We will start by deploying an instance of the Fabric test network. Before you begin, make sure that that you have
installed the Prerequisites and Installed the Samples, Binaries and Docker Images. Use the following command to
navigate to the test network directory within your local clone of the fabric-samples repository:

cd fabric-samples/test-network

For the sake of this tutorial, we want to operate from a known initial state. The following command will kill any active
or stale docker containers and remove previously generated artifacts.

./network.sh down

You can then use the following command to start the test network:

./network.sh up createChannel

The createChannel command creates a channel named mychannel with two channel members, Org1 and Org2.
The command also joins a peer that belongs to each organization to the channel. If the network and the channel are
created successfully, you can see the following message printed in the logs:

========= Channel successfully joined ===========

We can now use the Peer CLI to deploy the Fabcar chaincode to the channel using the following steps:

• Step one: Package the smart contract

• Step two: Install the chaincode package

• Step three: Approve a chaincode definition

• Step four: Committing the chaincode definition to the channel

7.1.2 Setup Logspout (optional)

This step is not required but is extremely useful for troubleshooting chaincode. To monitor the logs of the smart
contract, an administrator can view the aggregated output from a set of Docker containers using the logspout tool.
The tool collects the output streams from different Docker containers into one place, making it easy to see what’s
happening from a single window. This can help administrators debug problems when they install smart contracts or
developers when they invoke smart contracts. Because some containers are created purely for the purposes of starting
a smart contract and only exist for a short time, it is helpful to collect all of the logs from your network.

A script to install and configure Logspout, monitordocker.sh, is already included in the commercial-paper
sample in the Fabric samples. We will use the same script in this tutorial as well. The Logspout tool will continuously

200 Chapter 7. Tutorials

./chaincode_lifecycle.html
./commands/peerlifecycle.html
./write_first_app.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4
prereqs.html
install.html
https://logdna.com/what-is-logspout/

hyperledger-fabricdocs Documentation, Release master

stream logs to your terminal, so you will need to use a new terminal window. Open a new terminal and navigate to the
test-network directory.

cd fabric-samples/test-network

You can run the monitordocker.sh script from any directory. For ease of use, we will copy the
monitordocker.sh script from the commercial-paper sample to your working directory

cp ../commercial-paper/organization/digibank/configuration/cli/monitordocker.sh .
if you're not sure where it is
find . -name monitordocker.sh

You can then start Logspout by running the following command:

./monitordocker.sh net_test

You should see output similar to the following:

Starting monitoring on all containers on the network net_basic
Unable to find image 'gliderlabs/logspout:latest' locally
latest: Pulling from gliderlabs/logspout
4fe2ade4980c: Pull complete
decca452f519: Pull complete
ad60f6b6c009: Pull complete
Digest: sha256:374e06b17b004bddc5445525796b5f7adb8234d64c5c5d663095fccafb6e4c26
Status: Downloaded newer image for gliderlabs/logspout:latest
1f99d130f15cf01706eda3e1f040496ec885036d485cb6bcc0da4a567ad84361

You will not see any logs at first, but this will change when we deploy our chaincode. It can be helpful to make this
terminal window wide and the font small.

7.1.3 Package the smart contract

We need to package the chaincode before it can be installed on our peers. The steps are different if you want to install
a smart contract written in Go, Java, or JavaScript.

Go

Before we package the chaincode, we need to install the chaincode dependences. Navigate to the folder that contains
the Go version of the Fabcar chaincode.

cd fabric-samples/chaincode/fabcar/go

The sample uses a Go module to install the chaincode dependencies. The dependencies are listed in a go.mod file in
the fabcar/go directory. You should take a moment to examine this file.

$ cat go.mod
module github.com/hyperledger/fabric-samples/chaincode/fabcar/go

go 1.13

require github.com/hyperledger/fabric-contract-api-go v1.1.0

The go.mod file imports the Fabric contract API into the smart contract package. You can open fabcar.go in a
text editor to see how the contract API is used to define the SmartContract type at the beginning of the smart
contract:

7.1. Deploying a smart contract to a channel 201

hyperledger-fabricdocs Documentation, Release master

// SmartContract provides functions for managing a car
type SmartContract struct {

contractapi.Contract
}

The SmartContract type is then used to create the transaction context for the functions defined within the smart
contract that read and write data to the blockchain ledger.

// CreateCar adds a new car to the world state with given details
func (s *SmartContract) CreateCar(ctx contractapi.TransactionContextInterface,
→˓carNumber string, make string, model string, colour string, owner string) error {

car := Car{
Make: make,
Model: model,
Colour: colour,
Owner: owner,

}

carAsBytes, _ := json.Marshal(car)

return ctx.GetStub().PutState(carNumber, carAsBytes)
}

You can learn more about the Go contract API by visiting the API documentation and the smart contract processing
topic.

To install the smart contract dependencies, run the following command from the fabcar/go directory.

GO111MODULE=on go mod vendor

If the command is successful, the go packages will be installed inside a vendor folder.

Now that we that have our dependences, we can create the chaincode package. Navigate back to our working directory
in the test-network folder so that we can package the chaincode together with our other network artifacts.

cd ../../../test-network

You can use the peer CLI to create a chaincode package in the required format. The peer binaries are located in
the bin folder of the fabric-samples repository. Use the following command to add those binaries to your CLI
Path:

export PATH=${PWD}/../bin:$PATH

You also need to set the FABRIC_CFG_PATH to point to the core.yaml file in the fabric-samples repository:

export FABRIC_CFG_PATH=$PWD/../config/

To confirm that you are able to use the peer CLI, check the version of the binaries. The binaries need to be version
2.0.0 or later to run this tutorial.

peer version

You can now create the chaincode package using the peer lifecycle chaincode package command:

peer lifecycle chaincode package fabcar.tar.gz --path ../chaincode/fabcar/go/ --lang
→˓golang --label fabcar_1

202 Chapter 7. Tutorials

https://github.com/hyperledger/fabric-contract-api-go
developapps/smartcontract.html
developapps/smartcontract.html
commands/peerlifecycle.html#peer-lifecycle-chaincode-package

hyperledger-fabricdocs Documentation, Release master

This command will create a package named fabcar.tar.gz in your current directory. The --lang flag is used to
specify the chaincode language and the --path flag provides the location of your smart contract code. The path must
be a fully qualified path or a path relative to your present working directory. The --label flag is used to specify
a chaincode label that will identity your chaincode after it is installed. It is recommended that your label include the
chaincode name and version.

Now that we created the chaincode package, we can install the chaincode on the peers of the test network.

JavaScript

Before we package the chaincode, we need to install the chaincode dependences. Navigate to the folder that contains
the JavaScript version of the Fabcar chaincode.

cd fabric-samples/chaincode/fabcar/javascript

The dependencies are listed in the package.json file in the fabcar/javascript directory. You should take a
moment to examine this file. You can find the dependences section displayed below:

"dependencies": {
"fabric-contract-api": "^2.0.0",
"fabric-shim": "^2.0.0"

The package.json file imports the Fabric contract class into the smart contract package. You can open lib/
fabcar.js in a text editor to see the contract class imported into the smart contract and used to create the FabCar
class.

const { Contract } = require('fabric-contract-api');

class FabCar extends Contract {
...

}

The FabCar class provides the transaction context for the functions defined within the smart contract that read and
write data to the blockchain ledger.

async createCar(ctx, carNumber, make, model, color, owner) {
console.info('============= START : Create Car ===========');

const car = {
color,
docType: 'car',
make,
model,
owner,

};

await ctx.stub.putState(carNumber, Buffer.from(JSON.stringify(car)));
console.info('============= END : Create Car ===========');

}

You can learn more about the JavaScript contract API by visiting the API documentation and the smart contract
processing topic.

To install the smart contract dependencies, run the following command from the fabcar/javascript directory.

npm install

7.1. Deploying a smart contract to a channel 203

https://hyperledger.github.io/fabric-chaincode-node/master/api/
developapps/smartcontract.html
developapps/smartcontract.html

hyperledger-fabricdocs Documentation, Release master

If the command is successful, the JavaScript packages will be installed inside a npm_modules folder.

Now that we that have our dependences, we can create the chaincode package. Navigate back to our working directory
in the test-network folder so that we can package the chaincode together with our other network artifacts.

cd ../../../test-network

You can use the peer CLI to create a chaincode package in the required format. The peer binaries are located in
the bin folder of the fabric-samples repository. Use the following command to add those binaries to your CLI
Path:

export PATH=${PWD}/../bin:$PATH

You also need to set the FABRIC_CFG_PATH to point to the core.yaml file in the fabric-samples repository:

export FABRIC_CFG_PATH=$PWD/../config/

To confirm that you are able to use the peer CLI, check the version of the binaries. The binaries need to be version
2.0.0 or later to run this tutorial.

peer version

You can now create the chaincode package using the peer lifecycle chaincode package command:

peer lifecycle chaincode package fabcar.tar.gz --path ../chaincode/fabcar/javascript/
→˓--lang node --label fabcar_1

This command will create a package named fabcar.tar.gz in your current directory. The --lang flag is used to
specify the chaincode language and the --path flag provides the location of your smart contract code. The --label
flag is used to specify a chaincode label that will identity your chaincode after it is installed. It is recommended that
your label include the chaincode name and version.

Now that we created the chaincode package, we can install the chaincode on the peers of the test network.

Java

Before we package the chaincode, we need to install the chaincode dependences. Navigate to the folder that contains
the Java version of the Fabcar chaincode.

cd fabric-samples/chaincode/fabcar/java

The sample uses Gradle to install the chaincode dependencies. The dependencies are listed in the build.gradle
file in the fabcar/java directory. You should take a moment to examine this file. You can find the dependences
section displayed below:

dependencies {
compileOnly 'org.hyperledger.fabric-chaincode-java:fabric-chaincode-shim:2.0.+'
implementation 'com.owlike:genson:1.5'
testImplementation 'org.hyperledger.fabric-chaincode-java:fabric-chaincode-shim:2.

→˓0.+'
testImplementation 'org.junit.jupiter:junit-jupiter:5.4.2'
testImplementation 'org.assertj:assertj-core:3.11.1'
testImplementation 'org.mockito:mockito-core:2.+'

}

The build.gradle file imports the Java chaincode shim into the smart contract package, which includes the con-
tract class. You can find Fabcar smart contract in the src directory. You can navigate to the FabCar.java file and

204 Chapter 7. Tutorials

commands/peerlifecycle.html#peer-lifecycle-chaincode-package

hyperledger-fabricdocs Documentation, Release master

open it in a text editor to see how the contract class is used to create the transaction context for the functions defined
that read and write data to the blockchain ledger.

You can learn more about the Java chaincode shim and the contract class by visiting the Java chaincode documentation
and the smart contract processing topic.

To install the smart contract dependencies, run the following command from the fabcar/java directory.

./gradlew installDist

If the command is successful, you will be able to find the built smart contract in the build folder.

Now that we have installed the dependences and built the smart contract, we can create the chaincode package. Navi-
gate back to our working directory in the test-network folder so that we can package the chaincode together with
our other network artifacts.

cd ../../../test-network

You can use the peer CLI to create a chaincode package in the required format. The peer binaries are located in
the bin folder of the fabric-samples repository. Use the following command to add those binaries to your CLI
Path:

export PATH=${PWD}/../bin:$PATH

You also need to set the FABRIC_CFG_PATH to point to the core.yaml file in the fabric-samples repository:

export FABRIC_CFG_PATH=$PWD/../config/

To confirm that you are able to use the peer CLI, check the version of the binaries. The binaries need to be version
2.0.0 or later to run this tutorial.

peer version

You can now create the chaincode package using the peer lifecycle chaincode package command:

peer lifecycle chaincode package fabcar.tar.gz --path ../chaincode/fabcar/java/build/
→˓install/fabcar --lang java --label fabcar_1

This command will create a package named fabcar.tar.gz in your current directory. The --lang flag is used to
specify the chaincode language and the --path flag provides the location of your smart contract code. The --label
flag is used to specify a chaincode label that will identity your chaincode after it is installed. It is recommended that
your label include the chaincode name and version.

Now that we created the chaincode package, we can install the chaincode on the peers of the test network.

7.1.4 Install the chaincode package

After we package the Fabcar smart contract, we can install the chaincode on our peers. The chaincode needs to be
installed on every peer that will endorse a transaction. Because we are going to set the endorsement policy to require
endorsements from both Org1 and Org2, we need to install the chaincode on the peers operated by both organizations:

• peer0.org1.example.com

• peer0.org2.example.com

Let’s install the chaincode on the Org1 peer first. Set the following environment variables to operate the peer CLI as
the Org1 admin user. The CORE_PEER_ADDRESS will be set to point to the Org1 peer, peer0.org1.example.
com.

7.1. Deploying a smart contract to a channel 205

https://hyperledger.github.io/fabric-chaincode-java/master/api/
developapps/smartcontract.html
commands/peerlifecycle.html#peer-lifecycle-chaincode-package

hyperledger-fabricdocs Documentation, Release master

export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051

Issue the peer lifecycle chaincode install command to install the chaincode on the peer:

peer lifecycle chaincode install fabcar.tar.gz

If the command is successful, the peer will generate and return the package identifier. This package ID will be used to
approve the chaincode in the next step. You should see output similar to the following:

2020-02-12 11:40:02.923 EST [cli.lifecycle.chaincode] submitInstallProposal -> INFO
→˓001 Installed remotely: response:<status:200 payload:"\nIfabcar_
→˓1:69de748301770f6ef64b42aa6bb6cb291df20aa39542c3ef94008615704007f3\022\010fabcar_1"
→˓>
2020-02-12 11:40:02.925 EST [cli.lifecycle.chaincode] submitInstallProposal -> INFO
→˓002 Chaincode code package identifier: fabcar_
→˓1:69de748301770f6ef64b42aa6bb6cb291df20aa39542c3ef94008615704007f3

We can now install the chaincode on the Org2 peer. Set the following environment variables to operate as the Org2
admin and target target the Org2 peer, peer0.org2.example.com.

export CORE_PEER_LOCALMSPID="Org2MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
→˓example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
→˓example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.
→˓com/users/Admin@org2.example.com/msp
export CORE_PEER_ADDRESS=localhost:9051

Issue the following command to install the chaincode:

peer lifecycle chaincode install fabcar.tar.gz

The chaincode is built by the peer when the chaincode is installed. The install command will return any build errors
from the chaincode if there is a problem with the smart contract code.

7.1.5 Approve a chaincode definition

After you install the chaincode package, you need to approve a chaincode definition for your organization. The
definition includes the important parameters of chaincode governance such as the name, version, and the chaincode
endorsement policy.

The set of channel members who need to approve a chaincode before it can be deployed is governed by the
Application/Channel/lifeycleEndorsement policy. By default, this policy requires that a majority of
channel members need to approve a chaincode before it can used on a channel. Because we have only two orga-
nizations on the channel, and a majority of 2 is 2, we need approve a chaincode definition of Fabcar as Org1 and
Org2.

If an organization has installed the chaincode on their peer, they need to include the packageID in the chaincode
definition approved by their organization. The package ID is used to associate the chaincode installed on a peer with

206 Chapter 7. Tutorials

commands/peerlifecycle.html#peer-lifecycle-chaincode-install

hyperledger-fabricdocs Documentation, Release master

an approved chaincode definition, and allows an organization to use the chaincode to endorse transactions. You can
find the package ID of a chaincode by using the peer lifecycle chaincode queryinstalled command to query your peer.

peer lifecycle chaincode queryinstalled

The package ID is the combination of the chaincode label and a hash of the chaincode binaries. Every peer will
generate the same package ID. You should see output similar to the following:

Installed chaincodes on peer:
Package ID: fabcar_1:69de748301770f6ef64b42aa6bb6cb291df20aa39542c3ef94008615704007f3,
→˓ Label: fabcar_1

We are going to use the package ID when we approve the chaincode, so let’s go ahead and save it as an environment
variable. Paste the package ID returned by peer lifecycle chaincode queryinstalled into the com-
mand below. Note: The package ID will not be the same for all users, so you need to complete this step using the
package ID returned from your command window in the previous step.

export CC_PACKAGE_ID=fabcar_
→˓1:69de748301770f6ef64b42aa6bb6cb291df20aa39542c3ef94008615704007f3

Because the environment variables have been set to operate the peer CLI as the Org2 admin, we can approve the
chaincode definition of Fabcar as Org2. Chaincode is approved at the organization level, so the command only needs
to target one peer. The approval is distributed to the other peers within the organization using gossip. Approve the
chaincode definition using the peer lifecycle chaincode approveformyorg command:

peer lifecycle chaincode approveformyorg -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name fabcar -
→˓-version 1.0 --package-id $CC_PACKAGE_ID --sequence 1 --tls --cafile ${PWD}/
→˓organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/
→˓tlscacerts/tlsca.example.com-cert.pem

The command above uses the --package-id flag to include the package identifier in the chaincode definition.
The --sequence parameter is an integer that keeps track of the number of times a chaincode has been defined or
updated. Because the chaincode is being deployed to the channel for the first time, the sequence number is 1. When
the Fabcar chaincode is upgraded, the sequence number will be incremented to 2. If you are using the low level APIs
provided by the Fabric Chaincode Shim API, you could pass the --init-required flag to the command above to
request the execution of the Init function to initialize the chaincode. The first invoke of the chaincode would need to
target the Init function and include the --isInit flag before you could use the other functions in the chaincode to
interact with the ledger.

We could have provided a --signature-policy or --channel-config-policy argument to the
approveformyorg command to specify a chaincode endorsement policy. The endorsement policy specifies how
many peers belonging to different channel members need to validate a transaction against a given chaincode. Because
we did not set a policy, the definition of Fabcar will use the default endorsement policy, which requires that a trans-
action be endorsed by a majority of channel members present when the transaction is submitted. This implies that if
new organizations are added or removed from the channel, the endorsement policy is updated automatically to require
more or fewer endorsements. In this tutorial, the default policy will require a majority of 2 out of 2 and transactions
will need to be endorsed by a peer from Org1 and Org2. If you want to specify a custom endorsement policy, you can
use the Endorsement Policies operations guide to learn about the policy syntax.

You need to approve a chaincode definition with an identity that has an admin role. As a result, the
CORE_PEER_MSPCONFIGPATH variable needs to point to the MSP folder that contains an admin identity. You
cannot approve a chaincode definition with a client user. The approval needs to be submitted to the ordering service,
which will validate the admin signature and then distribute the approval to your peers.

We still need to approve the chaincode definition as Org1. Set the following environment variables to operate as the
Org1 admin:

7.1. Deploying a smart contract to a channel 207

commands/peerlifecycle.html#peer-lifecycle-chaincode-queryinstalled
commands/peerlifecycle.html#peer-lifecycle-chaincode-approveformyorg
endorsement-policies.html

hyperledger-fabricdocs Documentation, Release master

export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_ADDRESS=localhost:7051

You can now approve the chaincode definition as Org1.

peer lifecycle chaincode approveformyorg -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name fabcar -
→˓-version 1.0 --package-id $CC_PACKAGE_ID --sequence 1 --tls --cafile ${PWD}/
→˓organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/
→˓tlscacerts/tlsca.example.com-cert.pem

We now have the majority we need to deploy the Fabcar the chaincode to the channel. While only a majority of
organizations need to approve a chaincode definition (with the default policies), all organizations need to approve a
chaincode definition to start the chaincode on their peers. If you commit the definition before a channel member has
approved the chaincode, the organization will not be able to endorse transactions. As a result, it is recommended that
all channel members approve a chaincode before committing the chaincode definition.

7.1.6 Committing the chaincode definition to the channel

After a sufficient number of organizations have approved a chaincode definition, one organization can commit the
chaincode definition to the channel. If a majority of channel members have approved the definition, the commit
transaction will be successful and the parameters agreed to in the chaincode definition will be implemented on the
channel.

You can use the peer lifecycle chaincode checkcommitreadiness command to check whether channel members have
approved the same chaincode definition. The flags used for the checkcommitreadiness command are identical to
the flags used to approve a chaincode for your organization. However, you do not need to include the --package-id
flag.

peer lifecycle chaincode checkcommitreadiness --channelID mychannel --name fabcar --
→˓version 1.0 --sequence 1 --tls --cafile ${PWD}/organizations/ordererOrganizations/
→˓example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -
→˓-output json

The command will produce a JSON map that displays if a channel member has approved the parameters that were
specified in the checkcommitreadiness command:

{
"Approvals": {

"Org1MSP": true,
"Org2MSP": true

}
}

Since both organizations that are members of the channel have approved the same parameters, the chaincode definition
is ready to be committed to the channel. You can use the peer lifecycle chaincode commit command to commit the
chaincode definition to the channel. The commit command also needs to be submitted by an organization admin.

peer lifecycle chaincode commit -o localhost:7050 --ordererTLSHostnameOverride
→˓orderer.example.com --channelID mychannel --name fabcar --version 1.0 --sequence 1 -
→˓-tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem --peerAddresses
→˓localhost:7051 --tlsRootCertFiles ${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt --peerAddresses localhost:9051 -
→˓-tlsRootCertFiles ${PWD}/organizations/peerOrganizations/org2.example.com/peers/
→˓peer0.org2.example.com/tls/ca.crt

(continues on next page)

208 Chapter 7. Tutorials

commands/peerlifecycle.html#peer-lifecycle-chaincode-checkcommitreadiness
commands/peerlifecycle.html#peer-lifecycle-chaincode-commit

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

The transaction above uses the --peerAddresses flag to target peer0.org1.example.com from Org1 and
peer0.org2.example.com from Org2. The commit transaction is submitted to the peers joined to the channel
to query the chaincode definition that was approved by the organization that operates the peer. The command needs to
target the peers from a sufficient number of organizations to satisfy the policy for deploying a chaincode. Because the
approval is distributed within each organization, you can target any peer that belongs to a channel member.

The chaincode definition endorsements by channel members are submitted to the ordering service to be added to a
block and distributed to the channel. The peers on the channel then validate whether a sufficient number of organiza-
tions have approved the chaincode definition. The peer lifecycle chaincode commit command will wait
for the validations from the peer before returning a response.

You can use the peer lifecycle chaincode querycommitted command to confirm that the chaincode definition has been
committed to the channel.

peer lifecycle chaincode querycommitted --channelID mychannel --name fabcar --cafile $
→˓{PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/
→˓msp/tlscacerts/tlsca.example.com-cert.pem

If the chaincode was successful committed to the channel, the querycommitted command will return the sequence
and version of the chaincode definition:

Committed chaincode definition for chaincode 'fabcar' on channel 'mychannel':
Version: 1, Sequence: 1, Endorsement Plugin: escc, Validation Plugin: vscc,
→˓Approvals: [Org1MSP: true, Org2MSP: true]

7.1.7 Invoking the chaincode

After the chaincode definition has been committed to a channel, the chaincode will start on the peers joined to the
channel where the chaincode was installed. The Fabcar chaincode is now ready to be invoked by client applications.
Use the following command create an initial set of cars on the ledger. Note that the invoke command needs target a
sufficient number of peers to meet chaincode endorsement policy.

peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓fabcar --peerAddresses localhost:7051 --tlsRootCertFiles ${PWD}/organizations/
→˓peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt --
→˓peerAddresses localhost:9051 --tlsRootCertFiles ${PWD}/organizations/
→˓peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt -c '{
→˓"function":"initLedger","Args":[]}'

If the command is successful, you should be able to a response similar to the following:

2020-02-12 18:22:20.576 EST [chaincodeCmd] chaincodeInvokeOrQuery -> INFO 001
→˓Chaincode invoke successful. result: status:200

We can use a query function to read the set of cars that were created by the chaincode:

peer chaincode query -C mychannel -n fabcar -c '{"Args":["queryAllCars"]}'

The response to the query should be the following list of cars:

7.1. Deploying a smart contract to a channel 209

commands/peerlifecycle.html#peer-lifecycle-chaincode-querycommitted

hyperledger-fabricdocs Documentation, Release master

[{"Key":"CAR0","Record":{"make":"Toyota","model":"Prius","colour":"blue","owner":
→˓"Tomoko"}},
{"Key":"CAR1","Record":{"make":"Ford","model":"Mustang","colour":"red","owner":"Brad"}
→˓},
{"Key":"CAR2","Record":{"make":"Hyundai","model":"Tucson","colour":"green","owner":
→˓"Jin Soo"}},
{"Key":"CAR3","Record":{"make":"Volkswagen","model":"Passat","colour":"yellow","owner
→˓":"Max"}},
{"Key":"CAR4","Record":{"make":"Tesla","model":"S","colour":"black","owner":"Adriana"}
→˓},
{"Key":"CAR5","Record":{"make":"Peugeot","model":"205","colour":"purple","owner":
→˓"Michel"}},
{"Key":"CAR6","Record":{"make":"Chery","model":"S22L","colour":"white","owner":"Aarav
→˓"}},
{"Key":"CAR7","Record":{"make":"Fiat","model":"Punto","colour":"violet","owner":"Pari
→˓"}},
{"Key":"CAR8","Record":{"make":"Tata","model":"Nano","colour":"indigo","owner":
→˓"Valeria"}},
{"Key":"CAR9","Record":{"make":"Holden","model":"Barina","colour":"brown","owner":
→˓"Shotaro"}}]

7.1.8 Upgrading a smart contract

You can use the same Fabric chaincode lifecycle process to upgrade a chaincode that has already been deployed to
a channel. Channel members can upgrade a chaincode by installing a new chaincode package and then approving a
chaincode definition with the new package ID, a new chaincode version, and with the sequence number incremented by
one. The new chaincode can be used after the chaincode definition is committed to the channel. This process allows
channel members to coordinate on when a chaincode is upgraded, and ensure that a sufficient number of channel
members are ready to use the new chaincode before it is deployed to the channel.

Channel members can also use the upgrade process to change the chaincode endorsement policy. By approving a
chaincode definition with a new endorsement policy and committing the chaincode definition to the channel, channel
members can change the endorsement policy governing a chaincode without installing a new chaincode package.

To provide a scenario for upgrading the Fabcar chaincode that we just deployed, let’s assume that Org1 and Org2
would like to install a version of the chaincode that is written in another language. They will use the Fabric chaincode
lifecycle to update the chaincode version and ensure that both organizations have installed the new chaincode before
it becomes active on the channel.

We are going to assume that Org1 and Org2 initially installed the GO version of the Fabcar chaincode, but would be
more comfortable working with a chaincode written in JavaScript. The first step is to package the JavaScript version
of the Fabcar chaincode. If you used the JavaScript instructions to package your chaincode when you went through
the tutorial, you can install new chaincode binaries by following the steps for packaging a chaincode written in Go or
Java.

Issue the following commands from the test-network directory to install the chaincode dependences.

cd ../chaincode/fabcar/javascript
npm install
cd ../../../test-network

You can then issue the following commands to package the JavaScript chaincode from the test-network directory.
We will set the environment variables needed to use the peer CLI again in case you closed your terminal.

export PATH=${PWD}/../bin:$PATH
export FABRIC_CFG_PATH=$PWD/../config/

(continues on next page)

210 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
peer lifecycle chaincode package fabcar_2.tar.gz --path ../chaincode/fabcar/
→˓javascript/ --lang node --label fabcar_2

Run the following commands to operate the peer CLI as the Org1 admin:

export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051

We can now use the following command to install the new chaincode package on the Org1 peer.

peer lifecycle chaincode install fabcar_2.tar.gz

The new chaincode package will create a new package ID. We can find the new package ID by querying our peer.

peer lifecycle chaincode queryinstalled

The queryinstalled command will return a list of the chaincode that have been installed on your peer.

Installed chaincodes on peer:
Package ID: fabcar_1:69de748301770f6ef64b42aa6bb6cb291df20aa39542c3ef94008615704007f3,
→˓ Label: fabcar_1
Package ID: fabcar_2:1d559f9fb3dd879601ee17047658c7e0c84eab732dca7c841102f20e42a9e7d4,
→˓ Label: fabcar_2

You can use the package label to find the package ID of the new chaincode and save it as a new environment variable.

export NEW_CC_PACKAGE_ID=fabcar_
→˓2:1d559f9fb3dd879601ee17047658c7e0c84eab732dca7c841102f20e42a9e7d4

Org1 can now approve a new chaincode definition:

peer lifecycle chaincode approveformyorg -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name fabcar -
→˓-version 2.0 --package-id $NEW_CC_PACKAGE_ID --sequence 2 --tls --cafile ${PWD}/
→˓organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/
→˓tlscacerts/tlsca.example.com-cert.pem

The new chaincode definition uses the package ID of the JavaScript chaincode package and updates the chaincode
version. Because the sequence parameter is used by the Fabric chaincode lifecycle to keep track of chaincode up-
grades, Org1 also needs to increment the sequence number from 1 to 2. You can use the peer lifecycle chaincode
querycommitted command to find the sequence of the chaincode that was last committed to the channel.

We now need to install the chaincode package and approve the chaincode definition as Org2 in order to upgrade the
chaincode. Run the following commands to operate the peer CLI as the Org2 admin:

export CORE_PEER_LOCALMSPID="Org2MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
→˓example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
→˓example.com/peers/peer0.org2.example.com/tls/ca.crt

(continues on next page)

7.1. Deploying a smart contract to a channel 211

commands/peerlifecycle.html#peer-lifecycle-chaincode-querycommitted
commands/peerlifecycle.html#peer-lifecycle-chaincode-querycommitted

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.
→˓com/users/Admin@org2.example.com/msp
export CORE_PEER_ADDRESS=localhost:9051

We can now use the following command to install the new chaincode package on the Org2 peer.

peer lifecycle chaincode install fabcar_2.tar.gz

You can now approve the new chaincode definition for Org2.

peer lifecycle chaincode approveformyorg -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name fabcar -
→˓-version 2.0 --package-id $NEW_CC_PACKAGE_ID --sequence 2 --tls --cafile ${PWD}/
→˓organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/
→˓tlscacerts/tlsca.example.com-cert.pem

Use the peer lifecycle chaincode checkcommitreadiness command to check if the chaincode definition with sequence
2 is ready to be committed to the channel:

peer lifecycle chaincode checkcommitreadiness --channelID mychannel --name fabcar --
→˓version 2.0 --sequence 2 --tls --cafile ${PWD}/organizations/ordererOrganizations/
→˓example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -
→˓-output json

The chaincode is ready to be upgraded if the command returns the following JSON:

{
"Approvals": {

"Org1MSP": true,
"Org2MSP": true

}
}

The chaincode will be upgraded on the channel after the new chaincode definition is committed. Until then, the
previous chaincode will continue to run on the peers of both organizations. Org2 can use the following command to
upgrade the chaincode:

peer lifecycle chaincode commit -o localhost:7050 --ordererTLSHostnameOverride
→˓orderer.example.com --channelID mychannel --name fabcar --version 2.0 --sequence 2 -
→˓-tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem --peerAddresses
→˓localhost:7051 --tlsRootCertFiles ${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt --peerAddresses localhost:9051 -
→˓-tlsRootCertFiles ${PWD}/organizations/peerOrganizations/org2.example.com/peers/
→˓peer0.org2.example.com/tls/ca.crt

A successful commit transaction will start the new chaincode right away. If the chaincode definition changed the
endorsement policy, the new policy would be put in effect.

You can use the docker ps command to verify that the new chaincode has started on your peers:

$docker ps
CONTAINER ID IMAGE
→˓

→˓ COMMAND CREATED STATUS
→˓PORTS NAMES
197a4b70a392 dev-peer0.org1.example.com-fabcar_2-
→˓1d559f9fb3dd879601ee17047658c7e0c84eab732dca7c841102f20e42a9e7d4-
→˓d305a4e8b4f7c0bc9aedc84c4a3439daed03caedfbce6483058250915d64dd23 "docker-
→˓entrypoint.s..." 2 minutes ago Up 2 minutes
→˓ dev-peer0.org1.example.com-fabcar_2-
→˓1d559f9fb3dd879601ee17047658c7e0c84eab732dca7c841102f20e42a9e7d4

(continues on next page)

212 Chapter 7. Tutorials

commands/peerlifecycle.html#peer-lifecycle-chaincode-checkcommitreadiness

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

b7e4dbfd4ea0 dev-peer0.org2.example.com-fabcar_2-
→˓1d559f9fb3dd879601ee17047658c7e0c84eab732dca7c841102f20e42a9e7d4-
→˓9de9cd456213232033c0cf8317cbf2d5abef5aee2529be9176fc0e980f0f7190 "docker-
→˓entrypoint.s..." 2 minutes ago Up 2 minutes
→˓ dev-peer0.org2.example.com-fabcar_2-
→˓1d559f9fb3dd879601ee17047658c7e0c84eab732dca7c841102f20e42a9e7d4
8b6e9abaef8d hyperledger/fabric-peer:latest
→˓

→˓ "peer node start" About an hour ago Up About an hour
→˓0.0.0.0:7051->7051/tcp peer0.org1.example.com
429dae4757ba hyperledger/fabric-peer:latest
→˓

→˓ "peer node start" About an hour ago Up About an hour
→˓7051/tcp, 0.0.0.0:9051->9051/tcp peer0.org2.example.com
7de5d19400e6 hyperledger/fabric-orderer:latest
→˓

→˓ "orderer" About an hour ago Up About an hour
→˓0.0.0.0:7050->7050/tcp orderer.example.com

If you used the --init-required flag, you need to invoke the Init function before you can use the upgraded
chaincode. Because we did not request the execution of Init, we can test our new JavaScript chaincode by creating a
new car:

peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓fabcar --peerAddresses localhost:7051 --tlsRootCertFiles ${PWD}/organizations/
→˓peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt --
→˓peerAddresses localhost:9051 --tlsRootCertFiles ${PWD}/organizations/
→˓peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt -c '{
→˓"function":"createCar","Args":["CAR11","Honda","Accord","Black","Tom"]}'

You can query all the cars on the ledger again to see the new car:

peer chaincode query -C mychannel -n fabcar -c '{"Args":["queryAllCars"]}'

You should see the following result from the JavaScript chaincode:

[{"Key":"CAR0","Record":{"make":"Toyota","model":"Prius","colour":"blue","owner":
→˓"Tomoko"}},
{"Key":"CAR1","Record":{"make":"Ford","model":"Mustang","colour":"red","owner":"Brad"}
→˓},
{"Key":"CAR11","Record":{"color":"Black","docType":"car","make":"Honda","model":
→˓"Accord","owner":"Tom"}},
{"Key":"CAR2","Record":{"make":"Hyundai","model":"Tucson","colour":"green","owner":
→˓"Jin Soo"}},
{"Key":"CAR3","Record":{"make":"Volkswagen","model":"Passat","colour":"yellow","owner
→˓":"Max"}},
{"Key":"CAR4","Record":{"make":"Tesla","model":"S","colour":"black","owner":"Adriana"}
→˓},
{"Key":"CAR5","Record":{"make":"Peugeot","model":"205","colour":"purple","owner":
→˓"Michel"}},
{"Key":"CAR6","Record":{"make":"Chery","model":"S22L","colour":"white","owner":"Aarav
→˓"}},
{"Key":"CAR7","Record":{"make":"Fiat","model":"Punto","colour":"violet","owner":"Pari
→˓"}},

(continues on next page)

7.1. Deploying a smart contract to a channel 213

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

{"Key":"CAR8","Record":{"make":"Tata","model":"Nano","colour":"indigo","owner":
→˓"Valeria"}},
{"Key":"CAR9","Record":{"make":"Holden","model":"Barina","colour":"brown","owner":
→˓"Shotaro"}}]

7.1.9 Clean up

When you are finished using the chaincode, you can also use the following commands to remove the Logspout tool.

docker stop logspout
docker rm logspout

You can then bring down the test network by issuing the following command from the test-network directory:

./network.sh down

7.1.10 Next steps

After you write your smart contract and deploy it to a channel, you can use the APIs provided by the Fabric SDKs to
invoke the smart contracts from a client application. This allows end users to interact with the assets on the blockchain
ledger. To get started with the Fabric SDKs, see the Writing Your first application tutorial.

7.1.11 troubleshooting

Chaincode not agreed to by this org

Problem: When I try to commit a new chaincode definition to the channel, the peer lifecycle chaincode
commit command fails with the following error:

Error: failed to create signed transaction: proposal response was not successful,
→˓error code 500, msg failed to invoke backing implementation of
→˓'CommitChaincodeDefinition': chaincode definition not agreed to by this org
→˓(Org1MSP)

Solution: You can try to resolve this error by using the peer lifecycle chaincode
checkcommitreadiness command to check which channel members have approved the chaincode defini-
tion that you are trying to commit. If any organization used a different value for any parameter of the chaincode
definition, the commit transaction will fail. The peer lifecycle chaincode checkcommitreadiness
will reveal which organizations did not approve the chaincode definition you are trying to commit:

{
"approvals": {

"Org1MSP": false,
"Org2MSP": true

}
}

214 Chapter 7. Tutorials

write_first_app.html

hyperledger-fabricdocs Documentation, Release master

Invoke failure

Problem: The peer lifecycle chaincode commit transaction is successful, but when I try to invoke the
chaincode for the first time, it fails with the following error:

Error: endorsement failure during invoke. response: status:500 message:"make sure the
→˓chaincode fabcar has been successfully defined on channel mychannel and try again:
→˓chaincode definition for 'fabcar' exists, but chaincode is not installed"

Solution: You may not have set the correct --package-id when you approved your chaincode definition. As a
result, the chaincode definition that was committed to the channel was not associated with the chaincode package you
installed and the chaincode was not started on your peers. If you are running a docker based network, you can use the
docker ps command to check if your chaincode is running:

docker ps
CONTAINER ID IMAGE COMMAND CREATED
→˓ STATUS PORTS NAMES
7fe1ae0a69fa hyperledger/fabric-orderer:latest "orderer" 5 minutes
→˓ago Up 4 minutes 0.0.0.0:7050->7050/tcp orderer.example.com
2b9c684bd07e hyperledger/fabric-peer:latest "peer node start" 5 minutes
→˓ago Up 4 minutes 0.0.0.0:7051->7051/tcp peer0.org1.example.
→˓com
39a3e41b2573 hyperledger/fabric-peer:latest "peer node start" 5 minutes
→˓ago Up 4 minutes 7051/tcp, 0.0.0.0:9051->9051/tcp peer0.org2.example.
→˓com

If you do not see any chaincode containers listed, use the peer lifecycle chaincode approveformyorg
command approve a chaincode definition with the correct package ID.

7.1.12 Endorsement policy failure

Problem: When I try to commit the chaincode definition to the channel, the transaction fails with the following error:

2020-04-07 20:08:23.306 EDT [chaincodeCmd] ClientWait -> INFO 001 txid
→˓[5f569e50ae58efa6261c4ad93180d49ac85ec29a07b58f576405b826a8213aeb] committed with
→˓status (ENDORSEMENT_POLICY_FAILURE) at localhost:7051
Error: transaction invalidated with status (ENDORSEMENT_POLICY_FAILURE)

Solution: This error is a result of the commit transaction not gathering enough endorsements to meet the Lifecycle
endorsement policy. This problem could be a result of your transaction not targeting a sufficient number of peers to
meet the policy. This could also be the result of some of the peer organizations not including the Endorsement:
signature policy referenced by the default /Channel/Application/Endorsement policy in their configtx.
yaml file:

Readers:
Type: Signature
Rule: "OR('Org2MSP.admin', 'Org2MSP.peer', 'Org2MSP.client')"

Writers:
Type: Signature
Rule: "OR('Org2MSP.admin', 'Org2MSP.client')"

Admins:
Type: Signature
Rule: "OR('Org2MSP.admin')"

Endorsement:
Type: Signature
Rule: "OR('Org2MSP.peer')"

7.1. Deploying a smart contract to a channel 215

hyperledger-fabricdocs Documentation, Release master

When you enable the Fabric chaincode lifecycle, you also need to use the new Fabric 2.0 channel policies in addition to
upgrading your channel to the V2_0 capability. Your channel needs to include the new /Channel/Application/
LifecycleEndorsement and /Channel/Application/Endorsement policies:

Policies:
Readers:

Type: ImplicitMeta
Rule: "ANY Readers"

Writers:
Type: ImplicitMeta
Rule: "ANY Writers"

Admins:
Type: ImplicitMeta
Rule: "MAJORITY Admins"

LifecycleEndorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement"

Endorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement"

If you do not include the new channel policies in the channel configuration, you will get the following error when you
approve a chaincode definition for your organization:

Error: proposal failed with status: 500 - failed to invoke backing implementation of
→˓'ApproveChaincodeDefinitionForMyOrg': could not set defaults for chaincode
→˓definition in channel mychannel: policy '/Channel/Application/Endorsement' must be
→˓defined for channel 'mychannel' before chaincode operations can be attempted

7.2 Writing Your First Application

Note: If you’re not yet familiar with the fundamental architecture of a Fabric network, you may want to visit the Key
Concepts section prior to continuing.

It is also worth noting that this tutorial serves as an introduction to Fabric applications and uses simple smart contracts
and applications. For a more in-depth look at Fabric applications and smart contracts, check out our Developing
Applications section or the Commercial paper tutorial.

This tutorial provides an introduction to how Fabric applications interact with deployed blockchain networks. The
tutorial uses sample programs built using the Fabric SDKs – described in detail in the Application topic – to invoke
a smart contract which queries and updates the ledger with the smart contract API – described in detail in Smart
Contract Processing. We will also use our sample programs and a deployed Certificate Authority to generate the
X.509 certificates that an application needs to interact with a permissioned blockchain.

About FabCar

The FabCar sample demonstrates how to query Car (our sample business object) saved on the ledger, and how to
update the ledger (add a new Car to the ledger). It involves following two components:

1. Sample application: which makes calls to the blockchain network, invoking transactions implemented
in the smart contracts.

2. Smart contract itelf, implementing the transactions that involve interactions with the ledger.

We’ll go through three principle steps:

216 Chapter 7. Tutorials

enable_cc_lifecycle.html

hyperledger-fabricdocs Documentation, Release master

1. Setting up a development environment. Our application needs a network to interact with, so we’ll
deploy a basic network for our smart contracts and application.

2. Explore a sample smart contract. We’ll inspect the sample Fabcar smart contract to learn about the
transactions within them, and how they are used by applications to query and update the ledger.

3. Interact with the smart contract with a sample application. Our application will use the FabCar
smart contract to query and update car assets on the ledger. We’ll get into the code of the apps and the
transactions they create, including querying a car, querying a range of cars, and creating a new car.

After completing this tutorial you should have a basic understanding of how Fabric applications and smart contracts
work together to manage data on the distributed ledger of a blockchain network.

7.2.1 Before you begin

In addition to the standard Prerequisites for Fabric, this tutorial leverages the Hyperledger Fabric SDK for Node.js.
See the Node.js SDK README for a up to date list of prerequisites.

• If you are using macOS, complete the following steps:

1. Install Homebrew.

2. Check the Node SDK prerequisites to find out what level of Node to install.

3. Run brew install node to download the latest version of node or choose a specific version, for
example: brew install node@10 according to what is supported in the prerequisites.

4. Run npm install.

• If you are on Windows, you can install the windows-build-tools with npm which installs all required compilers
and tooling by running the following command:

npm install --global windows-build-tools

• If you are on Linux, you need to install Python v2.7, make, and a C/C++ compiler toolchain such as GCC. You
can run the following command to install the other tools:

sudo apt install build-essentials

7.2. Writing Your First Application 217

https://github.com/hyperledger/fabric-sdk-node#build-and-test
https://brew.sh/
https://github.com/hyperledger/fabric-sdk-node#build-and-test
https://github.com/felixrieseberg/windows-build-tools#readme
https://www.python.org/download/releases/2.7/
https://www.gnu.org/software/make/
https://gcc.gnu.org/

hyperledger-fabricdocs Documentation, Release master

7.2.2 Set up the blockchain network

If you’ve already run through Using the Fabric test network tutorial and have a network up and running, this tutorial
will bring down your running network before bringing up a new one.

Launch the network

Note: This tutorial demonstrates the JavaScript versions of the FabCar smart contract and application, but the
fabric-samples repo also contains Go, Java and TypeScript versions of this sample. To try the Go, Java or
TypeScript versions, change the javascript argument for ./startFabric.sh below to either go, java or
typescript and follow the instructions written to the terminal.

Navigate to the fabcar subdirectory within your local clone of the fabric-samples repo.

cd fabric-samples/fabcar

Launch your network using the startFabric.sh shell script.

./startFabric.sh javascript

This command will deploy the Fabric test network with two peers and an ordering service. Instead of using the
cryptogen tool, we will bring up the test network using Certificate Authorities. We will use one of these CAs to create
the certificates and keys that will be used by our applications in a future step. The startFabric.sh script will
also deploy and initialize the JavaScript version of the FabCar smart contract on the channel mychannel, and then
invoke the smart contract to put initial data on the ledger.

Sample application

First component of FabCar, the sample application, is available in following languages:

• Golang

• Java

• JavaScript

• Typescript

In this tutorial, we will explain the sample written in javascript for nodejs.

From the fabric-samples/fabcar directory, navigate to the javascript folder.

cd javascript

This directory contains sample programs that were developed using the Fabric SDK for Node.js. Run the following
command to install the application dependencies. It will take about a minute to complete:

npm install

This process is installing the key application dependencies defined in package.json. The most important of which
is the fabric-network class; it enables an application to use identities, wallets, and gateways to connect to chan-
nels, submit transactions, and wait for notifications. This tutorial also uses the fabric-ca-client class to enroll
users with their respective certificate authorities, generating a valid identity which is then used by fabric-network
class methods.

218 Chapter 7. Tutorials

https://github.com/hyperledger/fabric-samples/blob/master/fabcar/go
https://github.com/hyperledger/fabric-samples/blob/master/fabcar/java
https://github.com/hyperledger/fabric-samples/blob/master/fabcar/javascript
https://github.com/hyperledger/fabric-samples/blob/master/fabcar/typescript

hyperledger-fabricdocs Documentation, Release master

Once npm install completes, everything is in place to run the application. Let’s take a look at the sample
JavaScript application files we will be using in this tutorial:

ls

You should see the following:

enrollAdmin.js node_modules package.json registerUser.js
invoke.js package-lock.json query.js wallet

There are files for other program languages, for example in the fabcar/java directory. You can read these once
you’ve used the JavaScript example – the principles are the same.

7.2.3 Enrolling the admin user

Note: The following two sections involve communication with the Certificate Authority. You may find it useful
to stream the CA logs when running the upcoming programs by opening a new terminal shell and running docker
logs -f ca_org1.

When we created the network, an admin user — literally called admin — was created as the registrar for the
certificate authority (CA). Our first step is to generate the private key, public key, and X.509 certificate for admin
using the enroll.js program. This process uses a Certificate Signing Request (CSR) — the private and public
key are first generated locally and the public key is then sent to the CA which returns an encoded certificate for use by
the application. These credentials are then stored in the wallet, allowing us to act as an administrator for the CA.

Let’s enroll user admin:

node enrollAdmin.js

This command stores the CA administrator’s credentials in the wallet directory. You can find administrator’s cer-
tificate and private key in the wallet/admin.id file.

7.2.4 Register and enroll an application user

Our admin is used to work with the CA. Now that we have the administrator’s credentials in a wallet, we can create
a new application user which will be used to interact with the blockchain. Run the following command to register and
enroll a new user named appUser:

node registerUser.js

Similar to the admin enrollment, this program uses a CSR to enroll appUser and store its credentials alongside those
of admin in the wallet. We now have identities for two separate users — admin and appUser — that can be used
by our application.

7.2.5 Querying the ledger

Each peer in a blockchain network hosts a copy of the ledger. An application program can view the most recent data
from the ledger using read only invocations of a smart contract running on your peers called a query.

Here is a simplified representation of how a query works:

7.2. Writing Your First Application 219

./ledger/ledger.html

hyperledger-fabricdocs Documentation, Release master

The most common queries involve the current values of data in the ledger – its world state. The world state is
represented as a set of key-value pairs, and applications can query data for a single key or multiple keys. Moreover,
you can use complex queries to read the data on the ledger when you use CouchDB as your state database and model
your data in JSON. This can be very helpful when looking for all assets that match certain keywords with particular
values; all cars with a particular owner, for example.

First, let’s run our query.js program to return a listing of all the cars on the ledger. This program uses our second
identity – appUser – to access the ledger:

node query.js

The output should look like this:

Wallet path: ...fabric-samples/fabcar/javascript/wallet
Transaction has been evaluated, result is:
[{"Key":"CAR0","Record":{"color":"blue","docType":"car","make":"Toyota","model":"Prius
→˓","owner":"Tomoko"}},
{"Key":"CAR1","Record":{"color":"red","docType":"car","make":"Ford","model":"Mustang",
→˓"owner":"Brad"}},
{"Key":"CAR2","Record":{"color":"green","docType":"car","make":"Hyundai","model":
→˓"Tucson","owner":"Jin Soo"}},
{"Key":"CAR3","Record":{"color":"yellow","docType":"car","make":"Volkswagen","model":
→˓"Passat","owner":"Max"}},
{"Key":"CAR4","Record":{"color":"black","docType":"car","make":"Tesla","model":"S",
→˓"owner":"Adriana"}},
{"Key":"CAR5","Record":{"color":"purple","docType":"car","make":"Peugeot","model":"205
→˓","owner":"Michel"}},
{"Key":"CAR6","Record":{"color":"white","docType":"car","make":"Chery","model":"S22L",
→˓"owner":"Aarav"}},
{"Key":"CAR7","Record":{"color":"violet","docType":"car","make":"Fiat","model":"Punto
→˓","owner":"Pari"}},
{"Key":"CAR8","Record":{"color":"indigo","docType":"car","make":"Tata","model":"Nano",
→˓"owner":"Valeria"}},
{"Key":"CAR9","Record":{"color":"brown","docType":"car","make":"Holden","model":
→˓"Barina","owner":"Shotaro"}}]

220 Chapter 7. Tutorials

./ledger/ledger.html#world-state

hyperledger-fabricdocs Documentation, Release master

Let’s take a closer look at how query.js program uses the APIs provided by the Fabric Node SDK to interact with our
Fabric network. Use an editor (e.g. atom or visual studio) to open query.js.

The application starts by bringing in scope two key classes from the fabric-network module; Wallets and
Gateway. These classes will be used to locate the appUser identity in the wallet, and use it to connect to the
network:

const { Gateway, Wallets } = require('fabric-network');

First, the program uses the Wallet class to get our application user from our file system.

const identity = await wallet.get('appUser');

Once the program has an identity, it uses the Gateway class to connect to our network.

const gateway = new Gateway();
await gateway.connect(ccpPath, { wallet, identity: 'appUser', discovery: { enabled:
→˓true, asLocalhost: true } });

ccpPath describes the path to the connection profile that our application will use to connect to our network. The
connection profile was loaded from inside the fabric-samples/test-network directory and parsed as a JSON
file:

const ccpPath = path.resolve(__dirname, '..', '..', 'test-network','organizations',
→˓'peerOrganizations','org1.example.com', 'connection-org1.json');

If you’d like to understand more about the structure of a connection profile, and how it defines the network, check out
the connection profile topic.

A network can be divided into multiple channels, and the next important line of code connects the application to a
particular channel within the network, mychannel, where our smart contract was deployed:

const network = await gateway.getNetwork('mychannel');

Within this channel, we can access the FabCar smart contract to interact with the ledger:

const contract = network.getContract('fabcar');

Within FabCar there are many different transactions, and our application initially uses the queryAllCars transac-
tion to access the ledger world state data:

const result = await contract.evaluateTransaction('queryAllCars');

The evaluateTransaction method represents one of the simplest interactions with a smart contract in
blockchain network. It simply picks a peer defined in the connection profile and sends the request to it, where it
is evaluated. The smart contract queries all the cars on the peer’s copy of the ledger and returns the result to the
application. This interaction does not result in an update the ledger.

7.2.6 The FabCar smart contract

FabCar smart contract sample is available in following languages:

• Golang

• Java

• JavaScript

7.2. Writing Your First Application 221

https://hyperledger.github.io/fabric-sdk-node/
./developapps/connectionprofile.html
https://github.com/hyperledger/fabric-samples/blob/master/chaincode/fabcar/go
https://github.com/hyperledger/fabric-samples/blob/master/chaincode/fabcar/java
https://github.com/hyperledger/fabric-samples/blob/master/chaincode/fabcar/javascript

hyperledger-fabricdocs Documentation, Release master

• Typescript

Let’s take a look at the transactions within the FabCar smart contract written in JavaScript. Open a new terminal and
navigate to the JavaScript version of the FabCar Smart contract inside the fabric-samples repository:

cd fabric-samples/chaincode/fabcar/javascript/lib

Open the fabcar.js file in a text editor editor.

See how our smart contract is defined using the Contract class:

class FabCar extends Contract {...

Within this class structure, you’ll see that we have the following transactions defined: initLedger, queryCar,
queryAllCars, createCar, and changeCarOwner. For example:

async queryCar(ctx, carNumber) {...}
async queryAllCars(ctx) {...}

Let’s take a closer look at the queryAllCars transaction to see how it interacts with the ledger.

async queryAllCars(ctx) {

const startKey = '';
const endKey = '';

const iterator = await ctx.stub.getStateByRange(startKey, endKey);

This code shows how to retrieve all cars from the ledger within a key range using getStateByRange. Giving empty
startKey & endKey is interpreted as all the keys from beginning to end. As another example, if you use startKey
= 'CAR0', endKey = 'CAR999' , then getStateByRange will retrieve cars with keys between CAR0 (in-
clusive) and CAR999 (exclusive) in lexical order. The remainder of the code iterates through the query results and
packages them into JSON for the sample application to use.

Below is a representation of how an application would call different transactions in a smart contract. Each transaction
uses a broad set of APIs such as getStateByRange to interact with the ledger. You can read more about these
APIs in detail.

We can see our queryAllCars transaction, and another called createCar. We will use this later in the tutorial to
update the ledger, and add a new block to the blockchain.

But first, go back to the query program and change the evaluateTransaction request to query CAR4. The
query program should now look like this:

const result = await contract.evaluateTransaction('queryCar', 'CAR4');

Save the program and navigate back to your fabcar/javascript directory. Now run the query program again:

222 Chapter 7. Tutorials

https://github.com/hyperledger/fabric-samples/blob/master/chaincode/fabcar/typescript
https://hyperledger.github.io/fabric-chaincode-node/

hyperledger-fabricdocs Documentation, Release master

node query.js

You should see the following:

Wallet path: ...fabric-samples/fabcar/javascript/wallet
Transaction has been evaluated, result is:
{"color":"black","docType":"car","make":"Tesla","model":"S","owner":"Adriana"}

If you go back and look at the result from when the transaction was queryAllCars, you can see that CAR4 was
Adriana’s black Tesla model S, which is the result that was returned here.

We can use the queryCar transaction to query against any car, using its key (e.g. CAR0) and get whatever make,
model, color, and owner correspond to that car.

Great. At this point you should be comfortable with the basic query transactions in the smart contract and the handful
of parameters in the query program.

Time to update the ledger. . .

7.2.7 Updating the ledger

Now that we’ve done a few ledger queries and added a bit of code, we’re ready to update the ledger. There are a lot of
potential updates we could make, but let’s start by creating a new car.

From an application perspective, updating the ledger is simple. An application submits a transaction to the blockchain
network, and when it has been validated and committed, the application receives a notification that the transaction
has been successful. Under the covers this involves the process of consensus whereby the different components of
the blockchain network work together to ensure that every proposed update to the ledger is valid and performed in an
agreed and consistent order.

Above, you can see the major components that make this process work. As well as the multiple peers which each
host a copy of the ledger, and optionally a copy of the smart contract, the network also contains an ordering service.

7.2. Writing Your First Application 223

hyperledger-fabricdocs Documentation, Release master

The ordering service coordinates transactions for a network; it creates blocks containing transactions in a well-defined
sequence originating from all the different applications connected to the network.

Our first update to the ledger will create a new car. We have a separate program called invoke.js that we will use
to make updates to the ledger. Just as with queries, use an editor to open the program and navigate to the code block
where we construct our transaction and submit it to the network:

await contract.submitTransaction('createCar', 'CAR12', 'Honda', 'Accord', 'Black',
→˓'Tom');

See how the applications calls the smart contract transaction createCar to create a black Honda Accord with an
owner named Tom. We use CAR12 as the identifying key here, just to show that we don’t need to use sequential keys.

Save it and run the program:

node invoke.js

If the invoke is successful, you will see output like this:

Wallet path: ...fabric-samples/fabcar/javascript/wallet
Transaction has been submitted

Notice how the invoke application interacted with the blockchain network using the submitTransaction API,
rather than evaluateTransaction.

await contract.submitTransaction('createCar', 'CAR12', 'Honda', 'Accord', 'Black',
→˓'Tom');

submitTransaction is much more sophisticated than evaluateTransaction. Rather than interacting with
a single peer, the SDK will send the submitTransaction proposal to every required organization’s peer in the
blockchain network. Each of these peers will execute the requested smart contract using this proposal, to generate a
transaction response which it signs and returns to the SDK. The SDK collects all the signed transaction responses into
a single transaction, which it then sends to the orderer. The orderer collects and sequences transactions from every
application into a block of transactions. It then distributes these blocks to every peer in the network, where every
transaction is validated and committed. Finally, the SDK is notified, allowing it to return control to the application.

Note: submitTransaction also includes a listener that checks to make sure the transaction has been vali-
dated and committed to the ledger. Applications should either utilize a commit listener, or leverage an API like
submitTransaction that does this for you. Without doing this, your transaction may not have been successfully
ordered, validated, and committed to the ledger.

submitTransaction does all this for the application! The process by which the application, smart contract, peers
and ordering service work together to keep the ledger consistent across the network is called consensus, and it is
explained in detail in this section.

To see that this transaction has been written to the ledger, go back to query.js and change the argument from CAR4
to CAR12.

In other words, change this:

const result = await contract.evaluateTransaction('queryCar', 'CAR4');

To this:

const result = await contract.evaluateTransaction('queryCar', 'CAR12');

Save once again, then query:

224 Chapter 7. Tutorials

./peers/peers.html

hyperledger-fabricdocs Documentation, Release master

node query.js

Which should return this:

Wallet path: ...fabric-samples/fabcar/javascript/wallet
Transaction has been evaluated, result is:
{"color":"Black","docType":"car","make":"Honda","model":"Accord","owner":"Tom"}

Congratulations. You’ve created a car and verified that its recorded on the ledger!

So now that we’ve done that, let’s say that Tom is feeling generous and he wants to give his Honda Accord to someone
named Dave.

To do this, go back to invoke.js and change the smart contract transaction from createCar to
changeCarOwner with a corresponding change in input arguments:

await contract.submitTransaction('changeCarOwner', 'CAR12', 'Dave');

The first argument — CAR12 — identifies the car that will be changing owners. The second argument — Dave —
defines the new owner of the car.

Save and execute the program again:

node invoke.js

Now let’s query the ledger again and ensure that Dave is now associated with the CAR12 key:

node query.js

It should return this result:

Wallet path: ...fabric-samples/fabcar/javascript/wallet
Transaction has been evaluated, result is:
{"color":"Black","docType":"car","make":"Honda","model":"Accord","owner":"Dave"}

The ownership of CAR12 has been changed from Tom to Dave.

Note: In a real world application the smart contract would likely have some access control logic. For example, only
certain authorized users may create new cars, and only the car owner may transfer the car to somebody else.

7.2.8 Clean up

When you are finished using the FabCar sample, you can bring down the test network using networkDown.sh
script.

./networkDown.sh

This command will bring down the CAs, peers, and ordering node of the network that we created. It will also remove
the admin and appUser crypto material stored in the wallet directory. Note that all of the data on the ledger will
be lost. If you want to go through the tutorial again, you will start from a clean initial state.

7.2. Writing Your First Application 225

hyperledger-fabricdocs Documentation, Release master

7.2.9 Summary

Now that we’ve done a few queries and a few updates, you should have a pretty good sense of how applications interact
with a blockchain network using a smart contract to query or update the ledger. You’ve seen the basics of the roles
smart contracts, APIs, and the SDK play in queries and updates and you should have a feel for how different kinds of
applications could be used to perform other business tasks and operations.

7.2.10 Additional resources

As we said in the introduction, we have a whole section on Developing Applications that includes in-depth information
on smart contracts, process and data design, a tutorial using a more in-depth Commercial Paper tutorial and a large
amount of other material relating to the development of applications.

7.3 Commercial paper tutorial

Audience: Architects, application and smart contract developers, administrators

This tutorial will show you how to install and use a commercial paper sample application and smart contract. It is a
task-oriented topic, so it emphasizes procedures above concepts. When you’d like to understand the concepts in more
detail, you can read the Developing Applications topic.

In this tutorial two organizations, MagnetoCorp and DigiBank, trade commercial paper with each other using Paper-
Net, a Hyperledger Fabric blockchain network.

Once you’ve set up the test network, you’ll act as Isabella, an employee of MagnetoCorp, who will issue a commercial
paper on its behalf. You’ll then switch roles to take the role of Balaji, an employee of DigiBank, who will buy this
commercial paper, hold it for a period of time, and then redeem it with MagnetoCorp for a small profit.

You’ll act as a developer, end user, and administrator, each in different organizations, performing the following steps
designed to help you understand what it’s like to collaborate as two different organizations working independently, but
according to mutually agreed rules in a Hyperledger Fabric network.

• Set up machine and download samples

• Create the network

• Examine the commercial paper smart contract

• Deploy the smart contract to the channel by approving the chaincode definition as MagnetoCorp and Digibank.

• Understand the structure of a MagnetoCorp application, including its dependencies

• Configure and use a wallet and identities

• Run a MagnetoCorp application to issue a commercial paper

226 Chapter 7. Tutorials

./tutorial/commercial_paper.html
../developapps/developing_applications.html

hyperledger-fabricdocs Documentation, Release master

• Understand how DigiBank uses the smart contract in their applications

• As Digibank, run applications that buy and redeem commercial paper

This tutorial has been tested on MacOS and Ubuntu, and should work on other Linux distributions. A Windows version
is under development.

7.3.1 Prerequisites

Before you start, you must install some prerequisite technology required by the tutorial. We’ve kept these to a mini-
mum so that you can get going quickly.

You must have the following technologies installed:

• Node The Node.js SDK README contains the up to date list of prerequisites.

You will find it helpful to install the following technologies:

• A source code editor, such as Visual Studio Code version 1.28, or higher. VS Code will help you develop and
test your application and smart contract. Install VS Code here.

Many excellent code editors are available including Atom, Sublime Text and Brackets.

You may find it helpful to install the following technologies as you become more experienced with application and
smart contract development. There’s no requirement to install these when you first run the tutorial:

• Node Version Manager. NVM helps you easily switch between different versions of node – it can be really
helpful if you’re working on multiple projects at the same time. Install NVM here.

7.3.2 Download samples

The commercial paper tutorial is one of the samples in the fabric-samples repository. Before you begin this
tutorial, ensure that you have followed the instructions to install the Fabric Prerequisites and Download the Samples,
Binaries and Docker Images. When you are finished, you will have cloned the fabric-samples repository that
contains the tutorial scripts, smart contract, and application files.

Download the fabric-samples GitHub repository to your local machine.

After downloading, feel free to examine the directory structure of fabric-samples:

$ cd fabric-samples
$ ls

CODEOWNERS SECURITY.md first-network
CODE_OF_CONDUCT.md chaincode high-throughput
CONTRIBUTING.md chaincode-docker-devmode interest_rate_swaps
LICENSE ci off_chain_data

(continues on next page)

7.3. Commercial paper tutorial 227

https://github.com/hyperledger/fabric-sdk-node#build-and-test
https://code.visualstudio.com/
https://code.visualstudio.com/Download
https://atom.io/
http://www.sublimetext.com/
http://www.sublimetext.com/
https://github.com/creationix/nvm
https://github.com/creationix/nvm#installation
../prereqs.html
../install.html
../install.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

MAINTAINERS.md commercial-paper test-network
README.md fabcar

Notice the commercial-paper directory – that’s where our sample is located!

You’ve now completed the first stage of the tutorial! As you proceed, you’ll open multiple command windows for
different users and components. For example:

• To show peer, orderer and CA log output from your network.

• To approve the chaincode as an administrator from MagnetoCorp and as an administrator from DigiBank.

• To run applications on behalf of Isabella and Balaji, who will use the smart contract to trade commercial paper
with each other.

We’ll make it clear when you should run a command from particular command window; for example:

(isabella)$ ls

indicates that you should run the ls command from Isabella’s window.

7.3.3 Create the network

This tutorial will deploy a smart contract using the Fabric test network. The test network consists of two peer or-
ganizations and one ordering organization. The two peer organizations operate one peer each, while the ordering
organization operates a single node Raft ordering service. We will also use the test network to create a single channel
named mychannel that both peer organizations will be members of.

The Fabric test network is comprised of two peer organizations, Org1 and Org2, and one ordering organization. Each
component runs as a Docker container.

Each organization runs their own Certificate Authority. The two peers, the state databases, the ordering service node,
and each organization CA each run in their own Docker container. In production environments, organizations typically
use existing CAs that are shared with other systems; they’re not dedicated to the Fabric network.

The two organizations of the test network allow us to interact with a blockchain ledger as two organizations that operate
separate peers. In this tutorial, we will operate Org1 of the test network as DigiBank and Org2 as MagnetoCorp.

You can start the test network and create the channel with a script provided in the commercial paper directory. Change
to the commercial-paper directory in the fabric-samples:

228 Chapter 7. Tutorials

../ledger/ledger.html#world-state-database-options

hyperledger-fabricdocs Documentation, Release master

cd fabric-samples/commercial-paper

Then use the script to start the test network:

./network-starter.sh

While the script is running, you will see logs of the test network being deployed. When the script is complete, you can
use the docker ps command to see the Fabric nodes running on your local machine:

$ docker ps

CONTAINER ID IMAGE COMMAND
→˓CREATED STATUS PORTS
→˓ NAMES
a86f50ca1907 hyperledger/fabric-peer:latest "peer node start"
→˓About a minute ago Up About a minute 7051/tcp, 0.0.0.0:9051->9051/tcp
→˓ peer0.org2.example.com
77d0fcaee61b hyperledger/fabric-peer:latest "peer node start"
→˓About a minute ago Up About a minute 0.0.0.0:7051->7051/tcp
→˓ peer0.org1.example.com
7eb5f64bfe5f hyperledger/fabric-couchdb "tini -- /docker-ent..."
→˓About a minute ago Up About a minute 4369/tcp, 9100/tcp, 0.0.0.0:5984->5984/tcp
→˓ couchdb0
2438df719f57 hyperledger/fabric-couchdb "tini -- /docker-ent..."
→˓About a minute ago Up About a minute 4369/tcp, 9100/tcp, 0.0.0.0:7984->5984/tcp
→˓ couchdb1
03373d116c5a hyperledger/fabric-orderer:latest "orderer"
→˓About a minute ago Up About a minute 0.0.0.0:7050->7050/tcp
→˓ orderer.example.com
6b4d87f65909 hyperledger/fabric-ca:latest "sh -c 'fabric-ca-se..."
→˓About a minute ago Up About a minute 7054/tcp, 0.0.0.0:8054->8054/tcp
→˓ ca_org2
7b01f5454832 hyperledger/fabric-ca:latest "sh -c 'fabric-ca-se..."
→˓About a minute ago Up About a minute 7054/tcp, 0.0.0.0:9054->9054/tcp
→˓ ca_orderer
87aef6062f23 hyperledger/fabric-ca:latest "sh -c 'fabric-ca-se..."
→˓About a minute ago Up About a minute 0.0.0.0:7054->7054/tcp
→˓ ca_org1

See if you can map these containers to the nodes of the test network (you may need to horizontally scroll to locate the
information):

• The Org1 peer, peer0.org1.example.com, is running in container a86f50ca1907

• The Org2 peer, peer0.org2.example.com, is running in container 77d0fcaee61b

• The CouchDB database for the Org1 peer, couchdb0, is running in container 7eb5f64bfe5f

• The CouchDB database for the Org2 peer, couchdb1, is running in container 2438df719f57

• The Ordering node, orderer.example.com, is running in container 03373d116c5a

• The Org1 CA, ca_org1, is running in container 87aef6062f23

• The Org2 CA, ca_org2, is running in container 6b4d87f65909

• The Ordering Org CA, ca_orderer, is running in container 7b01f5454832

These containers all form a Docker network called net_test. You can view the network with the docker
network command:

7.3. Commercial paper tutorial 229

https://docs.docker.com/network/

hyperledger-fabricdocs Documentation, Release master

$ docker network inspect net_test

[
{

"Name": "net_test",
"Id": "f4c9712139311004b8f7acc14e9f90170c5dcfd8cdd06303c7b074624b44dc9f",
"Created": "2020-04-28T22:45:38.525016Z",
"Containers": {

"03373d116c5abf2ca94f6f00df98bb74f89037f511d6490de4a217ed8b6fbcd0": {
"Name": "orderer.example.com",
"EndpointID":

→˓"0eed871a2aaf9a5dbcf7896aa3c0f53cc61f57b3417d36c56747033fd9f81972",
"MacAddress": "02:42:c0:a8:70:05",
"IPv4Address": "192.168.112.5/20",
"IPv6Address": ""

},
"2438df719f57a597de592cfc76db30013adfdcfa0cec5b375f6b7259f67baff8": {

"Name": "couchdb1",
"EndpointID":

→˓"52527fb450a7c80ea509cb571d18e2196a95c630d0f41913de8ed5abbd68993d",
"MacAddress": "02:42:c0:a8:70:06",
"IPv4Address": "192.168.112.6/20",
"IPv6Address": ""

},
"6b4d87f65909afd335d7acfe6d79308d6e4b27441b25a829379516e4c7335b88": {

"Name": "ca_org2",
"EndpointID":

→˓"1cc322a995880d76e1dd1f37ddf9c43f86997156124d4ecbb0eba9f833218407",
"MacAddress": "02:42:c0:a8:70:04",
"IPv4Address": "192.168.112.4/20",
"IPv6Address": ""

},
"77d0fcaee61b8fff43d33331073ab9ce36561a90370b9ef3f77c663c8434e642": {

"Name": "peer0.org1.example.com",
"EndpointID":

→˓"05d0d34569eee412e28313ba7ee06875a68408257dc47e64c0f4f5ef4a9dc491",
"MacAddress": "02:42:c0:a8:70:08",
"IPv4Address": "192.168.112.8/20",
"IPv6Address": ""

},
"7b01f5454832984fcd9650f05b4affce97319f661710705e6381dfb76cd99fdb": {

"Name": "ca_orderer",
"EndpointID":

→˓"057390288a424f49d6e9d6f788049b1e18aa28bccd56d860b2be8ceb8173ef74",
"MacAddress": "02:42:c0:a8:70:02",
"IPv4Address": "192.168.112.2/20",
"IPv6Address": ""

},
"7eb5f64bfe5f20701aae8a6660815c4e3a81c3834b71f9e59a62fb99bed1afc7": {

"Name": "couchdb0",
"EndpointID":

→˓"bfe740be15ec9dab7baf3806964e6b1f0b67032ce1b7ae26ac7844a1b422ddc4",
"MacAddress": "02:42:c0:a8:70:07",
"IPv4Address": "192.168.112.7/20",
"IPv6Address": ""

},
"87aef6062f2324889074cda80fec8fe014d844e10085827f380a91eea4ccdd74": {

(continues on next page)

230 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"Name": "ca_org1",
"EndpointID":

→˓"a740090d33ca94dd7c6aaf14a79e1cb35109b549ee291c80195beccc901b16b7",
"MacAddress": "02:42:c0:a8:70:03",
"IPv4Address": "192.168.112.3/20",
"IPv6Address": ""

},
"a86f50ca19079f59552e8674932edd02f7f9af93ded14db3b4c404fd6b1abe9c": {

"Name": "peer0.org2.example.com",
"EndpointID":

→˓"6e56772b4783b1879a06f86901786fed1c307966b72475ce4631405ba8bca79a",
"MacAddress": "02:42:c0:a8:70:09",
"IPv4Address": "192.168.112.9/20",
"IPv6Address": ""

}
},
"Options": {},
"Labels": {}

}
]

See how the eight containers use different IP addresses, while being part of a single Docker network. (We’ve abbrevi-
ated the output for clarity.)

Because we are operating the test network as DigiBank and MagnetoCorp, peer0.org1.example.com will be-
long to the DigiBank organization while peer0.org2.example.com will be operated by MagnetoCorp. Now
that the test network is up and running, we can refer to our network as PaperNet from this point forward.

To recap: you’ve downloaded the Hyperledger Fabric samples repository from GitHub and you’ve got a Fabric network
running on your local machine. Let’s now start to play the role of MagnetoCorp, who wishes to issue and trade
commercial paper.

7.3.4 Monitor the network as MagnetoCorp

The commercial paper tutorial allows you to act as two organizations by providing two separate folders for DigiBank
and MagnetoCorp. The two folders contain the smart contracts and application files for each organization. Because
the two organizations have different roles in the trading of the commercial paper, the application files are different
for each organization. Open a new window in the fabric-samples repository and use the following command to
change into the MagnetoCorp directory:

cd commercial-paper/organization/magnetocorp

The first thing we are going to do as MagnetoCorp is monitor the components of PaperNet. An administrator can view
the aggregated output from a set of Docker containers using the logspout tool. The tool collects the different output
streams into one place, making it easy to see what’s happening from a single window. This can be really helpful for
administrators when installing smart contracts or for developers when invoking smart contracts, for example.

In the MagnetoCorp directory, run the following command to run the monitordocker.sh script and start the
logspout tool for the containers associated with PaperNet running on net_test:

(magnetocorp admin)$./configuration/cli/monitordocker.sh net_test
...
latest: Pulling from gliderlabs/logspout
4fe2ade4980c: Pull complete
decca452f519: Pull complete

(continues on next page)

7.3. Commercial paper tutorial 231

https://github.com/gliderlabs/logspout#logspout

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

(...)
Starting monitoring on all containers on the network net_test
b7f3586e5d0233de5a454df369b8eadab0613886fc9877529587345fc01a3582

Note that you can pass a port number to the above command if the default port in monitordocker.sh is already
in use.

(magnetocorp admin)$./monitordocker.sh net_test <port_number>

This window will now show output from the Docker containers for the remainder of the tutorial, so go ahead and open
another command window. The next thing we will do is examine the smart contract that MagnetoCorp will use to
issue to the commercial paper.

7.3.5 Examine the commercial paper smart contract

issue, buy and redeem are the three functions at the heart of the commercial paper smart contract. It is used by
applications to submit transactions which correspondingly issue, buy and redeem commercial paper on the ledger. Our
next task is to examine this smart contract.

Open a new terminal in the fabric-samples directory and change into the MagnetoCorp folder to act as the
MagnetoCorp developer.

cd commercial-paper/organization/magnetocorp

You can then view the smart contract in the contract directory using your chosen editor (VS Code in this tutorial):

(magnetocorp developer)$ code contract

In the lib directory of the folder, you’ll see papercontract.js file – this contains the commercial paper smart
contract!

232 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

An example code editor displaying the commercial paper smart contract in papercontract.js

papercontract.js is a JavaScript program designed to run in the Node.js environment. Note the following key
program lines:

• const { Contract, Context } = require('fabric-contract-api');

This statement brings into scope two key Hyperledger Fabric classes that will be used extensively by the smart
contract – Contract and Context. You can learn more about these classes in the fabric-shim JSDOCS.

• class CommercialPaperContract extends Contract {

This defines the smart contract class CommercialPaperContract based on the built-in Fabric Contract
class. The methods which implement the key transactions to issue, buy and redeem commercial paper are
defined within this class.

• async issue(ctx, issuer, paperNumber, issueDateTime, maturityDateTime...)
{

This method defines the commercial paper issue transaction for PaperNet. The parameters that are passed to
this method will be used to create the new commercial paper.

Locate and examine the buy and redeem transactions within the smart contract.

• let paper = CommercialPaper.createInstance(issuer, paperNumber,
issueDateTime...);

Within the issue transaction, this statement creates a new commercial paper in memory using the
CommercialPaper class with the supplied transaction inputs. Examine the buy and redeem transactions
to see how they similarly use this class.

• await ctx.paperList.addPaper(paper);

This statement adds the new commercial paper to the ledger using ctx.paperList, an instance of a

7.3. Commercial paper tutorial 233

https://hyperledger.github.io/fabric-chaincode-node/

hyperledger-fabricdocs Documentation, Release master

PaperList class that was created when the smart contract context CommercialPaperContext was ini-
tialized. Again, examine the buy and redeem methods to see how they use this class.

• return paper;

This statement returns a binary buffer as response from the issue transaction for processing by the caller of
the smart contract.

Feel free to examine other files in the contract directory to understand how the smart contract works, and read in
detail how papercontract.js is designed in the smart contract processing topic.

7.3.6 Deploy the smart contract to the channel

Before papercontract can be invoked by applications, it must be installed onto the appropriate peer nodes of the
test network and then defined on the channel using the Fabric chaincode lifecycle. The Fabric chaincode lifecycle
allows multiple organizations to agree to the parameters of a chaincode before the chaincode is deployed to a channel.
As a result, we need to install and approve the chaincode as administrators of both MagnetoCorp and DigiBank.

A MagnetoCorp administrator installs a copy of the papercontract onto a MagnetoCorp peer.

Smart contracts are the focus of application development, and are contained within a Hyperledger Fabric artifact called
chaincode. One or more smart contracts can be defined within a single chaincode, and installing a chaincode will allow
them to be consumed by the different organizations in PaperNet. It means that only administrators need to worry about
chaincode; everyone else can think in terms of smart contracts.

Install and approve the smart contract as MagnetoCorp

We will first install and approve the smart contract as the MagnetoCorp admin. Make sure that you are operating from
the magnetocorp folder, or navigate back to that folder using the following command:

cd commercial-paper/organization/magnetocorp

A MagnetoCorp administrator can interact with PaperNet using the peer CLI. However, the administrator needs to
set certain environment variables in their command window to use the correct set of peer binaries, send commands
to the address of the MagnetoCorp peer, and sign requests with the correct cryptographic material.

You can use a script provided by the sample to set the environment variables in your command window. Run the
following command in the magnetocorp directory:

source magnetocorp.sh

You will see the full list of environment variables printed in your window. We can now use this command window to
interact with PaperNet as the MagnetoCorp administrator.

234 Chapter 7. Tutorials

../developapps/smartcontract.html
../chaincode_lifecycle.html#chaincode-lifecycle
../chaincode.html

hyperledger-fabricdocs Documentation, Release master

The first step is to install the papercontract smart contract. The smart contract can be packaged into a chaincode
using the peer lifecycle chaincode package command. In the MagnetoCorp administrator’s command
window, run the following command to create the chaincode package:

(magnetocorp admin)$ peer lifecycle chaincode package cp.tar.gz --lang node --path ./
→˓contract --label cp_0

The MagnetoCorp admin can now install the chaincode on the MagnetoCorp peer using the peer lifecycle
chaincode install command:

(magnetocorp admin)$ peer lifecycle chaincode install cp.tar.gz

When the chaincode package is installed, you will see messages similar to the following printed in your terminal:

2020-01-30 18:32:33.762 EST [cli.lifecycle.chaincode] submitInstallProposal -> INFO
→˓001 Installed remotely: response:<status:200 payload:"\nEcp_
→˓0:ffda93e26b183e231b7e9d5051e1ee7ca47fbf24f00a8376ec54120b1a2a335c\022\004cp_0" >
2020-01-30 18:32:33.762 EST [cli.lifecycle.chaincode] submitInstallProposal -> INFO
→˓002 Chaincode code package identifier: cp_
→˓0:ffda93e26b183e231b7e9d5051e1ee7ca47fbf24f00a8376ec54120b1a2a335c

Because the MagnetoCorp admin has set CORE_PEER_ADDRESS=localhost:9051 to target its commands to
peer0.org2.example.com, the INFO 001 Installed remotely... indicates that papercontract
has been successfully installed on this peer.

After we install the smart contract, we need to approve the chaincode definition for papercontract as Magneto-
Corp. The first step is to find the packageID of the chaincode we installed on our peer. We can query the packageID
using the peer lifecycle chaincode queryinstalled command:

peer lifecycle chaincode queryinstalled

The command will return the same package identifier as the install command. You should see output similar to the
following:

Installed chaincodes on peer:
Package ID: cp_0:ffda93e26b183e231b7e9d5051e1ee7ca47fbf24f00a8376ec54120b1a2a335c,
→˓Label: cp_0

We will need the package ID in the next step, so we will save it as an environment variable. The package ID may
not be the same for all users, so you need to complete this step using the package ID returned from your command
window.

export PACKAGE_ID=cp_
→˓0:ffda93e26b183e231b7e9d5051e1ee7ca47fbf24f00a8376ec54120b1a2a335c

The admin can now approve the chaincode definition for MagnetoCorp using the peer lifecycle chaincode
approveformyorg command:

(magnetocorp admin)$ peer lifecycle chaincode approveformyorg --orderer
→˓localhost:7050 --ordererTLSHostnameOverride orderer.example.com --channelID
→˓mychannel --name papercontract -v 0 --package-id $PACKAGE_ID --sequence 1 --tls --
→˓cafile $ORDERER_CA

One of the most important chaincode parameters that channel members need to agree to using the chaincode definition
is the chaincode endorsement policy. The endorsement policy describes the set of organizations that must endorse (ex-
ecute and sign) a transaction before it can be determined to be valid. By approving the papercontract chaincode
without the --policy flag, the MagnetoCorp admin agrees to using the channel’s default Endorsement policy,

7.3. Commercial paper tutorial 235

../endorsement-policies.html

hyperledger-fabricdocs Documentation, Release master

which in the case of the mychannel test channel requires a majority of organizations on the channel to endorse
a transaction. All transactions, whether valid or invalid, will be recorded on the ledger blockchain, but only valid
transactions will update the world state.

Install and approve the smart contract as DigiBank

Based on the mychannel LifecycleEndorsement policy, the Fabric Chaincode lifecycle will require a majority
of organizations on the channel to agree to the chaincode definition before the chaincode can be committed to the
channel. This implies that we need to approve the papernet chaincode as both MagnetoCorp and DigiBank to get
the required majority of 2 out of 2. Open a new terminal window in the fabric-samples and navigate to the folder
that contains the DigiBank smart contract and application files:

(digibank admin)$ cd commercial-paper/organization/digibank/

Use the script in the DigiBank folder to set the environment variables that will allow you to act as the DigiBank admin:

source digibank.sh

We can now install and approve papercontract as the DigiBank. Run the following command to package the
chaincode:

(digibank admin)$ peer lifecycle chaincode package cp.tar.gz --lang node --path ./
→˓contract --label cp_0

The admin can now install the chaincode on the DigiBank peer:

(digibank admin)$ peer lifecycle chaincode install cp.tar.gz

We then need to query and save the packageID of the chaincode that was just installed:

(digibank admin)$ peer lifecycle chaincode queryinstalled

Save the package ID as an environment variable. Complete this step using the package ID returned from your console.

export PACKAGE_ID=cp_
→˓0:ffda93e26b183e231b7e9d5051e1ee7ca47fbf24f00a8376ec54120b1a2a335c

The Digibank admin can now approve the chaincode definition of papercontract:

(digibank admin)$ peer lifecycle chaincode approveformyorg --orderer localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name
→˓papercontract -v 0 --package-id $PACKAGE_ID --sequence 1 --tls --cafile $ORDERER_CA

Commit the chaincode definition to the channel

Now that DigiBank and MagnetoCorp have both approved the papernet chaincode, we have the majority we need
(2 out of 2) to commit the chaincode definition to the channel. Once the chaincode is successfully defined on the
channel, the CommercialPaper smart contract inside the papercontract chaincode can be invoked by client
applications on the channel. Since either organization can commit the chaincode to the channel, we will continue
operating as the DigiBank admin:

236 Chapter 7. Tutorials

../ledger/ledger.html#blockchain
../ledger/ledger.html#world-state

hyperledger-fabricdocs Documentation, Release master

After the DigiBank administrator commits the definition of the papercontract chaincode to the channel, a new
Docker chaincode container will be created to run papercontract on both PaperNet peers

The DigiBank administrator uses the peer lifecycle chaincode commit command to commit the chain-
code definition of papercontract to mychannel:

(digibank admin)$ peer lifecycle chaincode commit -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com --peerAddresses localhost:7051 --
→˓tlsRootCertFiles ${PEER0_ORG1_CA} --peerAddresses localhost:9051 --tlsRootCertFiles
→˓${PEER0_ORG2_CA} --channelID mychannel --name papercontract -v 0 --sequence 1 --tls
→˓--cafile $ORDERER_CA --waitForEvent

The chaincode container will start after the chaincode definition has been committed to the channel. You can use the
docker ps command to see papercontract container starting on both peers.

(digibank admin)$ docker ps

CONTAINER ID IMAGE
→˓

→˓ COMMAND CREATED STATUS
→˓PORTS NAMES
d4ba9dc9c55f dev-peer0.org1.example.com-cp_0-
→˓ebef35e7f1f25eea1dcc6fcad5019477cd7f434c6a5dcaf4e81744e282903535-
→˓05cf67c20543ee1c24cf7dfe74abce99785374db15b3bc1de2da372700c25608 "docker-
→˓entrypoint.s..." 30 seconds ago Up 28 seconds
→˓ dev-peer0.org1.example.com-cp_0-
→˓ebef35e7f1f25eea1dcc6fcad5019477cd7f434c6a5dcaf4e81744e282903535
a944c0f8b6d6 dev-peer0.org2.example.com-cp_0-
→˓1487670371e56d107b5e980ce7f66172c89251ab21d484c7f988c02912ddeaec-
→˓1a147b6fd2a8bd2ae12db824fad8d08a811c30cc70bc5b6bc49a2cbebc2e71ee "docker-
→˓entrypoint.s..." 31 seconds ago Up 28 seconds
→˓ dev-peer0.org2.example.com-cp_0-
→˓1487670371e56d107b5e980ce7f66172c89251ab21d484c7f988c02912ddeaec

Notice that the containers are named to indicate the peer that started it, and the fact that it’s running papercontract
version 0.

Now that we have deployed the papercontract chaincode to the channel, we can use the MagnetoCorp application
to issue the commercial paper. Let’s take a moment to examine the application structure.

7.3.7 Application structure

The smart contract contained in papercontract is called by MagnetoCorp’s application issue.js. Isabella uses
this application to submit a transaction to the ledger which issues commercial paper 00001. Let’s quickly examine
how the issue application works.

7.3. Commercial paper tutorial 237

hyperledger-fabricdocs Documentation, Release master

A gateway allows an application to focus on transaction generation, submission and response. It coordinates transac-
tion proposal, ordering and notification processing between the different network components.

Because the issue application submits transactions on behalf of Isabella, it starts by retrieving Isabella’s X.509
certificate from her wallet, which might be stored on the local file system or a Hardware Security Module HSM. The
issue application is then able to utilize the gateway to submit transactions on the channel. The Hyperledger Fabric
SDK provides a gateway abstraction so that applications can focus on application logic while delegating network
interaction to the gateway. Gateways and wallets make it straightforward to write Hyperledger Fabric applications.

So let’s examine the issue application that Isabella is going to use. Open a separate terminal window for her, and in
fabric-samples locate the MagnetoCorp /application folder:

(isabella)$ cd commercial-paper/organization/magnetocorp/application/
(isabella)$ ls

enrollUser.js issue.js package.json

addToWallet.js is the program that Isabella is going to use to load her identity into her wallet, and issue.js
will use this identity to create commercial paper 00001 on behalf of MagnetoCorp by invoking papercontract.

Change to the directory that contains MagnetoCorp’s copy of the application issue.js, and use your code editor to
examine it:

(isabella)$ cd commercial-paper/organization/magnetocorp/application
(isabella)$ code issue.js

Examine this directory; it contains the issue application and all its dependencies.

238 Chapter 7. Tutorials

../developapps/wallet.html
https://en.wikipedia.org/wiki/Hardware_security_module
../developapps/gateway.html

hyperledger-fabricdocs Documentation, Release master

A code editor displaying the contents of the commercial paper application directory.

Note the following key program lines in issue.js:

• const { Wallets, Gateway } = require('fabric-network');

This statement brings two key Hyperledger Fabric SDK classes into scope – Wallet and Gateway.

• const wallet = await Wallets.newFileSystemWallet('../identity/user/
isabella/wallet');

This statement identifies that the application will use isabella wallet when it connects to the blockchain
network channel. Because Isabella’s X.509 certificate is in the local file system, the application creates a new
FileSystemWallet. The application will select a particular identity within isabella wallet.

• await gateway.connect(connectionProfile, connectionOptions);

This line of code connects to the network using the gateway identified by connectionProfile, using the
identity referred to in ConnectionOptions.

See how ../gateway/networkConnection.yaml and User1@org1.example.com are used for
these values respectively.

• const network = await gateway.getNetwork('mychannel');

This connects the application to the network channel mychannel, where the papercontract was previ-
ously deployed.

• const contract = await network.getContract('papercontract');

7.3. Commercial paper tutorial 239

hyperledger-fabricdocs Documentation, Release master

This statement gives the application access to the papercontract chaincode. Once an application has issued
getContract, it can submit to any smart contract transaction implemented within the chaincode.

• const issueResponse = await contract.submitTransaction('issue',
'MagnetoCorp', '00001', ...);

This line of code submits the a transaction to the network using the issue transaction defined within the smart
contract. MagnetoCorp, 00001. . . are the values to be used by the issue transaction to create a new
commercial paper.

• let paper = CommercialPaper.fromBuffer(issueResponse);

This statement processes the response from the issue transaction. The response needs to deserialized from a
buffer into paper, a CommercialPaper object which can interpreted correctly by the application.

Feel free to examine other files in the /application directory to understand how issue.js works, and read in
detail how it is implemented in the application topic.

7.3.8 Application dependencies

The issue.js application is written in JavaScript and designed to run in the Node.js environment that acts as a
client to the PaperNet network. As is common practice, MagnetoCorp’s application is built on many external node
packages — to improve quality and speed of development. Consider how issue.js includes the js-yaml package
to process the YAML gateway connection profile, or the fabric-network package to access the Gateway and
Wallet classes:

const yaml = require('js-yaml');
const { Wallets, Gateway } = require('fabric-network');

These packages have to be downloaded from npm to the local file system using the npm install command. By
convention, packages must be installed into an application-relative /node_modules directory for use at runtime.

Open the package.json file to see how issue.js identifies the packages to download and their exact versions
by examining the “dependencies” section of the file.

npm versioning is very powerful; you can read more about it here.

Let’s install these packages with the npm install command – this may take up to a minute to complete:

(isabella)$ cd commercial-paper/organization/magnetocorp/application/
(isabella)$ npm install

() extract:lodash: sill extract ansi-styles@3.2.1
(...)
added 738 packages in 46.701s

See how this command has updated the directory:

(isabella)$ ls

enrollUser.js node_modules package.json
issue.js package-lock.json

Examine the node_modules directory to see the packages that have been installed. There are lots, because
js-yaml and fabric-network are themselves built on other npm packages! Helpfully, the package-lock.
json file identifies the exact versions installed, which can prove invaluable if you want to exactly reproduce environ-
ments; to test, diagnose problems or deliver proven applications for example.

240 Chapter 7. Tutorials

../developapps/application.html
https://www.npmjs.com/package/js-yaml
https://www.npmjs.com/package/fabric-network
https://www.npmjs.com/
https://docs.npmjs.com/getting-started/semantic-versioning
https://docs.npmjs.com/files/package-lock.json

hyperledger-fabricdocs Documentation, Release master

7.3.9 Wallet

Isabella is almost ready to run issue.js to issue MagnetoCorp commercial paper 00001; there’s just one remaining
task to perform! As issue.js acts on behalf of Isabella, and therefore MagnetoCorp, it will use identity from her
wallet that reflects these facts. We now need to perform this one-time activity of generating the appropriate X.509
credentials to her wallet.

The MagnetoCorp Certificate Authority running on PaperNet, ca_org2, has an application user that was registered
when the network was deployed. Isabella can use the identity name and secret to generate the X.509 cryptographic
material for the issue.js application. The process of using a CA to generate client side cryptographic material is
referred to as enrollment. In a real word scenario, a network operator would provide the name and secret of a client
identity that was registered with the CA to an application developer. The developer would then use the credentials to
enroll their application and interact with the network.

The enrollUser.js program uses the fabric-ca-client class to generate a private and public key pair, and
then issues a Certificate Signing Request to the CA. If the identiy name and secret submitted by Isabella match the
credentials registered with the CA, the CA will issue and sign a certificate that encodes the public key, establishing
that Isabella belongs to MagnetoCorp. When the signing request is complete, enrollUser.js stores the private
key and signing certificate in Isabella’s wallet. You can examine the enrollUser.js file to learn more about how
the Node SDK uses the fabric-ca-client class to complete these tasks.

In Isabella’s terminal window, run the enrollUser.js program to add identity information to her wallet:

(isabella)$ node enrollUser.js

Wallet path: /Users/nikhilgupta/fabric-samples/commercial-paper/organization/
→˓magnetocorp/identity/user/isabella/wallet
Successfully enrolled client user "isabella" and imported it into the wallet

We can now turn our focus to the result of this program — the contents of the wallet which will be used to submit
transactions to PaperNet:

(isabella)$ ls ../identity/user/isabella/wallet/

isabella.id

Isabella can store multiple identities in her wallet, though in our example, she only uses one. The wallet folder
contains an isabella.id file that provides the information that Isabella needs to connect to the network. Other
identities used by Isabella would have their own file. You can open this file to see the identity information that
issue.js will use on behalf of Isabella inside a JSON file. The output has been formatted for clarity.

(isabella)$ cat ../identity/user/isabella/wallet/*

{
"credentials": {
"certificate": "-----BEGIN CERTIFICATE-----

→˓\nMIICKTCCAdCgAwIBAgIQWKwvLG+sqeO3LwwQK6avZDAKBggqhkjOPQQDAjBzMQsw\nCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNU2FuIEZy\nYW5jaXNjbzEZMBcGA1UEChMQb3JnMi5leGFtcGxlLmNvbTEcMBoGA1UEAxMTY2Eu\nb3JnMi5leGFtcGxlLmNvbTAeFw0yMDAyMDQxOTA5MDBaFw0zMDAyMDExOTA5MDBa\nMGwxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1T\nYW4gRnJhbmNpc2NvMQ8wDQYDVQQLEwZjbGllbnQxHzAdBgNVBAMMFlVzZXIxQG9y\nZzIuZXhhbXBsZS5jb20wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAT4TnTblx0k\ngfqX+NN7F76Me33VTq3K2NUWZRreoJzq6bAuvdDR+iFvVPKXbdORnVvRSATcXsYl\nt20yU7n/
→˓53dbo00wSzAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH/
→˓BAIwADArBgNV\nHSMEJDAigCDOCdm4irsZFU3D6Hak4+84QRg1N43iwg8w1V6DRhgLyDAKBggqhkjO\nPQQDAgNHADBEAiBhzKix1KJcbUy9ey5ulWHRUMbqdVCNHe/
→˓mRtUdaJagIgIgYpbZ\nXf0CSiTXIWOJIsswN4Jp+ZxkJfFVmXndqKqz+VM=\n-----END CERTIFICATE---
→˓--\n",

"privateKey": "-----BEGIN PRIVATE KEY-----
→˓\nMIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQggs55vQg2oXi8gNi8\nNidE8Fy5zenohArDq3FGJD8cKU2hRANCAAT4TnTblx0kgfqX+NN7F76Me33VTq3K\n2NUWZRreoJzq6bAuvdDR+iFvVPKXbdORnVvRSATcXsYlt20yU7n/
→˓53db\n-----END PRIVATE KEY-----\n"
},
"mspId": "Org2MSP",
"type": "X.509",

(continues on next page)

7.3. Commercial paper tutorial 241

../developapps/wallet.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"version": 1
}

In the file you can notice the following:

• a "privateKey": used to sign transactions on Isabella’s behalf, but not distributed outside of her immediate
control.

• a "certificate": which contains Isabella’s public key and other X.509 attributes added by the Certificate
Authority at certificate creation. This certificate is distributed to the network so that different actors at different
times can cryptographically verify information created by Isabella’s private key.

You can Learn more about certificates here. In practice, the certificate file also contains some Fabric-specific metadata
such as Isabella’s organization and role – read more in the wallet topic.

7.3.10 Issue application

Isabella can now use issue.js to submit a transaction that will issue MagnetoCorp commercial paper 00001:

(isabella)$ node issue.js

Connect to Fabric gateway.
Use network channel: mychannel.
Use org.papernet.commercialpaper smart contract.
Submit commercial paper issue transaction.
Process issue transaction response.{"class":"org.papernet.commercialpaper","key":"\
→˓"MagnetoCorp\":\"00001\"","currentState":1,"issuer":"MagnetoCorp","paperNumber":
→˓"00001","issueDateTime":"2020-05-31","maturityDateTime":"2020-11-30","faceValue":
→˓"5000000","owner":"MagnetoCorp"}
MagnetoCorp commercial paper : 00001 successfully issued for value 5000000
Transaction complete.
Disconnect from Fabric gateway.
Issue program complete.

The node command initializes a Node.js environment, and runs issue.js. We can see from the program output
that MagnetoCorp commercial paper 00001 was issued with a face value of 5M USD.

As you’ve seen, to achieve this, the application invokes the issue transaction defined in the CommercialPaper
smart contract within papercontract.js. The smart contract interacts with the ledger via the Fabric APIs, most
notably putState() and getState(), to represent the new commercial paper as a vector state within the world
state. We’ll see how this vector state is subsequently manipulated by the buy and redeem transactions also defined
within the smart contract.

All the time, the underlying Fabric SDK handles the transaction endorsement, ordering and notification process, mak-
ing the application’s logic straightforward; the SDK uses a gateway to abstract away network details and connec-
tionOptions to declare more advanced processing strategies such as transaction retry.

Let’s now follow the lifecycle of MagnetoCorp 00001 by switching our emphasis to an employee of DigiBank, Balaji,
who will buy the commercial paper using a DigiBank application.

7.3.11 Digibank applications

Balaji uses DigiBank’s buy application to submit a transaction to the ledger which transfers ownership of commercial
paper 00001 from MagnetoCorp to DigiBank. The CommercialPaper smart contract is the same as that used by
MagnetoCorp’s application, however the transaction is different this time – it’s buy rather than issue. Let’s examine
how DigiBank’s application works.

242 Chapter 7. Tutorials

../identity/identity.html#digital-certificates
../developapps/wallet.html
../developapps/gateway.html
../developapps/connectoptions.html
../developapps/connectoptions.html

hyperledger-fabricdocs Documentation, Release master

Open a separate terminal window for Balaji. In fabric-samples, change to the DigiBank application directory
that contains the application, buy.js, and open it with your editor:

(balaji)$ cd commercial-paper/organization/digibank/application/
(balaji)$ code buy.js

As you can see, this directory contains both the buy and redeem applications that will be used by Balaji.

DigiBank’s commercial paper directory containing the buy.js and redeem.js applications.

DigiBank’s buy.js application is very similar in structure to MagnetoCorp’s issue.js with two important differ-
ences:

• Identity: the user is a DigiBank user Balaji rather than MagnetoCorp’s Isabella

const wallet = await Wallets.newFileSystemWallet('../identity/user/balaji/wallet
→˓');

See how the application uses the balaji wallet when it connects to the PaperNet network channel. buy.js
selects a particular identity within balaji wallet.

• Transaction: the invoked transaction is buy rather than issue

const buyResponse = await contract.submitTransaction('buy', 'MagnetoCorp', '00001
→˓', ...);

7.3. Commercial paper tutorial 243

hyperledger-fabricdocs Documentation, Release master

A buy transaction is submitted with the values MagnetoCorp, 00001, . . . , that are used by the
CommercialPaper smart contract class to transfer ownership of commercial paper 00001 to DigiBank.

Feel free to examine other files in the application directory to understand how the application works, and read in
detail how buy.js is implemented in the application topic.

7.3.12 Run as DigiBank

The DigiBank applications which buy and redeem commercial paper have a very similar structure to MagnetoCorp’s
issue application. Therefore, let’s install their dependencies and set up Balaji’s wallet so that he can use these applica-
tions to buy and redeem commercial paper.

Like MagnetoCorp, Digibank must the install the required application packages using the npm install command,
and again, this make take a short time to complete.

In the DigiBank administrator window, install the application dependencies:

(digibank admin)$ cd commercial-paper/organization/digibank/application/
(digibank admin)$ npm install

() extract:lodash: sill extract ansi-styles@3.2.1
(...)
added 738 packages in 46.701s

In Balaji’s command window, run the enrollUser.js program to generate a certificate and private key and them
to his wallet:

(balaji)$ node enrollUser.js

Wallet path: /Users/nikhilgupta/fabric-samples/commercial-paper/organization/digibank/
→˓identity/user/balaji/wallet
Successfully enrolled client user "balaji" and imported it into the wallet

The addToWallet.js program has added identity information for balaji, to his wallet, which will be used by
buy.js and redeem.js to submit transactions to PaperNet.

Like Isabella, Balaji can store multiple identities in his wallet, though in our example, he only uses one. His corre-
sponding id file at digibank/identity/user/balaji/wallet/balaji.id is very similar Isabella’s —
feel free to examine it.

7.3.13 Buy application

Balaji can now use buy.js to submit a transaction that will transfer ownership of MagnetoCorp commercial paper
00001 to DigiBank.

Run the buy application in Balaji’s window:

(balaji)$ node buy.js

Connect to Fabric gateway.
Use network channel: mychannel.
Use org.papernet.commercialpaper smart contract.
Submit commercial paper buy transaction.
Process buy transaction response.
MagnetoCorp commercial paper : 00001 successfully purchased by DigiBank
Transaction complete.

(continues on next page)

244 Chapter 7. Tutorials

../developapps/application.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Disconnect from Fabric gateway.
Buy program complete.

You can see the program output that MagnetoCorp commercial paper 00001 was successfully purchased by Balaji on
behalf of DigiBank. buy.js invoked the buy transaction defined in the CommercialPaper smart contract which
updated commercial paper 00001 within the world state using the putState() and getState() Fabric APIs.
As you’ve seen, the application logic to buy and issue commercial paper is very similar, as is the smart contract logic.

7.3.14 Redeem application

The final transaction in the lifecycle of commercial paper 00001 is for DigiBank to redeem it with MagnetoCorp.
Balaji uses redeem.js to submit a transaction to perform the redeem logic within the smart contract.

Run the redeem transaction in Balaji’s window:

(balaji)$ node redeem.js

Connect to Fabric gateway.
Use network channel: mychannel.
Use org.papernet.commercialpaper smart contract.
Submit commercial paper redeem transaction.
Process redeem transaction response.
MagnetoCorp commercial paper : 00001 successfully redeemed with MagnetoCorp
Transaction complete.
Disconnect from Fabric gateway.
Redeem program complete.

Again, see how the commercial paper 00001 was successfully redeemed when redeem.js invoked the redeem
transaction defined in CommercialPaper. Again, it updated commercial paper 00001 within the world state to
reflect that the ownership returned to MagnetoCorp, the issuer of the paper.

7.3.15 Clean up

When you are finished using the Commercial Paper tutorial, you can use a script to clean up your environment. Use a
command window to navigate back to the root directory of the commercial paper sample:

cd fabric-samples/commercial-paper

You can then bring down the network with the following command:

./network-clean.sh

This command will bring down the peers, CouchDB containers, and ordering node of the network, in addition to the
logspout tool. It will also remove the identities that we created for Isabella and Balaji. Note that all of the data on the
ledger will be lost. If you want to go through the tutorial again, you will start from a clean initial state.

7.3.16 Further reading

To understand how applications and smart contracts shown in this tutorial work in more detail, you’ll find it helpful
to read Developing Applications. This topic will give you a fuller explanation of the commercial paper scenario, the
PaperNet business network, its actors, and how the applications and smart contracts they use work in detail.

Also feel free to use this sample to start creating your own applications and smart contracts!

7.3. Commercial paper tutorial 245

../developapps/developing_applications.html

hyperledger-fabricdocs Documentation, Release master

7.4 Using Private Data in Fabric

This tutorial will demonstrate the use of collections to provide storage and retrieval of private data on the blockchain
network for authorized peers of organizations.

The information in this tutorial assumes knowledge of private data stores and their use cases. For more information,
check out Private data.

Note: These instructions use the new Fabric chaincode lifecycle introduced in the Fabric v2.0 release. If you would
like to use the previous lifecycle model to use private data with chaincode, visit the v1.4 version of the Using Private
Data in Fabric tutorial.

The tutorial will take you through the following steps to practice defining, configuring and using private data with
Fabric:

1. Build a collection definition JSON file

2. Read and Write private data using chaincode APIs

3. Install and define a chaincode with a collection

4. Store private data

5. Query the private data as an authorized peer

6. Query the private data as an unauthorized peer

7. Purge Private Data

8. Using indexes with private data

9. Additional resources

This tutorial will deploy the marbles private data sample to the Fabric test network to demonstrate how to create,
deploy, and use a collection of private data. You should have completed the task Install Samples, Binaries, and Docker
Images.

7.4.1 Build a collection definition JSON file

The first step in privatizing data on a channel is to build a collection definition which defines access to the private data.

The collection definition describes who can persist data, how many peers the data is distributed to, how many peers are
required to disseminate the private data, and how long the private data is persisted in the private database. Later, we
will demonstrate how chaincode APIs PutPrivateData and GetPrivateData are used to map the collection
to the private data being secured.

A collection definition is composed of the following properties:

• name: Name of the collection.

• policy: Defines the organization peers allowed to persist the collection data.

• requiredPeerCount: Number of peers required to disseminate the private data as a condition of the en-
dorsement of the chaincode

• maxPeerCount: For data redundancy purposes, the number of other peers that the current endorsing peer will
attempt to distribute the data to. If an endorsing peer goes down, these other peers are available at commit time
if there are requests to pull the private data.

246 Chapter 7. Tutorials

https://hyperledger-fabric.readthedocs.io/en/release-1.4/private_data_tutorial.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private_data_tutorial.html
https://github.com/hyperledger/fabric-samples/tree/master/chaincode/marbles02_private

hyperledger-fabricdocs Documentation, Release master

• blockToLive: For very sensitive information such as pricing or personal information, this value represents
how long the data should live on the private database in terms of blocks. The data will live for this specified
number of blocks on the private database and after that it will get purged, making this data obsolete from the
network. To keep private data indefinitely, that is, to never purge private data, set the blockToLive property
to 0.

• memberOnlyRead: a value of true indicates that peers automatically enforce that only clients belonging to
one of the collection member organizations are allowed read access to private data.

To illustrate usage of private data, the marbles private data example contains two private data collection defini-
tions: collectionMarbles and collectionMarblePrivateDetails. The policy property in the
collectionMarbles definition allows all members of the channel (Org1 and Org2) to have the private data in
a private database. The collectionMarblesPrivateDetails collection allows only members of Org1 to
have the private data in their private database.

For more information on building a policy definition refer to the Endorsement policies topic.

// collections_config.json

[
{

"name": "collectionMarbles",
"policy": "OR('Org1MSP.member', 'Org2MSP.member')",
"requiredPeerCount": 0,
"maxPeerCount": 3,
"blockToLive":1000000,
"memberOnlyRead": true

},

{
"name": "collectionMarblePrivateDetails",
"policy": "OR('Org1MSP.member')",
"requiredPeerCount": 0,
"maxPeerCount": 3,
"blockToLive":3,
"memberOnlyRead": true

}
]

The data to be secured by these policies is mapped in chaincode and will be shown later in the tutorial.

This collection definition file is deployed when the chaincode definition is committed to the channel using the peer
lifecycle chaincode commit command. More details on this process are provided in Section 3 below.

7.4.2 Read and Write private data using chaincode APIs

The next step in understanding how to privatize data on a channel is to build the data definition in the chaincode. The
marbles private data sample divides the private data into two separate data definitions according to how the data will
be accessed.

// Peers in Org1 and Org2 will have this private data in a side database
type marble struct {
ObjectType string `json:"docType"`
Name string `json:"name"`
Color string `json:"color"`
Size int `json:"size"`
Owner string `json:"owner"`

(continues on next page)

7.4. Using Private Data in Fabric 247

commands/peerlifecycle.html#peer-lifecycle-chaincode-commit
commands/peerlifecycle.html#peer-lifecycle-chaincode-commit

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

}

// Only peers in Org1 will have this private data in a side database
type marblePrivateDetails struct {
ObjectType string `json:"docType"`
Name string `json:"name"`
Price int `json:"price"`

}

Specifically access to the private data will be restricted as follows:

• name, color, size, and owner will be visible to all members of the channel (Org1 and Org2)

• price only visible to members of Org1

Thus two different sets of private data are defined in the marbles private data sample. The mapping of this data to the
collection policy which restricts its access is controlled by chaincode APIs. Specifically, reading and writing private
data using a collection definition is performed by calling GetPrivateData() and PutPrivateData(), which
can be found here.

The following diagram illustrates the private data model used by the marbles private data sample.

Reading collection data

Use the chaincode API GetPrivateData() to query private data in the database. GetPrivateData()
takes two arguments, the collection name and the data key. Recall the collection collectionMarbles
allows members of Org1 and Org2 to have the private data in a side database, and the collection
collectionMarblePrivateDetails allows only members of Org1 to have the private data in a side database.
For implementation details refer to the following two marbles private data functions:

• readMarble for querying the values of the name, color, size and owner attributes

• readMarblePrivateDetails for querying the values of the price attribute

248 Chapter 7. Tutorials

https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStub
https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02_private/go/marbles_chaincode_private.go

hyperledger-fabricdocs Documentation, Release master

When we issue the database queries using the peer commands later in this tutorial, we will call these two functions.

Writing private data

Use the chaincode API PutPrivateData() to store the private data into the private database. The API also requires
the name of the collection. Since the marbles private data sample includes two different collections, it is called twice
in the chaincode:

1. Write the private data name, color, size and owner using the collection named
collectionMarbles.

2. Write the private data price using the collection named collectionMarblePrivateDetails.

For example, in the following snippet of the initMarble function, PutPrivateData() is called twice, once for
each set of private data.

// ==== Create marble object, marshal to JSON, and save to state ====
marble := &marble{

ObjectType: "marble",
Name: marbleInput.Name,
Color: marbleInput.Color,
Size: marbleInput.Size,
Owner: marbleInput.Owner,

}
marbleJSONasBytes, err := json.Marshal(marble)
if err != nil {

return shim.Error(err.Error())
}

// === Save marble to state ===
err = stub.PutPrivateData("collectionMarbles", marbleInput.Name,

→˓marbleJSONasBytes)
if err != nil {

return shim.Error(err.Error())
}

// ==== Create marble private details object with price, marshal to JSON, and
→˓save to state ====

marblePrivateDetails := &marblePrivateDetails{
ObjectType: "marblePrivateDetails",
Name: marbleInput.Name,
Price: marbleInput.Price,

}
marblePrivateDetailsBytes, err := json.Marshal(marblePrivateDetails)
if err != nil {

return shim.Error(err.Error())
}
err = stub.PutPrivateData("collectionMarblePrivateDetails", marbleInput.Name,

→˓marblePrivateDetailsBytes)
if err != nil {

return shim.Error(err.Error())
}

To summarize, the policy definition above for our collection.json allows all peers in Org1 and Org2 to store
and transact with the marbles private data name, color, size, owner in their private database. But only peers
in Org1 can store and transact with the price private data in its private database.

As an additional data privacy benefit, since a collection is being used, only the private data hashes go through orderer,
not the private data itself, keeping private data confidential from orderer.

7.4. Using Private Data in Fabric 249

hyperledger-fabricdocs Documentation, Release master

7.4.3 Start the network

Now we are ready to step through some commands which demonstrate how to use private data.

Try it yourself

Before installing, defining, and using the marbles private data chaincode below, we need to start the Fabric test network.
For the sake of this tutorial, we want to operate from a known initial state. The following command will kill any active
or stale Docker containers and remove previously generated artifacts. Therefore let’s run the following command to
clean up any previous environments:

cd fabric-samples/test-network
./network.sh down

If you have not run through the tutorial before, you will need to vendor the chaincode dependencies before we can
deploy it to the network. Run the following commands:

cd ../chaincode/marbles02_private/go
GO111MODULE=on go mod vendor
cd ../../../test-network

If you’ve already run through this tutorial, you’ll also want to delete the underlying Docker containers for the marbles
private data chaincode. Let’s run the following commands to clean up previous environments:

docker rm -f $(docker ps -a | awk '($2 ~ /dev-peer.*.marblesp.*/) {print $1}')
docker rmi -f $(docker images | awk '($1 ~ /dev-peer.*.marblesp.*/) {print $3}')

From the test-network directory, you can use the following command to start up the Fabric test network with
CouchDB:

./network.sh up createChannel -s couchdb

This command will deploy a Fabric network consisting of a single channel named mychannelwith two organizations
(each maintaining one peer node) and an ordering service while using CouchDB as the state database. Either LevelDB
or CouchDB may be used with collections. CouchDB was chosen to demonstrate how to use indexes with private data.

Note: For collections to work, it is important to have cross organizational gossip configured correctly. Refer to our
documentation on Gossip data dissemination protocol, paying particular attention to the section on “anchor peers”.
Our tutorial does not focus on gossip given it is already configured in the test network, but when configuring a channel,
the gossip anchors peers are critical to configure for collections to work properly.

7.4.4 Install and define a chaincode with a collection

Client applications interact with the blockchain ledger through chaincode. Therefore we need to install a chaincode
on every peer that will execute and endorse our transactions. However, before we can interact with our chaincode, the
members of the channel need to agree on a chaincode definition that establishes chaincode governance, including the
private data collection configuration. We are going to package, install, and then define the chaincode on the channel
using peer lifecycle chaincode.

The chaincode needs to be packaged before it can be installed on our peers. We can use the peer lifecycle chaincode
package command to package the marbles chaincode.

The test network includes two organizations, Org1 and Org2, with one peer each. Therefore, the chaincode package
has to be installed on two peers:

• peer0.org1.example.com

250 Chapter 7. Tutorials

commands/peerlifecycle.html#peer-lifecycle-chaincode-package
commands/peerlifecycle.html#peer-lifecycle-chaincode-package

hyperledger-fabricdocs Documentation, Release master

• peer0.org2.example.com

After the chaincode is packaged, we can use the peer lifecycle chaincode install command to install the Marbles
chaincode on each peer.

Try it yourself

Assuming you have started the test network, copy and paste the following environment variables in your CLI to interact
with the network and operate as the Org1 admin. Make sure that you are in the test-network directory.

export PATH=${PWD}/../bin:$PATH
export FABRIC_CFG_PATH=$PWD/../config/
export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051

1. Use the following command to package the marbles private data chaincode.

peer lifecycle chaincode package marblesp.tar.gz --path ../chaincode/marbles02_
→˓private/go/ --lang golang --label marblespv1

This command will create a chaincode package named marblesp.tar.gz.

2. Use the following command to install the chaincode package onto the peer peer0.org1.example.com.

peer lifecycle chaincode install marblesp.tar.gz

A successful install command will return the chaincode identifier, similar to the response below:

2019-04-22 19:09:04.336 UTC [cli.lifecycle.chaincode] submitInstallProposal -> INFO
→˓001 Installed remotely: response:<status:200 payload:
→˓"\nKmarblespv1:57f5353b2568b79cb5384b5a8458519a47186efc4fcadb98280f5eae6d59c1cd\022\nmarblespv1
→˓" >
2019-04-22 19:09:04.336 UTC [cli.lifecycle.chaincode] submitInstallProposal -> INFO
→˓002 Chaincode code package identifier:
→˓marblespv1:57f5353b2568b79cb5384b5a8458519a47186efc4fcadb98280f5eae6d59c1cd

3. Now use the CLI as the Org2 admin. Copy and paste the following block of commands as a group and run them all
at once:

export CORE_PEER_LOCALMSPID="Org2MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
→˓example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.
→˓com/users/Admin@org2.example.com/msp
export CORE_PEER_ADDRESS=localhost:9051

4. Run the following command to install the chaincode on the Org2 peer:

peer lifecycle chaincode install marblesp.tar.gz

Approve the chaincode definition

Each channel member that wants to use the chaincode needs to approve a chaincode definition for their organization.
Since both organizations are going to use the chaincode in this tutorial, we need to approve the chaincode definition

7.4. Using Private Data in Fabric 251

commands/peerlifecycle.html#peer-lifecycle-chaincode-install

hyperledger-fabricdocs Documentation, Release master

for both Org1 and Org2 using the peer lifecycle chaincode approveformyorg command. The chaincode definition also
includes the private data collection definition that accompanies the marbles02_private sample. We will provide
the path to the collections JSON file using the --collections-config flag.

Try it yourself

Run the following commands from the test-network directory to approve a definition for Org1 and Org2.

1. Use the following command to query your peer for the package ID of the installed chaincode.

peer lifecycle chaincode queryinstalled

The command will return the same package identifier as the install command. You should see output similar to the
following:

Installed chaincodes on peer:
Package ID:
→˓marblespv1:f8c8e06bfc27771028c4bbc3564341887881e29b92a844c66c30bac0ff83966e, Label:
→˓marblespv1

2. Declare the package ID as an environment variable. Paste the package ID of marblespv1 returned by the peer
lifecycle chaincode queryinstalled into the command below. The package ID may not be the same for
all users, so you need to complete this step using the package ID returned from your console.

export CC_PACKAGE_
→˓ID=marblespv1:f8c8e06bfc27771028c4bbc3564341887881e29b92a844c66c30bac0ff83966e

3. Make sure we are running the CLI as Org1. Copy and paste the following block of commands as a group into the
peer container and run them all at once:

export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051

4. Use the following command to approve a definition of the marbles private data chaincode for Org1. This command
includes a path to the collection definition file.

export ORDERER_CA=${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem
peer lifecycle chaincode approveformyorg -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name
→˓marblesp --version 1.0 --collections-config ../chaincode/marbles02_private/
→˓collections_config.json --signature-policy "OR('Org1MSP.member','Org2MSP.member')" -
→˓-package-id $CC_PACKAGE_ID --sequence 1 --tls --cafile $ORDERER_CA

When the command completes successfully you should see something similar to:

2020-01-03 17:26:55.022 EST [chaincodeCmd] ClientWait -> INFO 001 txid
→˓[06c9e86ca68422661e09c15b8e6c23004710ea280efda4bf54d501e655bafa9b] committed with
→˓status (VALID) at

5. Now use the CLI to switch to Org2. Copy and paste the following block of commands as a group into the peer
container and run them all at once.

252 Chapter 7. Tutorials

commands/peerlifecycle.html#peer-lifecycle-chaincode-approveformyorg

hyperledger-fabricdocs Documentation, Release master

export CORE_PEER_LOCALMSPID="Org2MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
→˓example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.
→˓com/users/Admin@org2.example.com/msp
export CORE_PEER_ADDRESS=localhost:9051

6. You can now approve the chaincode definition for Org2:

peer lifecycle chaincode approveformyorg -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name
→˓marblesp --version 1.0 --collections-config ../chaincode/marbles02_private/
→˓collections_config.json --signature-policy "OR('Org1MSP.member','Org2MSP.member')" -
→˓-package-id $CC_PACKAGE_ID --sequence 1 --tls --cafile $ORDERER_CA

Commit the chaincode definition

Once a sufficient number of organizations (in this case, a majority) have approved a chaincode definition, one organi-
zation can commit the definition to the channel.

Use the peer lifecycle chaincode commit command to commit the chaincode definition. This command will also
deploy the collection definition to the channel.

We are ready to use the chaincode after the chaincode definition has been committed to the channel. Because the
marbles private data chaincode contains an initiation function, we need to use the peer chaincode invoke command to
invoke Init() before we can use other functions in the chaincode.

Try it yourself

1. Run the following commands to commit the definition of the marbles private data chaincode to the channel
mychannel.

export ORDERER_CA=${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem
export ORG1_CA=${PWD}/organizations/peerOrganizations/org1.example.com/peers/peer0.
→˓org1.example.com/tls/ca.crt
export ORG2_CA=${PWD}/organizations/peerOrganizations/org2.example.com/peers/peer0.
→˓org2.example.com/tls/ca.crt
peer lifecycle chaincode commit -o localhost:7050 --ordererTLSHostnameOverride
→˓orderer.example.com --channelID mychannel --name marblesp --version 1.0 --sequence
→˓1 --collections-config ../chaincode/marbles02_private/collections_config.json --
→˓signature-policy "OR('Org1MSP.member','Org2MSP.member')" --tls --cafile $ORDERER_CA
→˓--peerAddresses localhost:7051 --tlsRootCertFiles $ORG1_CA --peerAddresses
→˓localhost:9051 --tlsRootCertFiles $ORG2_CA

When the commit transaction completes successfully you should see something similar to:

2020-01-06 16:24:46.104 EST [chaincodeCmd] ClientWait -> INFO 001 txid
→˓[4a0d0f5da43eb64f7cbfd72ea8a8df18c328fb250cb346077d91166d86d62d46] committed with
→˓status (VALID) at localhost:9051
2020-01-06 16:24:46.184 EST [chaincodeCmd] ClientWait -> INFO 002 txid
→˓[4a0d0f5da43eb64f7cbfd72ea8a8df18c328fb250cb346077d91166d86d62d46] committed with
→˓status (VALID) at localhost:7051

7.4. Using Private Data in Fabric 253

commands/peerlifecycle.html#peer-lifecycle-chaincode-commit
commands/peerchaincode.html?%20chaincode%20instantiate#peer-chaincode-instantiate

hyperledger-fabricdocs Documentation, Release master

7.4.5 Store private data

Acting as a member of Org1, who is authorized to transact with all of the private data in the marbles private data
sample, switch back to an Org1 peer and submit a request to add a marble:

Try it yourself

Copy and paste the following set of commands into your CLI in the test-network directory:

export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051

Invoke the marbles initMarble function which creates a marble with private data — name marble1 owned by
tom with a color blue, size 35 and price of 99. Recall that private data price will be stored separately from the
private data name, owner, color, size. For this reason, the initMarble function calls the PutPrivateData()
API twice to persist the private data, once for each collection. Also note that the private data is passed using the
--transient flag. Inputs passed as transient data will not be persisted in the transaction in order to keep the data
private. Transient data is passed as binary data and therefore when using CLI it must be base64 encoded. We use an
environment variable to capture the base64 encoded value, and use tr command to strip off the problematic newline
characters that linux base64 command adds.

export MARBLE=$(echo -n "{\"name\":\"marble1\",\"color\":\"blue\",\"size\":35,\"owner\
→˓":\"tom\",\"price\":99}" | base64 | tr -d \\n)
peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓marblesp -c '{"Args":["InitMarble"]}' --transient "{\"marble\":\"$MARBLE\"}"

You should see results similar to:

[chaincodeCmd] chaincodeInvokeOrQuery->INFO 001 Chaincode invoke successful. result:
→˓status:200

7.4.6 Query the private data as an authorized peer

Our collection definition allows all members of Org1 and Org2 to have the name, color, size, owner private
data in their side database, but only peers in Org1 can have the price private data in their side database. As an
authorized peer in Org1, we will query both sets of private data.

The first query command calls the readMarble function which passes collectionMarbles as an argument.

// ===
// readMarble - read a marble from chaincode state
// ===

func (t *SimpleChaincode) readMarble(stub shim.ChaincodeStubInterface, args []string)
→˓pb.Response {

var name, jsonResp string
var err error
if len(args) != 1 {

return shim.Error("Incorrect number of arguments. Expecting name of the
→˓marble to query")

(continues on next page)

254 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

}

name = args[0]
valAsbytes, err := stub.GetPrivateData("collectionMarbles", name) //get the

→˓marble from chaincode state

if err != nil {
jsonResp = "{\"Error\":\"Failed to get state for " + name + "\"}"
return shim.Error(jsonResp)

} else if valAsbytes == nil {
jsonResp = "{\"Error\":\"Marble does not exist: " + name + "\"}"
return shim.Error(jsonResp)

}

return shim.Success(valAsbytes)
}

The second query command calls the readMarblePrivateDetails function which passes
collectionMarblePrivateDetails as an argument.

// ===
// readMarblePrivateDetails - read a marble private details from chaincode state
// ===

func (t *SimpleChaincode) readMarblePrivateDetails(stub shim.ChaincodeStubInterface,
→˓args []string) pb.Response {

var name, jsonResp string
var err error

if len(args) != 1 {
return shim.Error("Incorrect number of arguments. Expecting name of the

→˓marble to query")
}

name = args[0]
valAsbytes, err := stub.GetPrivateData("collectionMarblePrivateDetails", name) //

→˓get the marble private details from chaincode state

if err != nil {
jsonResp = "{\"Error\":\"Failed to get private details for " + name + ":

→˓" + err.Error() + "\"}"
return shim.Error(jsonResp)

} else if valAsbytes == nil {
jsonResp = "{\"Error\":\"Marble private details does not exist: " + name

→˓+ "\"}"
return shim.Error(jsonResp)

}
return shim.Success(valAsbytes)

}

Now Try it yourself

Query for the name, color, size and owner private data of marble1 as a member of Org1. Note that since
queries do not get recorded on the ledger, there is no need to pass the marble name as a transient input.

peer chaincode query -C mychannel -n marblesp -c '{"Args":["ReadMarble","marble1"]}'

7.4. Using Private Data in Fabric 255

hyperledger-fabricdocs Documentation, Release master

You should see the following result:

{"color":"blue","docType":"marble","name":"marble1","owner":"tom","size":35}

Query for the price private data of marble1 as a member of Org1.

peer chaincode query -C mychannel -n marblesp -c '{"Args":["ReadMarblePrivateDetails",
→˓"marble1"]}'

You should see the following result:

{"docType":"marblePrivateDetails","name":"marble1","price":99}

7.4.7 Query the private data as an unauthorized peer

Now we will switch to a member of Org2. Org2 has the marbles private data name, color, size, owner in
its side database, but does not store the marbles price data. We will query for both sets of private data.

Switch to a peer in Org2

Run the following commands to operate as the Org2 admin and query the Org2 peer.

Try it yourself

export CORE_PEER_LOCALMSPID="Org2MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
→˓example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.
→˓com/users/Admin@org2.example.com/msp
export CORE_PEER_ADDRESS=localhost:9051

Query private data Org2 is authorized to

Peers in Org2 should have the first set of marbles private data (name, color, size and owner) in their side
database and can access it using the readMarble() function which is called with the collectionMarbles
argument.

Try it yourself

peer chaincode query -C mychannel -n marblesp -c '{"Args":["ReadMarble","marble1"]}'

You should see something similar to the following result:

{"docType":"marble","name":"marble1","color":"blue","size":35,"owner":"tom"}

Query private data Org2 is not authorized to

Peers in Org2 do not have the marbles price private data in their side database. When they try to query for this data,
they get back a hash of the key matching the public state but will not have the private state.

Try it yourself

256 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

peer chaincode query -C mychannel -n marblesp -c '{"Args":["ReadMarblePrivateDetails",
→˓"marble1"]}'

You should see a result similar to:

Error: endorsement failure during query. response: status:500
message:"{\"Error\":\"Failed to get private details for marble1:
GET_STATE failed: transaction ID:
→˓d9c437d862de66755076aeebe79e7727791981606ae1cb685642c93f102b03e5:
tx creator does not have read access permission on privatedata in
→˓chaincodeName:marblesp collectionName: collectionMarblePrivateDetails\"}"

Members of Org2 will only be able to see the public hash of the private data.

7.4.8 Purge Private Data

For use cases where private data only needs to be on the ledger until it can be replicated into an off-chain database, it
is possible to “purge” the data after a certain set number of blocks, leaving behind only hash of the data that serves as
immutable evidence of the transaction.

There may be private data including personal or confidential information, such as the pricing data in our example, that
the transacting parties don’t want disclosed to other organizations on the channel. Thus, it has a limited lifespan, and
can be purged after existing unchanged on the blockchain for a designated number of blocks using the blockToLive
property in the collection definition.

Our collectionMarblePrivateDetails definition has a blockToLive property value of three meaning
this data will live on the side database for three blocks and then after that it will get purged. Tying all of the
pieces together, recall this collection definition collectionMarblePrivateDetails is associated with the
price private data in the initMarble() function when it calls the PutPrivateData() API and passes the
collectionMarblePrivateDetails as an argument.

We will step through adding blocks to the chain, and then watch the price information get purged by issuing four new
transactions (Create a new marble, followed by three marble transfers) which adds four new blocks to the chain. After
the fourth transaction (third marble transfer), we will verify that the price private data is purged.

Try it yourself

Switch back to Org1 using the following commands. Copy and paste the following code block and run it inside your
peer container:

export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051

Open a new terminal window and view the private data logs for this peer by running the following command. Note the
highest block number.

docker logs peer0.org1.example.com 2>&1 | grep -i -a -E 'private|pvt|privdata'

Back in the peer container, query for the marble1 price data by running the following command. (A Query does not
create a new transaction on the ledger since no data is transacted).

peer chaincode query -C mychannel -n marblesp -c '{"Args":["ReadMarblePrivateDetails",
→˓"marble1"]}'

7.4. Using Private Data in Fabric 257

hyperledger-fabricdocs Documentation, Release master

You should see results similar to:

{"docType":"marblePrivateDetails","name":"marble1","price":99}

The price data is still in the private data ledger.

Create a new marble2 by issuing the following command. This transaction creates a new block on the chain.

export MARBLE=$(echo -n "{\"name\":\"marble2\",\"color\":\"blue\",\"size\":35,\"owner\
→˓":\"tom\",\"price\":99}" | base64 | tr -d \\n)
peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓marblesp -c '{"Args":["InitMarble"]}' --transient "{\"marble\":\"$MARBLE\"}"

Switch back to the Terminal window and view the private data logs for this peer again. You should see the block height
increase by 1.

docker logs peer0.org1.example.com 2>&1 | grep -i -a -E 'private|pvt|privdata'

Back in the peer container, query for the marble1 price data again by running the following command:

peer chaincode query -C mychannel -n marblesp -c '{"Args":["ReadMarblePrivateDetails",
→˓"marble1"]}'

The private data has not been purged, therefore the results are unchanged from previous query:

{"docType":"marblePrivateDetails","name":"marble1","price":99}

Transfer marble2 to “joe” by running the following command. This transaction will add a second new block on the
chain.

export MARBLE_OWNER=$(echo -n "{\"name\":\"marble2\",\"owner\":\"joe\"}" | base64 |
→˓tr -d \\n)
peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓marblesp -c '{"Args":["TransferMarble"]}' --transient "{\"marble_owner\":\"$MARBLE_
→˓OWNER\"}"

Switch back to the Terminal window and view the private data logs for this peer again. You should see the block height
increase by 1.

docker logs peer0.org1.example.com 2>&1 | grep -i -a -E 'private|pvt|privdata'

Back in the peer container, query for the marble1 price data by running the following command:

peer chaincode query -C mychannel -n marblesp -c '{"Args":["ReadMarblePrivateDetails",
→˓"marble1"]}'

You should still be able to see the price private data.

{"docType":"marblePrivateDetails","name":"marble1","price":99}

Transfer marble2 to “tom” by running the following command. This transaction will create a third new block on the
chain.

258 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

export MARBLE_OWNER=$(echo -n "{\"name\":\"marble2\",\"owner\":\"tom\"}" | base64 |
→˓tr -d \\n)
peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓marblesp -c '{"Args":["TransferMarble"]}' --transient "{\"marble_owner\":\"$MARBLE_
→˓OWNER\"}"

Switch back to the Terminal window and view the private data logs for this peer again. You should see the block height
increase by 1.

docker logs peer0.org1.example.com 2>&1 | grep -i -a -E 'private|pvt|privdata'

Back in the peer container, query for the marble1 price data by running the following command:

peer chaincode query -C mychannel -n marblesp -c '{"Args":["ReadMarblePrivateDetails",
→˓"marble1"]}'

You should still be able to see the price data.

{"docType":"marblePrivateDetails","name":"marble1","price":99}

Finally, transfer marble2 to “jerry” by running the following command. This transaction will create a fourth new block
on the chain. The price private data should be purged after this transaction.

export MARBLE_OWNER=$(echo -n "{\"name\":\"marble2\",\"owner\":\"jerry\"}" | base64 |
→˓tr -d \\n)
peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓marblesp -c '{"Args":["TransferMarble"]}' --transient "{\"marble_owner\":\"$MARBLE_
→˓OWNER\"}"

Switch back to the Terminal window and view the private data logs for this peer again. You should see the block height
increase by 1.

docker logs peer0.org1.example.com 2>&1 | grep -i -a -E 'private|pvt|privdata'

Back in the peer container, query for the marble1 price data by running the following command:

peer chaincode query -C mychannel -n marblesp -c '{"Args":["ReadMarblePrivateDetails",
→˓"marble1"]}'

Because the price data has been purged, you should no longer be able to see it. You should see something similar to:

Error: endorsement failure during query. response: status:500
message:"{\"Error\":\"Marble private details does not exist: marble1\"}"

7.4.9 Using indexes with private data

Indexes can also be applied to private data collections, by packaging indexes in the META-INF/statedb/
couchdb/collections/<collection_name>/indexes directory alongside the chaincode. An example
index is available here .

For deployment of chaincode to production environments, it is recommended to define any indexes alongside chain-
code so that the chaincode and supporting indexes are deployed automatically as a unit, once the chaincode has been

7.4. Using Private Data in Fabric 259

https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02_private/go/META-INF/statedb/couchdb/collections/collectionMarbles/indexes/indexOwner.json

hyperledger-fabricdocs Documentation, Release master

installed on a peer and instantiated on a channel. The associated indexes are automatically deployed upon chaincode
instantiation on the channel when the --collections-config flag is specified pointing to the location of the
collection JSON file.

7.4.10 Additional resources

For additional private data education, a video tutorial has been created.

Note: The video uses the previous lifecycle model to install private data collections with chaincode.

7.5 Using CouchDB

This tutorial will describe the steps required to use the CouchDB as the state database with Hyperledger Fabric. By
now, you should be familiar with Fabric concepts and have explored some of the samples and tutorials.

Note: These instructions use the new Fabric chaincode lifecycle introduced in the Fabric v2.0 release. If you would
like to use the previous lifecycle model to use indexes with chaincode, visit the v1.4 version of the Using CouchDB.

The tutorial will take you through the following steps:

1. Enable CouchDB in Hyperledger Fabric

2. Create an index

3. Add the index to your chaincode folder

4. Install and define the Chaincode

5. Query the CouchDB State Database

6. Use best practices for queries and indexes

7. Query the CouchDB State Database With Pagination

8. Update an Index

9. Delete an Index

For a deeper dive into CouchDB refer to CouchDB as the State Database and for more information on the Fabric
ledger refer to the Ledger topic. Follow the tutorial below for details on how to leverage CouchDB in your blockchain
network.

Throughout this tutorial, we will use the Marbles sample as our use case to demonstrate how to use CouchDB with
Fabric and will deploy Marbles to the Fabric test network. You should have completed the task Install Samples,
Binaries, and Docker Images.

7.5.1 Why CouchDB?

Fabric supports two types of peer databases. LevelDB is the default state database embedded in the peer node. Lev-
elDB stores chaincode data as simple key-value pairs and only supports key, key range, and composite key queries.
CouchDB is an optional, alternate state database that allows you to model data on the ledger as JSON and issue rich
queries against data values rather than the keys. CouchDB also allows you to deploy indexes with your chaincode to
make queries more efficient and enable you to query large datasets.

260 Chapter 7. Tutorials

https://hyperledger-fabric.readthedocs.io/en/release-1.4/couchdb_tutorial.html
ledger/ledger.html
https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/marbles_chaincode.go

hyperledger-fabricdocs Documentation, Release master

In order to leverage the benefits of CouchDB, namely content-based JSON queries, your data must be modeled in
JSON format. You must decide whether to use LevelDB or CouchDB before setting up your network. Switching a
peer from using LevelDB to CouchDB is not supported due to data compatibility issues. All peers on the network must
use the same database type. If you have a mix of JSON and binary data values, you can still use CouchDB, however
the binary values can only be queried based on key, key range, and composite key queries.

7.5.2 Enable CouchDB in Hyperledger Fabric

CouchDB runs as a separate database process alongside the peer. There are additional considerations in terms of setup,
management, and operations. A Docker image of CouchDB is available and we recommend that it be run on the same
server as the peer. You will need to setup one CouchDB container per peer and update each peer container by changing
the configuration found in core.yaml to point to the CouchDB container. The core.yaml file must be located in
the directory specified by the environment variable FABRIC_CFG_PATH:

• For Docker deployments, core.yaml is pre-configured and located in the peer container
FABRIC_CFG_PATH folder. However, when using Docker environments, you typically pass environ-
ment variables by editing the docker-compose-couch.yaml to override the core.yaml

• For native binary deployments, core.yaml is included with the release artifact distribution.

Edit the stateDatabase section of core.yaml. Specify CouchDB as the stateDatabase and fill in the
associated couchDBConfig properties. For more information, see CouchDB configuration.

7.5.3 Create an index

Why are indexes important?

Indexes allow a database to be queried without having to examine every row with every query, making them run faster
and more efficiently. Normally, indexes are built for frequently occurring query criteria allowing the data to be queried
more efficiently. To leverage the major benefit of CouchDB – the ability to perform rich queries against JSON data –
indexes are not required, but they are strongly recommended for performance. Also, if sorting is required in a query,
CouchDB requires an index of the sorted fields.

Note: Rich queries that do not have an index will work but may throw a warning in the CouchDB log that the index
was not found. However, if a rich query includes a sort specification, then an index on that field is required; otherwise,
the query will fail and an error will be thrown.

To demonstrate building an index, we will use the data from the Marbles sample. In this example, the Marbles data
structure is defined as:

type marble struct {
ObjectType string `json:"docType"` //docType is used to distinguish the

→˓various types of objects in state database
Name string `json:"name"` //the field tags are needed to keep case

→˓from bouncing around
Color string `json:"color"`
Size int `json:"size"`
Owner string `json:"owner"`

}

In this structure, the attributes (docType, name, color, size, owner) define the ledger data associated with the
asset. The attribute docType is a pattern used in the chaincode to differentiate different data types that may need to
be queried separately. When using CouchDB, it recommended to include this docType attribute to distinguish each

7.5. Using CouchDB 261

https://hub.docker.com/_/couchdb/
couchdb_as_state_database.html#couchdb-configuration
https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/marbles_chaincode.go

hyperledger-fabricdocs Documentation, Release master

type of document in the chaincode namespace. (Each chaincode is represented as its own CouchDB database, that is,
each chaincode has its own namespace for keys.)

With respect to the Marbles data structure, docType is used to identify that this document/asset is a marble asset.
Potentially there could be other documents/assets in the chaincode database. The documents in the database are
searchable against all of these attribute values.

When defining an index for use in chaincode queries, each one must be defined in its own text file with the extension
*.json and the index definition must be formatted in the CouchDB index JSON format.

To define an index, three pieces of information are required:

• fields: these are the frequently queried fields

• name: name of the index

• type: always json in this context

For example, a simple index named foo-index for a field named foo.

{
"index": {

"fields": ["foo"]
},
"name" : "foo-index",
"type" : "json"

}

Optionally the design document attribute ddoc can be specified on the index definition. A design document is
CouchDB construct designed to contain indexes. Indexes can be grouped into design documents for efficiency but
CouchDB recommends one index per design document.

Tip: When defining an index it is a good practice to include the ddoc attribute and value along with the index name.
It is important to include this attribute to ensure that you can update the index later if needed. Also it gives you the
ability to explicitly specify which index to use on a query.

Here is another example of an index definition from the Marbles sample with the index name indexOwner using
multiple fields docType and owner and includes the ddoc attribute:

{
"index":{

"fields":["docType","owner"] // Names of the fields to be queried
},
"ddoc":"indexOwnerDoc", // (optional) Name of the design document in which the

→˓index will be created.
"name":"indexOwner",
"type":"json"

}

In the example above, if the design document indexOwnerDoc does not already exist, it is automatically created
when the index is deployed. An index can be constructed with one or more attributes specified in the list of fields
and any combination of attributes can be specified. An attribute can exist in multiple indexes for the same docType.
In the following example, index1 only includes the attribute owner, index2 includes the attributes owner and
color and index3 includes the attributes owner, color and size. Also, notice each index definition has its
own ddoc value, following the CouchDB recommended practice.

{
"index":{

(continues on next page)

262 Chapter 7. Tutorials

http://guide.couchdb.org/draft/design.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"fields":["owner"] // Names of the fields to be queried
},
"ddoc":"index1Doc", // (optional) Name of the design document in which the index

→˓will be created.
"name":"index1",
"type":"json"

}

{
"index":{

"fields":["owner", "color"] // Names of the fields to be queried
},
"ddoc":"index2Doc", // (optional) Name of the design document in which the index

→˓will be created.
"name":"index2",
"type":"json"

}

{
"index":{

"fields":["owner", "color", "size"] // Names of the fields to be queried
},
"ddoc":"index3Doc", // (optional) Name of the design document in which the index

→˓will be created.
"name":"index3",
"type":"json"

}

In general, you should model index fields to match the fields that will be used in query filters and sorts. For more
details on building an index in JSON format refer to the CouchDB documentation.

A final word on indexing, Fabric takes care of indexing the documents in the database using a pattern called index
warming. CouchDB does not typically index new or updated documents until the next query. Fabric ensures that
indexes stay ‘warm’ by requesting an index update after every block of data is committed. This ensures queries are
fast because they do not have to index documents before running the query. This process keeps the index current and
refreshed every time new records are added to the state database.

7.5.4 Add the index to your chaincode folder

Once you finalize an index, you need to package it with your chaincode for deployment by placing it in the appropriate
metadata folder. You can install the chaincode using the peer lifecycle chaincode command. The JSON index files
must be located under the path META-INF/statedb/couchdb/indexes which is located inside the directory
where the chaincode resides.

The Marbles sample below illustrates how the index is packaged with the chaincode.

7.5. Using CouchDB 263

http://docs.couchdb.org/en/latest/api/database/find.html#db-index
https://github.com/hyperledger/fabric-samples/tree/master/chaincode/marbles02/go

hyperledger-fabricdocs Documentation, Release master

This sample includes one index named indexOwnerDoc:

{"index":{"fields":["docType","owner"]},"ddoc":"indexOwnerDoc", "name":"indexOwner",
→˓"type":"json"}

Start the network

Try it yourself

We will bring up the Fabric test network and use it to deploy the marbles chaincode. Use the following command to
navigate to the test-network directory in the Fabric samples:

cd fabric-samples/test-network

For this tutorial, we want to operate from a known initial state. The following command will kill any active or stale
Docker containers and remove previously generated artifacts:

./network.sh down

If you have not run through the tutorial before, you will need to vendor the chaincode dependencies before we can
deploy it to the network. Run the following commands:

cd ../chaincode/marbles02/go
GO111MODULE=on go mod vendor
cd ../../../test-network

From the test-network directory, deploy the test network with CouchDB with the following command:

./network.sh up createChannel -s couchdb

This will create two fabric peer nodes that use CouchDB as the state database. It will also create one ordering node
and a single channel named mychannel.

264 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

7.5.5 Install and define the Chaincode

Client applications interact with the blockchain ledger through chaincode. Therefore we need to install a chaincode
on every peer that will execute and endorse our transactions. However, before we can interact with our chaincode,
the members of the channel need to agree on a chaincode definition that establishes chaincode governance. In the
previous section, we demonstrated how to add the index to the chaincode folder so that the index is deployed with the
chaincode.

The chaincode needs to be packaged before it can be installed on our peers. We can use the peer lifecycle chaincode
package command to package the marbles chaincode.

Try it yourself

1. After you start the test network, copy and paste the following environment variables in your CLI to interact with
the network as the Org1 admin. Make sure that you are in the test-network directory.

export PATH=${PWD}/../bin:$PATH
export FABRIC_CFG_PATH=${PWD}/../config/
export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051

2. Use the following command to package the marbles chaincode:

peer lifecycle chaincode package marbles.tar.gz --path ../chaincode/marbles02/go --
→˓lang golang --label marbles_1

This command will create a chaincode package named marbles.tar.gz.

3. Use the following command to install the chaincode package onto the peer peer0.org1.example.com:

peer lifecycle chaincode install marbles.tar.gz

A successful install command will return the chaincode identifier, similar to the response below:

2019-04-22 18:47:38.312 UTC [cli.lifecycle.chaincode] submitInstallProposal -> INFO
→˓001 Installed remotely: response:<status:200 payload:"\nJmarbles_
→˓1:0907c1f3d3574afca69946e1b6132691d58c2f5c5703df7fc3b692861e92ecd3\022\tmarbles_1" >
2019-04-22 18:47:38.312 UTC [cli.lifecycle.chaincode] submitInstallProposal -> INFO
→˓002 Chaincode code package identifier: marbles_
→˓1:0907c1f3d3574afca69946e1b6132691d58c2f5c5703df7fc3b692861e92ecd3

After installing the chaincode on peer0.org1.example.com, we need to approve a chaincode definition for
Org1.

4. Use the following command to query your peer for the package ID of the installed chaincode.

peer lifecycle chaincode queryinstalled

The command will return the same package identifier as the install command. You should see output similar to the
following:

Installed chaincodes on peer:
Package ID: marbles_
→˓1:60ec9430b221140a45b96b4927d1c3af736c1451f8d432e2a869bdbf417f9787, Label: marbles_1

7.5. Using CouchDB 265

commands/peerlifecycle.html#peer-lifecycle-chaincode-package
commands/peerlifecycle.html#peer-lifecycle-chaincode-package

hyperledger-fabricdocs Documentation, Release master

5. Declare the package ID as an environment variable. Paste the package ID of marbles_1 returned by the peer
lifecycle chaincode queryinstalled command into the command below. The package ID may not be
the same for all users, so you need to complete this step using the package ID returned from your console.

export CC_PACKAGE_ID=marbles_
→˓1:60ec9430b221140a45b96b4927d1c3af736c1451f8d432e2a869bdbf417f9787

6. Use the following command to approve a definition of the marbles chaincode for Org1.

export ORDERER_CA=${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem
peer lifecycle chaincode approveformyorg -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name marbles
→˓--version 1.0 --signature-policy "OR('Org1MSP.member','Org2MSP.member')" --init-
→˓required --package-id $CC_PACKAGE_ID --sequence 1 --tls --cafile $ORDERER_CA

When the command completes successfully you should see something similar to :

2020-01-07 16:24:20.886 EST [chaincodeCmd] ClientWait -> INFO 001 txid
→˓[560cb830efa1272c85d2f41a473483a25f3b12715d55e22a69d55abc46581415] committed with
→˓status (VALID) at

We need a majority of organizations to approve a chaincode definition before it can be committed to the channel. This
implies that we need Org2 to approve the chaincode definition as well. Because we do not need Org2 to endorse the
chaincode and did not install the package on any Org2 peers, we do not need to provide a packageID as part of the
chaincode definition.

7. Use the CLI to operate as the Org2 admin. Copy and paste the following block of commands as a group into the
peer container and run them all at once.

export CORE_PEER_LOCALMSPID="Org2MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
→˓example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.
→˓com/users/Admin@org2.example.com/msp
export CORE_PEER_ADDRESS=localhost:9051

8. Use the following command to approve the chaincode definition for Org2:

peer lifecycle chaincode approveformyorg -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name marbles
→˓--version 1.0 --signature-policy "OR('Org1MSP.member','Org2MSP.member')" --init-
→˓required --sequence 1 --tls --cafile $ORDERER_CA

9. We can now use the peer lifecycle chaincode commit command to commit the chaincode definition to the channel:

export ORDERER_CA=${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem
export ORG1_CA=${PWD}/organizations/peerOrganizations/org1.example.com/peers/peer0.
→˓org1.example.com/tls/ca.crt
export ORG2_CA=${PWD}/organizations/peerOrganizations/org2.example.com/peers/peer0.
→˓org2.example.com/tls/ca.crt
peer lifecycle chaincode commit -o localhost:7050 --ordererTLSHostnameOverride
→˓orderer.example.com --channelID mychannel --name marbles --version 1.0 --sequence 1
→˓--signature-policy "OR('Org1MSP.member','Org2MSP.member')" --init-required --tls --
→˓cafile $ORDERER_CA --peerAddresses localhost:7051 --tlsRootCertFiles $ORG1_CA --
→˓peerAddresses localhost:9051 --tlsRootCertFiles $ORG2_CA

When the commit transaction completes successfully you should see something similar to:

266 Chapter 7. Tutorials

commands/peerlifecycle.html#peer-lifecycle-chaincode-commit

hyperledger-fabricdocs Documentation, Release master

2019-04-22 18:57:34.274 UTC [chaincodeCmd] ClientWait -> INFO 001 txid
→˓[3da8b0bb8e128b5e1b6e4884359b5583dff823fce2624f975c69df6bce614614] committed with
→˓status (VALID) at peer0.org2.example.com:9051
2019-04-22 18:57:34.709 UTC [chaincodeCmd] ClientWait -> INFO 002 txid
→˓[3da8b0bb8e128b5e1b6e4884359b5583dff823fce2624f975c69df6bce614614] committed with
→˓status (VALID) at peer0.org1.example.com:7051

10. Because the marbles chaincode contains an initialization function, we need to use the peer chaincode invoke
command to invoke Init() before we can use other functions in the chaincode:

peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --channelID mychannel --name marbles --isInit --tls --cafile $ORDERER_CA --
→˓peerAddresses localhost:7051 --tlsRootCertFiles $ORG1_CA -c '{"Args":["Init"]}'

Verify index was deployed

Indexes will be deployed to each peer’s CouchDB state database once the chaincode has been installed on the peer and
deployed to the channel. You can verify that the CouchDB index was created successfully by examining the peer log
in the Docker container.

Try it yourself

To view the logs in the peer Docker container, open a new Terminal window and run the following command to grep
for message confirmation that the index was created.

docker logs peer0.org1.example.com 2>&1 | grep "CouchDB index"

You should see a result that looks like the following:

[couchdb] CreateIndex -> INFO 0be Created CouchDB index [indexOwner] in state
→˓database [mychannel_marbles] using design document [_design/indexOwnerDoc]

Note: If you installed Marbles on a different peer than peer0.org1.example.com, you may need to replace it
with the name of a different peer where Marbles was installed.

7.5.6 Query the CouchDB State Database

Now that the index has been defined in the JSON file and deployed alongside the chaincode, chaincode functions can
execute JSON queries against the CouchDB state database, and thereby peer commands can invoke the chaincode
functions.

Specifying an index name on a query is optional. If not specified, and an index already exists for the fields being
queried, the existing index will be automatically used.

Tip: It is a good practice to explicitly include an index name on a query using the use_index keyword. Without it,
CouchDB may pick a less optimal index. Also CouchDB may not use an index at all and you may not realize it, at the
low volumes during testing. Only upon higher volumes you may realize slow performance because CouchDB is not
using an index and you assumed it was.

7.5. Using CouchDB 267

commands/peerchaincode.html?%20chaincode%20instantiate#peer-chaincode-invoke

hyperledger-fabricdocs Documentation, Release master

Build the query in chaincode

You can perform complex rich queries against the data on the ledger using queries defined within your chaincode. The
marbles02 sample includes two rich query functions:

• queryMarbles –

Example of an ad hoc rich query. This is a query where a (selector) string can be passed into the
function. This query would be useful to client applications that need to dynamically build their own
selectors at runtime. For more information on selectors refer to CouchDB selector syntax.

• queryMarblesByOwner –

Example of a parameterized query where the query logic is baked into the chaincode. In this case
the function accepts a single argument, the marble owner. It then queries the state database for JSON
documents matching the docType of “marble” and the owner id using the JSON query syntax.

Run the query using the peer command

In absence of a client application, we can use the peer command to test the queries defined in the chaincode. We
will customize the peer chaincode query command to use the Marbles index indexOwner and query for all marbles
owned by “tom” using the queryMarbles function.

Try it yourself

Before querying the database, we should add some data. Run the following command as Org1 to create a marble
owned by “tom”:

export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051
peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓marbles -c '{"Args":["initMarble","marble1","blue","35","tom"]}'

After an index has been deployed when the chaincode is initialized, it will automatically be utilized by chaincode
queries. CouchDB can determine which index to use based on the fields being queried. If an index exists for the query
criteria it will be used. However the recommended approach is to specify the use_index keyword on the query.
The peer command below is an example of how to specify the index explicitly in the selector syntax by including the
use_index keyword:

// Rich Query with index name explicitly specified:
peer chaincode query -C mychannel -n marbles -c '{"Args":["queryMarbles", "{\
→˓"selector\":{\"docType\":\"marble\",\"owner\":\"tom\"}, \"use_index\":[\"_design/
→˓indexOwnerDoc\", \"indexOwner\"]}"]}'

Delving into the query command above, there are three arguments of interest:

• queryMarbles

Name of the function in the Marbles chaincode. Notice a shim shim.ChaincodeStubInterface
is used to access and modify the ledger. The getQueryResultForQueryString() passes the
queryString to the shim API getQueryResult().

268 Chapter 7. Tutorials

https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/marbles_chaincode.go
http://docs.couchdb.org/en/latest/api/database/find.html#find-selectors
commands/peerchaincode.html?%20chaincode%20query#peer-chaincode-query
https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim

hyperledger-fabricdocs Documentation, Release master

func (t *SimpleChaincode) queryMarbles(stub shim.ChaincodeStubInterface, args
→˓[]string) pb.Response {

// 0
// "queryString"
if len(args) < 1 {

return shim.Error("Incorrect number of arguments. Expecting 1")
}

queryString := args[0]

queryResults, err := getQueryResultForQueryString(stub, queryString)
if err != nil {

return shim.Error(err.Error())
}
return shim.Success(queryResults)

}

• {"selector":{"docType":"marble","owner":"tom"}

This is an example of an ad hoc selector string which finds all documents of type marble where the
owner attribute has a value of tom.

• "use_index":["_design/indexOwnerDoc", "indexOwner"]

Specifies both the design doc name indexOwnerDoc and index name indexOwner. In this ex-
ample the selector query explicitly includes the index name, specified by using the use_index
keyword. Recalling the index definition above Create an index, it contains a design doc,
"ddoc":"indexOwnerDoc". With CouchDB, if you plan to explicitly include the index name on
the query, then the index definition must include the ddoc value, so it can be referenced with the
use_index keyword.

The query runs successfully and the index is leveraged with the following results:

Query Result: [{"Key":"marble1", "Record":{"color":"blue","docType":"marble","name":
→˓"marble1","owner":"tom","size":35}}]

7.5.7 Use best practices for queries and indexes

Queries that use indexes will complete faster, without having to scan the full database in couchDB. Understanding
indexes will allow you to write your queries for better performance and help your application handle larger amounts
of data or blocks on your network.

It is also important to plan the indexes you install with your chaincode. You should install only a few indexes per
chaincode that support most of your queries. Adding too many indexes, or using an excessive number of fields in
an index, will degrade the performance of your network. This is because the indexes are updated after each block is
committed. The more indexes need to be updated through “index warming”, the longer it will take for transactions to
complete.

The examples in this section will help demonstrate how queries use indexes and what type of queries will have the
best performance. Remember the following when writing your queries:

• All fields in the index must also be in the selector or sort sections of your query for the index to be used.

• More complex queries will have a lower performance and will be less likely to use an index.

• You should try to avoid operators that will result in a full table scan or a full index scan such as $or, $in and
$regex.

7.5. Using CouchDB 269

hyperledger-fabricdocs Documentation, Release master

In the previous section of this tutorial, you issued the following query against the marbles chaincode:

// Example one: query fully supported by the index
export CHANNEL_NAME=mychannel
peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["queryMarbles", "{\
→˓"selector\":{\"docType\":\"marble\",\"owner\":\"tom\"}, \"use_index\":[\
→˓"indexOwnerDoc\", \"indexOwner\"]}"]}'

The marbles chaincode was installed with the indexOwnerDoc index:

{"index":{"fields":["docType","owner"]},"ddoc":"indexOwnerDoc", "name":"indexOwner",
→˓"type":"json"}

Notice that both the fields in the query, docType and owner, are included in the index, making it a fully supported
query. As a result this query will be able to use the data in the index, without having to search the full database. Fully
supported queries such as this one will return faster than other queries from your chaincode.

If you add extra fields to the query above, it will still use the index. However, the query will additionally have to scan
the indexed data for the extra fields, resulting in a longer response time. As an example, the query below will still use
the index, but will take a longer time to return than the previous example.

// Example two: query fully supported by the index with additional data
peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["queryMarbles", "{\
→˓"selector\":{\"docType\":\"marble\",\"owner\":\"tom\",\"color\":\"red\"}, \"use_
→˓index\":[\"/indexOwnerDoc\", \"indexOwner\"]}"]}'

A query that does not include all fields in the index will have to scan the full database instead. For example, the query
below searches for the owner, without specifying the type of item owned. Since the ownerIndexDoc contains both the
owner and docType fields, this query will not be able to use the index.

// Example three: query not supported by the index
peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["queryMarbles", "{\
→˓"selector\":{\"owner\":\"tom\"}, \"use_index\":[\"indexOwnerDoc\", \"indexOwner\"]}
→˓"]}'

In general, more complex queries will have a longer response time, and have a lower chance of being supported by an
index. Operators such as $or, $in, and $regex will often cause the query to scan the full index or not use the index
at all.

As an example, the query below contains an $or term that will search for every marble and every item owned by tom.

// Example four: query with $or supported by the index
peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["queryMarbles", "{\
→˓"selector\":{\"$or\":[{\"docType\":\"marble\"},{\"owner\":\"tom\"}]}, \"use_index\
→˓":[\"indexOwnerDoc\", \"indexOwner\"]}"]}'

This query will still use the index because it searches for fields that are included in indexOwnerDoc. However, the
$or condition in the query requires a scan of all the items in the index, resulting in a longer response time.

Below is an example of a complex query that is not supported by the index.

// Example five: Query with $or not supported by the index
peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["queryMarbles", "{\
→˓"selector\":{\"$or\":[{\"docType\":\"marble\",\"owner\":\"tom\"},{\"color\":\
→˓"yellow\"}]}, \"use_index\":[\"indexOwnerDoc\", \"indexOwner\"]}"]}'

The query searches for all marbles owned by tom or any other items that are yellow. This query will not use the index
because it will need to search the entire table to meet the $or condition. Depending the amount of data on your ledger,
this query will take a long time to respond or may timeout.

270 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

While it is important to follow best practices with your queries, using indexes is not a solution for collecting large
amounts of data. The blockchain data structure is optimized to validate and confirm transactions and is not suited
for data analytics or reporting. If you want to build a dashboard as part of your application or analyze the data from
your network, the best practice is to query an off chain database that replicates the data from your peers. This will
allow you to understand the data on the blockchain without degrading the performance of your network or disrupting
transactions.

You can use block or chaincode events from your application to write transaction data to an off-chain database or
analytics engine. For each block received, the block listener application would iterate through the block transactions
and build a data store using the key/value writes from each valid transaction’s rwset. The Peer channel-based event
services provide replayable events to ensure the integrity of downstream data stores. For an example of how you can
use an event listener to write data to an external database, visit the Off chain data sample in the Fabric Samples.

7.5.8 Query the CouchDB State Database With Pagination

When large result sets are returned by CouchDB queries, a set of APIs is available which can be called by chaincode to
paginate the list of results. Pagination provides a mechanism to partition the result set by specifying a pagesize and
a start point – a bookmark which indicates where to begin the result set. The client application iteratively invokes
the chaincode that executes the query until no more results are returned. For more information refer to this topic on
pagination with CouchDB.

We will use the Marbles sample function queryMarblesWithPagination to demonstrate how pagination can
be implemented in chaincode and the client application.

• queryMarblesWithPagination –

Example of an ad hoc rich query with pagination. This is a query where a (selector) string can be
passed into the function similar to the above example. In this case, a pageSize is also included
with the query as well as a bookmark.

In order to demonstrate pagination, more data is required. This example assumes that you have already added marble1
from above. Run the following commands in the peer container to create four more marbles owned by “tom”, to create
a total of five marbles owned by “tom”:

Try it yourself

export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051
peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓marbles -c '{"Args":["initMarble","marble2","yellow","35","tom"]}'
peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓marbles -c '{"Args":["initMarble","marble3","green","20","tom"]}'
peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓marbles -c '{"Args":["initMarble","marble4","purple","20","tom"]}'
peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓marbles -c '{"Args":["initMarble","marble5","blue","40","tom"]}'

7.5. Using CouchDB 271

https://github.com/hyperledger/fabric-samples/tree/master/off_chain_data
couchdb_as_state_database.html#couchdb-pagination
couchdb_as_state_database.html#couchdb-pagination
https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/marbles_chaincode.go

hyperledger-fabricdocs Documentation, Release master

In addition to the arguments for the query in the previous example, queryMarblesWithPagination adds pagesize
and bookmark. PageSize specifies the number of records to return per query. The bookmark is an “anchor”
telling couchDB where to begin the page. (Each page of results returns a unique bookmark.)

• queryMarblesWithPagination

Name of the function in the Marbles chaincode. Notice a shim shim.
ChaincodeStubInterface is used to access and modify the ledger. The
getQueryResultForQueryStringWithPagination() passes the queryString along with the
pagesize and bookmark to the shim API GetQueryResultWithPagination().

func (t *SimpleChaincode) queryMarblesWithPagination(stub shim.ChaincodeStubInterface,
→˓ args []string) pb.Response {

// 0
// "queryString"
if len(args) < 3 {

return shim.Error("Incorrect number of arguments. Expecting 3")
}

queryString := args[0]
//return type of ParseInt is int64
pageSize, err := strconv.ParseInt(args[1], 10, 32)
if err != nil {

return shim.Error(err.Error())
}
bookmark := args[2]

queryResults, err := getQueryResultForQueryStringWithPagination(stub,
→˓queryString, int32(pageSize), bookmark)

if err != nil {
return shim.Error(err.Error())

}
return shim.Success(queryResults)

}

The following example is a peer command which calls queryMarblesWithPagination with a pageSize of 3 and no
bookmark specified.

Tip: When no bookmark is specified, the query starts with the “first” page of records.

Try it yourself

// Rich Query with index name explicitly specified and a page size of 3:
peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":[
→˓"queryMarblesWithPagination", "{\"selector\":{\"docType\":\"marble\",\"owner\":\
→˓"tom\"}, \"use_index\":[\"_design/indexOwnerDoc\", \"indexOwner\"]}","3",""]}'

The following response is received (carriage returns added for clarity), three of the five marbles are returned because
the pagsize was set to 3:

[{"Key":"marble1", "Record":{"color":"blue","docType":"marble","name":"marble1","owner
→˓":"tom","size":35}},
{"Key":"marble2", "Record":{"color":"yellow","docType":"marble","name":"marble2",
→˓"owner":"tom","size":35}},
{"Key":"marble3", "Record":{"color":"green","docType":"marble","name":"marble3",
→˓"owner":"tom","size":20}}]

(continues on next page)

272 Chapter 7. Tutorials

https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

[{"ResponseMetadata":{"RecordsCount":"3",
"Bookmark":
→˓"g1AAAABLeJzLYWBgYMpgSmHgKy5JLCrJTq2MT8lPzkzJBYqz5yYWJeWkGoOkOWDSOSANIFk2iCyIyVySn5uVBQAGEhRz
→˓"}}]

Note: Bookmarks are uniquely generated by CouchDB for each query and represent a placeholder in the result set.
Pass the returned bookmark on the subsequent iteration of the query to retrieve the next set of results.

The following is a peer command to call queryMarblesWithPagination with a pageSize of 3. Notice this time, the
query includes the bookmark returned from the previous query.

Try it yourself

peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":[
→˓"queryMarblesWithPagination", "{\"selector\":{\"docType\":\"marble\",\"owner\":\
→˓"tom\"}, \"use_index\":[\"_design/indexOwnerDoc\", \"indexOwner\"]}","3",
→˓"g1AAAABLeJzLYWBgYMpgSmHgKy5JLCrJTq2MT8lPzkzJBYqz5yYWJeWkGoOkOWDSOSANIFk2iCyIyVySn5uVBQAGEhRz
→˓"]}'

The following response is received (carriage returns added for clarity). The last two records are retrieved:

[{"Key":"marble4", "Record":{"color":"purple","docType":"marble","name":"marble4",
→˓"owner":"tom","size":20}},
{"Key":"marble5", "Record":{"color":"blue","docType":"marble","name":"marble5","owner
→˓":"tom","size":40}}]
[{"ResponseMetadata":{"RecordsCount":"2",
"Bookmark":
→˓"g1AAAABLeJzLYWBgYMpgSmHgKy5JLCrJTq2MT8lPzkzJBYqz5yYWJeWkmoKkOWDSOSANIFk2iCyIyVySn5uVBQAGYhR1
→˓"}}]

The final command is a peer command to call queryMarblesWithPagination with a pageSize of 3 and with the book-
mark from the previous query.

Try it yourself

peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":[
→˓"queryMarblesWithPagination", "{\"selector\":{\"docType\":\"marble\",\"owner\":\
→˓"tom\"}, \"use_index\":[\"_design/indexOwnerDoc\", \"indexOwner\"]}","3",
→˓"g1AAAABLeJzLYWBgYMpgSmHgKy5JLCrJTq2MT8lPzkzJBYqz5yYWJeWkmoKkOWDSOSANIFk2iCyIyVySn5uVBQAGYhR1
→˓"]}'

The following response is received (carriage returns added for clarity). No records are returned, indicating that all
pages have been retrieved:

[]
[{"ResponseMetadata":{"RecordsCount":"0",
"Bookmark":
→˓"g1AAAABLeJzLYWBgYMpgSmHgKy5JLCrJTq2MT8lPzkzJBYqz5yYWJeWkmoKkOWDSOSANIFk2iCyIyVySn5uVBQAGYhR1
→˓"}}]

For an example of how a client application can iterate over the result sets using pagination, search for the
getQueryResultForQueryStringWithPagination function in the Marbles sample.

7.5. Using CouchDB 273

https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/marbles_chaincode.go

hyperledger-fabricdocs Documentation, Release master

7.5.9 Update an Index

It may be necessary to update an index over time. The same index may exist in subsequent versions of the chaincode
that gets installed. In order for an index to be updated, the original index definition must have included the design
document ddoc attribute and an index name. To update an index definition, use the same index name but alter the
index definition. Simply edit the index JSON file and add or remove fields from the index. Fabric only supports
the index type JSON. Changing the index type is not supported. The updated index definition gets redeployed to the
peer’s state database when the chaincode definition is committed to the channel. Changes to the index name or ddoc
attributes will result in a new index being created and the original index remains unchanged in CouchDB until it is
removed.

Note: If the state database has a significant volume of data, it will take some time for the index to be re-built, during
which time chaincode invokes that issue queries may fail or timeout.

Iterating on your index definition

If you have access to your peer’s CouchDB state database in a development environment, you can iteratively test
various indexes in support of your chaincode queries. Any changes to chaincode though would require redeployment.
Use the CouchDB Fauxton interface or a command line curl utility to create and update indexes.

Note: The Fauxton interface is a web UI for the creation, update, and deployment of indexes to CouchDB. If you
want to try out this interface, there is an example of the format of the Fauxton version of the index in Marbles sample.
If you have deployed the test network with CouchDB, the Fauxton interface can be loaded by opening a browser and
navigating to http://localhost:5984/_utils.

Alternatively, if you prefer not use the Fauxton UI, the following is an example of a curl command which can be used
to create the index on the database mychannel_marbles:

// Index for docType, owner.
// Example curl command line to define index in the CouchDB channel_chaincode database
curl -i -X POST -H "Content-Type: application/json" -d

"{\"index\":{\"fields\":[\"docType\",\"owner\"]},
\"name\":\"indexOwner\",
\"ddoc\":\"indexOwnerDoc\",
\"type\":\"json\"}" http://hostname:port/mychannel_marbles/_index

Note: If you are using the test network configured with CouchDB, replace hostname:port with localhost:5984.

7.5.10 Delete an Index

Index deletion is not managed by Fabric tooling. If you need to delete an index, manually issue a curl command
against the database or delete it using the Fauxton interface.

The format of the curl command to delete an index would be:

curl -X DELETE http://localhost:5984/{database_name}/_index/{design_doc}/json/{index_
→˓name} -H "accept: */*" -H "Host: localhost:5984"

To delete the index used in this tutorial, the curl command would be:

274 Chapter 7. Tutorials

http://docs.couchdb.org/en/latest/fauxton/index.html

hyperledger-fabricdocs Documentation, Release master

curl -X DELETE http://localhost:5984/mychannel_marbles/_index/indexOwnerDoc/json/
→˓indexOwner -H "accept: */*" -H "Host: localhost:5984"

7.6 Creating a channel

In order to create and transfer assets on a Hyperledger Fabric network, an organization needs to join a channel.
Channels are a private layer of communication between specific organizations and are invisible to other members of
the network. Each channel consists of a separate ledger that can only be read and written to by channel members, who
are allowed to join their peers to the channel and receive new blocks of transactions from the ordering service. While
the peers, nodes, and Certificate Authorities form the physical infrastructure of the network, channels are the process
by which organizations connect with each other and interact.

Because of the fundamental role that channels play in the operation and governance of Fabric, we provide a series of
tutorials that will cover different aspects of how channels are created. The Creating a new channel tutorial describes
the operational steps that need to be taken by a network administrator. The Using configtx.yaml to build a channel
configuration tutorial introduces the conceptual aspects of creating a channel, followed by a separate discussion of
Channel policies.

7.6.1 Creating a new channel

You can use this tutorial to learn how to create new channels using the configtxgen CLI tool and then use the peer
channel commands to join a channel with your peers. While this tutorial will leverage the Fabric test network to create
the new channel, the steps in this tutorial can also be used by network operators in a production environment.

In the process of creating the channel, this tutorial will take you through the following steps and concepts:

• Setting up the configtxgen tool

• Using the configtx.yaml file

• The orderer system channel

• Creating an application channel

• Joining peers to the channel

• Setting anchor peers

Setting up the configtxgen tool

Channels are created by building a channel creation transaction and submitting the transaction to the ordering service.
The channel creation transaction specifies the initial configuration of the channel and is used by the ordering service
to write the channel genesis block. While it is possible to build the channel creation transaction file manually, it is
easier to use the configtxgen tool. The tool works by reading a configtx.yaml file that defines the configuration
of your channel, and then writing the relevant information into the channel creation transaction. Before we discuss
the configtx.yaml file in the next section, we can get started by downloading and setting up the configtxgen
tool.

You can download the configtxgen binaries by following the steps to install the samples, binaries and Docker im-
ages. configtxgen will be downloaded to the bin folder of your local clone of the fabric-samples repository
along with other Fabric tools.

For the purposes of this tutorial, we will want to operate from the test-network directory inside
fabric-samples. Navigate to that directory using the following command:

7.6. Creating a channel 275

../commands/configtxgen.html
../commands/peerchannel.html
../commands/peerchannel.html
../commands/configtxgen.html
../install.html
../install.html

hyperledger-fabricdocs Documentation, Release master

cd fabric-samples/test-network

We will operate from the test-network directory for the remainder of the tutorial. Use the following command to
add the configtxgen tool to your CLI path:

export PATH=${PWD}/../bin:$PATH

In order to use configtxgen, you need to the set the FABRIC_CFG_PATH environment variable to the path of
the directory that contains your local copy of the configtx.yaml file. For this tutorial, we will reference the
configtx.yaml used to setup the Fabric test network in the configtx folder:

export FABRIC_CFG_PATH=${PWD}/configtx

You can check that you can are able to use the tool by printing the configtxgen help text:

configtxgen --help

The configtx.yaml file

The configtx.yaml file specifies the channel configuration of new channels. The information that is required
to build the channel configuration is specified in a readable and editable form in the configtx.yaml file. The
configtxgen tool uses the channel profiles defined in the configtx.yaml file to create the channel configuration
and write it to the protobuf format that can be read by Fabric.

You can find the configtx.yaml file that is used to deploy the test network in the configtx folder in the
test-network directory. The file contains the following information that we will use to create our new channel:

• Organizations: The organizations that can become members of your channel. Each organization has a reference
to the cryptographic material that is used to build the channel MSP.

• Ordering service: Which ordering nodes will form the ordering service of the network, and consensus method
they will use to agree to a common order of transactions. The file also contains the organizations that will
become the ordering service administrators.

• Channel policies Different sections of the file work together to define the policies that will govern how organi-
zations interact with the channel and which organizations need to approve channel updates. For the purposes of
this tutorial, we will use the default policies used by Fabric.

• Channel profiles Each channel profile references information from other sections of the configtx.yaml
file to build a channel configuration. The profiles are used the create the genesis block of the orderer system
channel and the channels that will be used by peer organizations. To distinguish them from the system channel,
the channels used by peer organizations are often referred to as application channels.

The configtxgen tool uses configtx.yaml file to create a complete genesis block for the system channel.
As a result, the system channel profile needs to specify the full system channel configuration. The channel profile
used to create the channel creation transaction only needs to contain the additional configuration information
required to create an application channel.

You can visit the Using configtx.yaml to create a channel genesis block tutorial to learn more about this file. For now,
we will return to the operational aspects of creating the channel, though we will reference parts of this file in future
steps.

Start the network

We will use a running instance of the Fabric test network to create the new channel. For the sake of this tutorial, we
want to operate from a known initial state. The following command will kill any active containers and remove any

276 Chapter 7. Tutorials

https://developers.google.com/protocol-buffers
../membership/membership.html
create_channel_genesis.html

hyperledger-fabricdocs Documentation, Release master

previously generated artifacts. Make sure that you are still operating from the test-network directory of your
local clone of fabric-samples.

./network.sh down

You can then use the following command to start the test network:

./network.sh up

This command will create a Fabric network with the two peer organizations and the single ordering organization
defined in the configtx.yaml file. The peer organizations will operate one peer each, while the ordering service
administrator will operate a single ordering node. When you run the command, the script will print out logs of the
nodes being created:

Creating network "net_test" with the default driver
Creating volume "net_orderer.example.com" with default driver
Creating volume "net_peer0.org1.example.com" with default driver
Creating volume "net_peer0.org2.example.com" with default driver
Creating orderer.example.com ... done
Creating peer0.org2.example.com ... done
Creating peer0.org1.example.com ... done
CONTAINER ID IMAGE COMMAND CREATED
→˓ STATUS PORTS NAMES
8d0c74b9d6af hyperledger/fabric-orderer:latest "orderer" 4 seconds
→˓ago Up Less than a second 0.0.0.0:7050->7050/tcp orderer.
→˓example.com
ea1cf82b5b99 hyperledger/fabric-peer:latest "peer node start" 4 seconds
→˓ago Up Less than a second 0.0.0.0:7051->7051/tcp peer0.org1.
→˓example.com
cd8d9b23cb56 hyperledger/fabric-peer:latest "peer node start" 4 seconds
→˓ago Up 1 second 7051/tcp, 0.0.0.0:9051->9051/tcp peer0.org2.
→˓example.com

Our instance of the test network was deployed without creating an application channel. However, the test network
script creates the system channel when you issue the ./network.sh up command. Under the covers, the script
uses the configtxgen tool and the configtx.yaml file to build the genesis block of the system channel. Because
the system channel is used to create other channels, we need to take some time to understand the orderer system channel
before we can create an application channel.

The orderer system channel

The first channel that is created in a Fabric network is the system channel. The system channel defines the set of
ordering nodes that form the ordering service and the set of organizations that serve as ordering service administrators.

The system channel also includes the organizations that are members of blockchain consortium. The consortium
is a set of peer organizations that belong to the system channel, but are not administrators of the ordering service.
Consortium members have the ability to create new channels and include other consortium organizations as channel
members.

The genesis block of the system channel is required to deploy a new ordering service. The test network script already
created the system channel genesis block when you issued the ./network.sh up command. The genesis block
was used to deploy the single ordering node, which used the block to create the system channel and form the ordering
service of the network. If you examine the output of the ./network.sh script, you can find the command that
created the genesis block in your logs:

configtxgen -profile TwoOrgsOrdererGenesis -channelID system-channel -outputBlock ./
→˓system-genesis-block/genesis.block

7.6. Creating a channel 277

../glossary.html#consortium

hyperledger-fabricdocs Documentation, Release master

The configtxgen tool used the TwoOrgsOrdererGenesis channel profile from configtx.yaml
to write the genesis block and store it in the system-genesis-block folder. You can see the
TwoOrgsOrdererGenesis profile below:

TwoOrgsOrdererGenesis:
<<: *ChannelDefaults
Orderer:

<<: *OrdererDefaults
Organizations:

- *OrdererOrg
Capabilities:

<<: *OrdererCapabilities
Consortiums:

SampleConsortium:
Organizations:

- *Org1
- *Org2

The Orderer: section of the profile creates the single node Raft ordering service used by the test network, with the
OrdererOrg as the ordering service administrator. The Consortiums section of the profile creates a consortium
of peer organizations named SampleConsortium:. Both peer organizations, Org1 and Org2, are members of the
consortium. As a result, we can include both organizations in new channels created by the test network. If we wanted to
add another organization as a channel member without adding that organization to the consortium, we would first need
to create the channel with Org1 and Org2, and then add the other organization by updating the channel configuration.

Creating an application channel

Now that we have deployed the nodes of the network and created the orderer system channel using the network.
sh script, we can start the process of creating a new channel for our peer organizations. We have already set the
environment variables that are required to use the configtxgen tool. Run the following command to create a
channel creation transaction for channel1:

configtxgen -profile TwoOrgsChannel -outputCreateChannelTx ./channel-artifacts/
→˓channel1.tx -channelID channel1

The -channelID will be the name of the future channel. Channel names must be all lower case, less than 250
characters long and match the regular expression [a-z][a-z0-9.-]*. The command uses the uses the -profile
flag to reference the TwoOrgsChannel: profile from configtx.yaml that is used by the test network to create
application channels:

TwoOrgsChannel:
Consortium: SampleConsortium
<<: *ChannelDefaults
Application:

<<: *ApplicationDefaults
Organizations:

- *Org1
- *Org2

Capabilities:
<<: *ApplicationCapabilities

The profile references the name of the SampleConsortium from the system channel, and includes both peer or-
ganizations from the consortium as channel members. Because the system channel is used as a template to create the
application channel, the ordering nodes defined in the system channel become the default consenter set of the new
channel, while the administrators of the ordering service become the orderer administrators of the channel. Ordering
nodes and ordering organizations can be added or removed from the consenter set using channel updates.

278 Chapter 7. Tutorials

../channel_update_tutorial.html
../glossary.html#consenter-set

hyperledger-fabricdocs Documentation, Release master

If the command successful, you will see logs of configtxgen loading the configtx.yaml file and printing a
channel creation transaction:

2020-03-11 16:37:12.695 EDT [common.tools.configtxgen] main -> INFO 001 Loading
→˓configuration
2020-03-11 16:37:12.738 EDT [common.tools.configtxgen.localconfig] Load -> INFO 002
→˓Loaded configuration: /Usrs/fabric-samples/test-network/configtx/configtx.yaml
2020-03-11 16:37:12.740 EDT [common.tools.configtxgen] doOutputChannelCreateTx ->
→˓INFO 003 Generating new channel configtx
2020-03-11 16:37:12.789 EDT [common.tools.configtxgen] doOutputChannelCreateTx ->
→˓INFO 004 Writing new channel tx

We can use the peer CLI to submit the channel creation transaction to the ordering service. To use the peer CLI, we
need to set the FABRIC_CFG_PATH to the core.yaml file located in the fabric-samples/config directory.
Set the FABRIC_CFG_PATH environment variable by running the following command:

export FABRIC_CFG_PATH=$PWD/../config/

Before the ordering service creates the channel, the ordering service will check the permission of the identity that
submitted the request. By default, only admin identities of organizations that belong to the system channel consortium
can create a new channel. Issue the commands below to operate the peer CLI as the admin user from Org1:

export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051

You can now create the channel by using the following command:

peer channel create -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com -c channel1 -f ./channel-artifacts/channel1.tx --outputBlock ./channel-
→˓artifacts/channel1.block --tls --cafile ${PWD}/organizations/ordererOrganizations/
→˓example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem

The command above provides the path to the channel creation transaction file using the -f flag and uses the -c flag to
specify the channel name. The -o flag is used to select the ordering node that will be used to create the channel. The
--cafile is the path to the TLS certificate of the ordering node. When you run the peer channel create
command, the peer CLI will generate the following response:

2020-03-06 17:33:49.322 EST [channelCmd] InitCmdFactory -> INFO 00b Endorser and
→˓orderer connections initialized
2020-03-06 17:33:49.550 EST [cli.common] readBlock -> INFO 00c Received block: 0

Because we are using a Raft ordering service, you may get some status unavailable messages that you can safely ignore.
The command will return the genesis block of the new channel to the location specified by the --outputBlock flag.

Join peers to the channel

After the channel has been created, we can join the channel with our peers. Organizations that are members of the
channel can fetch the channel genesis block from the ordering service using the peer channel fetch command. The
organization can then use the genesis block to join the peer to the channel using the peer channel join command. Once
the peer is joined to the channel, the peer will build the blockchain ledger by retrieving the other blocks on the channel
from the ordering service.

7.6. Creating a channel 279

../commands/peerchannel.html#peer-channel-fetch
../commands/peerchannel.html#peer-channel-join

hyperledger-fabricdocs Documentation, Release master

Since we are already operating the peer CLI as the Org1 admin, let’s join the Org1 peer to the channel. Since Org1
submitted the channel creation transaction, we already have the channel genesis block on our file system. Join the
Org1 peer to the channel using the command below.

peer channel join -b ./channel-artifacts/channel1.block

The CORE_PEER_ADDRESS environment variable has been set to target peer0.org1.example.com. A suc-
cessful command will generate a response from peer0.org1.example.com joining the channel:

2020-03-06 17:49:09.903 EST [channelCmd] InitCmdFactory -> INFO 001 Endorser and
→˓orderer connections initialized
2020-03-06 17:49:10.060 EST [channelCmd] executeJoin -> INFO 002 Successfully
→˓submitted proposal to join channel

You can verify that the peer has joined the channel using the peer channel getinfo command:

peer channel getinfo -c channel1

The command will list the block height of the channel and the hash of the most recent block. Because the genesis
block is the only block on the channel, the height of the channel will be 1:

2020-03-13 10:50:06.978 EDT [channelCmd] InitCmdFactory -> INFO 001 Endorser and
→˓orderer connections initialized
Blockchain info: {"height":1,"currentBlockHash":
→˓"kvtQYYEL2tz0kDCNttPFNC4e6HVUFOGMTIDxZ+DeNQM="}

We can now join the Org2 peer to the channel. Set the following environment variables to operate the peer CLI as
the Org2 admin. The environment variables will also set the Org2 peer, peer0.org1.example.com, as the target
peer.

export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org2MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
→˓example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.
→˓com/users/Admin@org2.example.com/msp
export CORE_PEER_ADDRESS=localhost:9051

While we still have the channel genesis block on our file system, in a more realistic scenario, Org2 would have the
fetch the block from the ordering service. As an example, we will use the peer channel fetch command to get
the genesis block for Org2:

peer channel fetch 0 ./channel-artifacts/channel_org2.block -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com -c channel1 --tls --cafile ${PWD}/
→˓organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/
→˓tlscacerts/tlsca.example.com-cert.pem

The command uses 0 to specify that it needs to fetch the genesis block that is required to join the channel. If the
command is successful, you should see the following output:

2020-03-13 11:32:06.309 EDT [channelCmd] InitCmdFactory -> INFO 001 Endorser and
→˓orderer connections initialized
2020-03-13 11:32:06.336 EDT [cli.common] readBlock -> INFO 002 Received block: 0

The command returns the channel genesis block and names it channel_org2.block to distinguish it from the
block pulled by org1. You can now use the block to join the Org2 peer to the channel:

280 Chapter 7. Tutorials

../commands/peerchannel.html#peer-channel-getinfo

hyperledger-fabricdocs Documentation, Release master

peer channel join -b ./channel-artifacts/channel_org2.block

Set anchor peers

After an organizations has joined their peers to the channel, they should select at least one of their peers to become
an anchor peer. Anchor peers are required in order to take advantage of features such as private data and service
discovery. Each organization should set multiple anchor peers on a channel for redundancy. For more information
about gossip and anchor peers, see the Gossip data dissemination protocol.

The endpoint information of the anchor peers of each organization is included in the channel configuration. Each
channel member can specify their anchor peers by updating the channel. We will use the configtxlator tool to update
the channel configuration and select an anchor peer for Org1 and Org2. The process for setting an anchor peer
is similar to the steps that are required to make other channel updates and provides an introduction to how to use
configtxlator to update a channel configuration. You will also need to install the jq tool on your local machine.

We will start by selecting an anchor peer as Org1. The first step is to pull the most recent channel configuration block
using the peer channel fetch command. Set the following environment variables to operate the peer CLI as
the Org1 admin:

export FABRIC_CFG_PATH=$PWD/../config/
export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.
→˓example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.
→˓com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051

You can use the following command to fetch the channel configuration:

peer channel fetch config channel-artifacts/config_block.pb -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com -c channel1 --tls --cafile ${PWD}/
→˓organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/
→˓tlscacerts/tlsca.example.com-cert.pem

Because the most recent channel configuration block is the channel genesis block, you will see the command return
block 0 from the channel.

2020-04-15 20:41:56.595 EDT [channelCmd] InitCmdFactory -> INFO 001 Endorser and
→˓orderer connections initialized
2020-04-15 20:41:56.603 EDT [cli.common] readBlock -> INFO 002 Received block: 0
2020-04-15 20:41:56.603 EDT [channelCmd] fetch -> INFO 003 Retrieving last config
→˓block: 0
2020-04-15 20:41:56.608 EDT [cli.common] readBlock -> INFO 004 Received block: 0

The channel configuration block was stored in the channel-artifacts folder to keep the update process separate
from other artifacts. Change into the channel-artifacts folder to complete the next steps:

cd channel-artifacts

We can now start using the configtxlator tool to start working with the channel configuration. The first step is
to decode the block from protobuf into a JSON object that can be read and edited. We also strip away the unnecessary
block data, leaving only the channel configuration.

7.6. Creating a channel 281

../gossip.html#anchor-peers
../gossip.html
../commands/configtxlator.html
../config_update.html
https://stedolan.github.io/jq/

hyperledger-fabricdocs Documentation, Release master

configtxlator proto_decode --input config_block.pb --type common.Block --output
→˓config_block.json
jq .data.data[0].payload.data.config config_block.json > config.json

These commands convert the channel configuration block into a streamlined JSON, config.json, that will serve
as the baseline for our update. Because we don’t want to edit this file directly, we will make a copy that we can edit.
We will use the original channel config in a future step.

cp config.json config_copy.json

You can use the jq tool to add the Org1 anchor peer to the channel configuration.

jq '.channel_group.groups.Application.groups.Org1MSP.values += {"AnchorPeers":{"mod_
→˓policy": "Admins","value":{"anchor_peers": [{"host": "peer0.org1.example.com","port
→˓": 7051}]},"version": "0"}}' config_copy.json > modified_config.json

After this step, we have an updated version of channel configuration in JSON format in the modified_config.
json file. We can now convert both the original and modified channel configurations back into protobuf format and
calculate the difference between them.

configtxlator proto_encode --input config.json --type common.Config --output config.pb
configtxlator proto_encode --input modified_config.json --type common.Config --output
→˓modified_config.pb
configtxlator compute_update --channel_id channel1 --original config.pb --updated
→˓modified_config.pb --output config_update.pb

The new protobuf named channel_update.pb contains the anchor peer update that we need to apply to the chan-
nel configuration. We can wrap the configuration update in a transaction envelope to create the channel configuration
update transaction.

configtxlator proto_decode --input config_update.pb --type common.ConfigUpdate --
→˓output config_update.json
echo '{"payload":{"header":{"channel_header":{"channel_id":"channel1", "type":2}},
→˓"data":{"config_update":'$(cat config_update.json)'}}}' | jq . > config_update_in_
→˓envelope.json
configtxlator proto_encode --input config_update_in_envelope.json --type common.
→˓Envelope --output config_update_in_envelope.pb

We can now use the final artifact, config_update_in_envelope.pb, that can be used to update the channel.
Navigate back to the test-network directory:

cd ..

We can add the anchor peer by providing the new channel configuration to the peer channel update command.
Because we are updating a section of the channel configuration that only affects Org1, other channel members do not
need to approve the channel update.

peer channel update -f channel-artifacts/config_update_in_envelope.pb -c channel1 -o
→˓localhost:7050 --ordererTLSHostnameOverride orderer.example.com --tls --cafile $
→˓{PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/
→˓msp/tlscacerts/tlsca.example.com-cert.pem

When the channel update is successful, you should see the following response:

2020-01-09 21:30:45.791 UTC [channelCmd] update -> INFO 002 Successfully submitted
→˓channel update

282 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

We can set the anchor peers for Org2. Because we are going through the process a second time, we will go through
the steps more quickly. Set the environment variables to operate the peer CLI as the Org2 admin:

export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org2MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
→˓example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.
→˓com/users/Admin@org2.example.com/msp
export CORE_PEER_ADDRESS=localhost:9051

Pull the latest channel configuration block, which is now the second block on the channel:

peer channel fetch config channel-artifacts/config_block.pb -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com -c channel1 --tls --cafile ${PWD}/
→˓organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/
→˓tlscacerts/tlsca.example.com-cert.pem

Navigate back to the channel-artifacts directory:

cd channel-artifacts

You can then decode and copy the configuration block.

configtxlator proto_decode --input config_block.pb --type common.Block --output
→˓config_block.json
jq .data.data[0].payload.data.config config_block.json > config.json
cp config.json config_copy.json

Add the Org2 peer that is joined to the channel as the anchor peer in the channel configuration:

jq '.channel_group.groups.Application.groups.Org2MSP.values += {"AnchorPeers":{"mod_
→˓policy": "Admins","value":{"anchor_peers": [{"host": "peer0.org2.example.com","port
→˓": 9051}]},"version": "0"}}' config_copy.json > modified_config.json

We can now convert both the original and updated channel configurations back into protobuf format and calculate the
difference between them.

configtxlator proto_encode --input config.json --type common.Config --output config.pb
configtxlator proto_encode --input modified_config.json --type common.Config --output
→˓modified_config.pb
configtxlator compute_update --channel_id channel1 --original config.pb --updated
→˓modified_config.pb --output config_update.pb

Wrap the configuration update in a transaction envelope to create the channel configuration update transaction:

configtxlator proto_decode --input config_update.pb --type common.ConfigUpdate --
→˓output config_update.json
echo '{"payload":{"header":{"channel_header":{"channel_id":"channel1", "type":2}},
→˓"data":{"config_update":'$(cat config_update.json)'}}}' | jq . > config_update_in_
→˓envelope.json
configtxlator proto_encode --input config_update_in_envelope.json --type common.
→˓Envelope --output config_update_in_envelope.pb

Navigate back to the test-network directory.

cd ..

7.6. Creating a channel 283

hyperledger-fabricdocs Documentation, Release master

Update the channel and set the Org2 anchor peer by issuing the following command:

peer channel update -f channel-artifacts/config_update_in_envelope.pb -c channel1 -o
→˓localhost:7050 --ordererTLSHostnameOverride orderer.example.com --tls --cafile $
→˓{PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/
→˓msp/tlscacerts/tlsca.example.com-cert.pem

You can confirm that the channel has been updated successfully by running the peer channel info command:

peer channel getinfo -c channel1

Now that the channel has been updated by adding two channel configuration blocks to the channel genesis block, the
height of the channel will have grown to three:

Blockchain info: {"height":3,"currentBlockHash":
→˓"eBpwWKTNUgnXGpaY2ojF4xeP3bWdjlPHuxiPCTIMxTk=","previousBlockHash":
→˓"DpJ8Yvkg79XHXNfdgneDb0jjQlXLb/wxuNypbfHMjas="}

Deploy a chaincode to the new channel

We can confirm that the channel was created successfully by deploying a chaincode to the channel. We can use the
network.sh script to deploy the Fabcar chaincode to any test network channel. Deploy a chaincode to our new
channel using the following command:

./network.sh deployCC -c channel1

After you run the command, you should see the chaincode being deployed to the channel in your logs. The chaincode
is invoked to add data to the channel ledger and then queried.

[{"Key":"CAR0","Record":{"make":"Toyota","model":"Prius","colour":"blue","owner":
→˓"Tomoko"}},
{"Key":"CAR1","Record":{"make":"Ford","model":"Mustang","colour":"red","owner":"Brad"}
→˓},
{"Key":"CAR2","Record":{"make":"Hyundai","model":"Tucson","colour":"green","owner":
→˓"Jin Soo"}},
{"Key":"CAR3","Record":{"make":"Volkswagen","model":"Passat","colour":"yellow","owner
→˓":"Max"}},
{"Key":"CAR4","Record":{"make":"Tesla","model":"S","colour":"black","owner":"Adriana"}
→˓},
{"Key":"CAR5","Record":{"make":"Peugeot","model":"205","colour":"purple","owner":
→˓"Michel"}},
{"Key":"CAR6","Record":{"make":"Chery","model":"S22L","colour":"white","owner":"Aarav
→˓"}},
{"Key":"CAR7","Record":{"make":"Fiat","model":"Punto","colour":"violet","owner":"Pari
→˓"}},
{"Key":"CAR8","Record":{"make":"Tata","model":"Nano","colour":"indigo","owner":
→˓"Valeria"}},
{"Key":"CAR9","Record":{"make":"Holden","model":"Barina","colour":"brown","owner":
→˓"Shotaro"}}]
===================== Query successful on peer0.org1 on channel 'channel1'
→˓=====================

284 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

7.6.2 Using configtx.yaml to build a channel configuration

A channel is created by building a channel creation transaction artifact that specifies the initial configuration of the
channel. The channel configuration is stored on the ledger, and governs all the subsequent blocks that are added to the
channel. The channel configuration specifies which organizations are channel members, the ordering nodes that can
add new blocks on the channel, as well as the policies that govern channel updates. The initial channel configuration,
stored in the channel genesis block, can be updated through channel configuration updates. If a sufficient number of
organizations approve a channel update, a new channel config block will govern the channel after it is committed to
the channel.

While it is possible to build the channel creation transaction file manually, it is easier to create a channel by using the
configtx.yaml file and the configtxgen tool. The configtx.yaml file contains the information that is required
to build the channel configuration in a format that can be easily read and edited by humans. The configtxgen tool
reads the information in the configtx.yaml file and writes it to the protobuf format that can be read by Fabric.

Overview

You can use this tutorial to learn how to use the configtx.yaml file to build the initial channel configuration that is
stored in the genesis block. The tutorial will discuss the portion of channel configuration that is built by each section
of file.

• Organizations

• Capabilities

• Application

• Orderer

• Channel

• Profiles

Because different sections of the file work together to create the policies that govern the channel, we will discuss
channel policies in their own tutorial.

Building off of the Creating a channel tutorial, we will use the configtx.yaml file that is used to deploy the Fabric
test network as an example. Open a command terminal on your local machine and navigate to the test-network
directory in your local clone of the Fabric samples:

cd fabric-samples/test-network

The configtx.yaml file used by the test network is located in the configtx folder. Open the file in a text editor.
You can refer back to this file as the tutorial goes through each section. You can find a more detailed version of the
configtx.yaml file in the Fabric sample configuration.

Organizations

The most important information contained in the channel configuration are the organizations that are channel mem-
bers. Each organization is identified by an MSP ID and a channel MSP. The channel MSP is stored in the channel
configuration and contains the certificates that are used to the identify the nodes, applications, and administrators
of an organization. The Organizations section of configtx.yaml file is used to create the channel MSP and
accompanying MSP ID for each member of the channel.

The configtx.yaml file used by the test network contains three organizations. Two organizations are peer organi-
zations, Org1 and Org2, that can be added to application channels. One organization, OrdererOrg, is the administrator
of the ordering service. Because it is a best practice to use different certificate authorities to deploy peer nodes and

7.6. Creating a channel 285

../commands/configtxgen.html
https://developers.google.com/protocol-buffers
channel_policies.html
create_channel.html
https://github.com/hyperledger/fabric/blob/master/sampleconfig/configtx.yaml
../membership/membership.html

hyperledger-fabricdocs Documentation, Release master

ordering nodes, organizations are often referred to as peer organizations or ordering organizations, even if they are in
fact run by the same company.

You can see the part of configtx.yaml that defines Org1 of the test network below:

- &Org1
DefaultOrg defines the organization which is used in the sampleconfig
of the fabric.git development environment
Name: Org1MSP

ID to load the MSP definition as
ID: Org1MSP

MSPDir: ../organizations/peerOrganizations/org1.example.com/msp

Policies defines the set of policies at this level of the config tree
For organization policies, their canonical path is usually
/Channel/<Application|Orderer>/<OrgName>/<PolicyName>
Policies:

Readers:
Type: Signature
Rule: "OR('Org1MSP.admin', 'Org1MSP.peer', 'Org1MSP.client')"

Writers:
Type: Signature
Rule: "OR('Org1MSP.admin', 'Org1MSP.client')"

Admins:
Type: Signature
Rule: "OR('Org1MSP.admin')"

Endorsement:
Type: Signature
Rule: "OR('Org1MSP.peer')"

leave this flag set to true.
AnchorPeers:

AnchorPeers defines the location of peers which can be used
for cross org gossip communication. Note, this value is only
encoded in the genesis block in the Application section context
- Host: peer0.org1.example.com
Port: 7051

• The Name field is an informal name used to identify the organization.

• The ID field is the organization’s MSP ID. The MSP ID acts as a unique identifier for your organization, and is
referred to by channel policies and is included in the transactions submitted to the channel.

• The MSPDir is the path to an MSP folder that was created by the organization. The configtxgen tool will
use this MSP folder to create the channel MSP. This MSP folder needs to contain the following information,
which will be transferred to the channel MSP and stored in the channel configuration:

– A CA root certificate that establishes the root of trust for the organization. The CA root cert is used to
verify if an application, node, or administrator belongs to a channel member.

– A root cert from the TLS CA that issued the TLS certificates of the peer or orderer nodes. The TLS root
cert is used to identify the organization by the gossip protocol.

– If Node OUs are enabled, the MSP folder needs to contain a config.yaml file that identifies the admin-
istrators, nodes, and clients based on the OUs of their x509 certificates.

– If Node OUs are not enabled, the MSP needs to contain an admincerts folder that contains the signing
certificates of the organizations administrator identities.

286 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

The MSP folder that is used to create the channel MSP only contains public certificates. As a result, you can
build the MSP folder locally, and then send the MSP to the organization that is creating the channel.

• The Policies section is used to define a set of signature policies that reference the channel member. We will
discuss these policies in more detail when we discuss channel policies.

• The AnchorPeers field lists the anchor peers for an organization. Anchor peers are required in order to
take advantage of features such as private data and service discovery. It is recommended that organizations
select at least one anchor peer. While an organization can select their anchor peers on the channel for the first
time using the configtxgen tool, it is recommended that each organization set anchor peers by using the
configtxlator tool to update the channel configuration. As a result, this field is not required.

Capabilities

Fabric channels can be joined by orderer and peer nodes that are running different versions of Hyperledger Fabric.
Channel capabilities allow organizations that are running different Fabric binaries to participate on the same channel
by only enabling certain features. For example, organizations that are running Fabric v1.4 and organizations that are
running Fabric v2.x can join the same channel as long as the channel capabilities levels are set to V1_4_X or below.
None of the channel members will be able to use the features introduced in Fabric v2.0.

If you examine the configtx.yaml file, you will see three capability groups:

• Application capabilities govern the features that are used by peer nodes, such as the Fabric chaincode lifecycle,
and set the minimum version of the Fabric binaries that can be run by peers joined to the channel.

• Orderer capabilities govern the features that are used by orderer nodes, such as Raft consensus, and set the
minimum version of the Fabric binaries that can be run by ordering nodes that belong to the channel consenter
set.

• Channel capabilities set the minimum version of the Fabric that can be run by peer and ordering nodes.

Because both of the peers and the ordering node of the Fabric test network run version v2.x, every capability group is
set to V2_0. As a result, the test network cannot be joined by nodes that run a lower version of Fabric than v2.0. For
more information, see the capabilities concept topic.

Application

The application section defines the policies that govern how peer organizations can interact with application channels.
These policies govern the number of peer organizations that need to approve a chaincode definition or sign a request
to update the channel configuration. These policies are also used to restrict access to channel resources, such as the
ability to write to the channel ledger or to query channel events.

The test network uses the default application policies provided by Hyperledger Fabric. If you use the default policies,
all peer organizations will be able to read and write data to the ledger. The default policies also require that a majority
of channel members sign channel configuration updates and that a majority of channel members need to approve a
chaincode definition before a chaincode can be deployed to a channel. The contents of this section are discussed in
more detail in the channel policies tutorial.

Orderer

Each channel configuration includes the orderer nodes in the channel consenter set. The consenter set is the group of
ordering nodes that have the ability to create new blocks and distribute them to the peers joined to the channel. The
endpoint information of each ordering node that is a member of the consenter set is stored in the channel configuration.

The test network uses the Orderer section of the configtx.yaml file to create a single node Raft ordering service.

• The OrdererType field is used to select Raft as the consensus type:

7.6. Creating a channel 287

channel_policies.html
create_channel.html#set-anchor-peers
../capabilities_concept.html
channel_policies.html
../glossary.html#consenter-set

hyperledger-fabricdocs Documentation, Release master

OrdererType: etcdraft

Raft ordering services are defined by the list of consenters that can participate in the consensus process. Because
the test network only uses a single ordering node, the consenters list contains only one endpoint:

EtcdRaft:
Consenters:
- Host: orderer.example.com
Port: 7050
ClientTLSCert: ../organizations/ordererOrganizations/example.com/orderers/

→˓orderer.example.com/tls/server.crt
ServerTLSCert: ../organizations/ordererOrganizations/example.com/orderers/

→˓orderer.example.com/tls/server.crt
Addresses:
- orderer.example.com:7050

Each ordering node in the list of consenters is identified by their endpoint address and their client and server
TLS certificate. If you are deploying a multi-node ordering service, you would need to provide the hostname,
port, and the path to the TLS certificates used by each node. You would also need to add the endpoint address
of each ordering node to the list of Addresses.

• You can use the BatchTimeout and BatchSize fields to tune the latency and throughput of the channel by
changing the maximum size of each block and how often a new block is created.

• The Policies section creates the policies that govern the channel consenter set. The test network uses the
default policies provided by Fabric, which require that a majority of orderer administrators approve the addition
or removal of ordering nodes, organizations, or an update to the block cutting parameters.

Because the test network is used for development and testing, it uses an ordering service that consists of a single
ordering node. Networks that are deployed in production should use a multi-node ordering service for security and
availability. To learn more, see Configuring and operating a Raft ordering service.

Channel

The channel section defines that policies that govern the highest level of the channel configuration. For an application
channel, these policies govern the hashing algorithm, the data hashing structure used to create new blocks, and the
channel capability level. In the system channel, these policies also govern the creation or removal of consortiums of
peer organizations.

The test network uses the default policies provided by Fabric, which require that a majority of orderer service adminis-
trators would need to approve updates to these values in the system channel. In an application channel, changes would
need to be approved by a majority of orderer organizations and a majority of channel members. Most users will not
need to change these values.

Profiles

The configtxgen tool reads the channel profiles in the Profiles section to build a channel configuration. Each pro-
file uses YAML syntax to gather data from other sections of the file. The configtxgen tool uses this configuration
to create a channel creation transaction for an applications channel, or to write the channel genesis block for a system
channel. To learn more about YAML syntax, Wikipedia provides a good place to get started.

The configtx.yaml used by the test network contains two channel profiles, TwoOrgsOrdererGenesis and
TwoOrgsChannel:

288 Chapter 7. Tutorials

../raft_configuration.html
https://en.wikipedia.org/wiki/YAML

hyperledger-fabricdocs Documentation, Release master

TwoOrgsOrdererGenesis

The TwoOrgsOrdererGenesis profile is used to create the system channel genesis block:

TwoOrgsOrdererGenesis:
<<: *ChannelDefaults
Orderer:

<<: *OrdererDefaults
Organizations:

- *OrdererOrg
Capabilities:

<<: *OrdererCapabilities
Consortiums:

SampleConsortium:
Organizations:

- *Org1
- *Org2

The system channel defines the nodes of the ordering service and the set of organizations that are ordering service
administrators. The system channel also includes a set of peer organizations that belong to the blockchain consortium.
The channel MSP of each member of the consortium is included in the system channel, allowing them to create new
application channels and add consortium members to the new channel.

The profile creates a consortium named SampleConsortium that contains the two peer organizations in the
configtx.yaml file, Org1 and Org2. The Orderer section of the profile uses the single node Raft ordering
service defined in the Orderer: section of the file. The OrdererOrg from the Organizations: section is made the only
administrator of the ordering service. Because our only ordering node is running Fabric 2.x, we can set the orderer
system channel capability to V2_0. The system channel uses default policies from the Channel section and enables
V2_0 as the channel capability level.

TwoOrgsChannel

The TwoOrgsChannel profile is used by the test network to create application channels:

TwoOrgsChannel:
Consortium: SampleConsortium
<<: *ChannelDefaults
Application:

<<: *ApplicationDefaults
Organizations:

- *Org1
- *Org2

Capabilities:
<<: *ApplicationCapabilities

The system channel is used by the ordering service as a template to create application channels. The nodes of the
ordering service that are defined in the system channel become the default consenter set of new channels, while the
administrators of the ordering service become the orderer administrators of the channel. The channel MSPs of channel
members are transferred to the new channel from the system channel. After the channel is created, ordering nodes
can be added or removed from the channel by updating the channel configuration. You can also update the channel
configuration to add other organizations as channel members.

The TwoOrgsChannel provides the name of the consortium, SampleConsortium, hosted by the test network
system channel. As a result, the ordering service defined in the TwoOrgsOrdererGenesis profile becomes chan-
nel consenter set. In the Application section, both organizations from the consortium, Org1 and Org2, are included
as channel members. The channel uses V2_0 as the application capabilities, and uses the default policies from the

7.6. Creating a channel 289

../glossary.html#consortium
../channel_update_tutorial.html

hyperledger-fabricdocs Documentation, Release master

Application section to govern how peer organizations will interact with the channel. The application channel also
uses the default policies from the Channel section and enables V2_0 as the channel capability level.

7.6.3 Channel policies

Channels are a private method of communication between organizations. As a result, most changes to the channel
configuration need to be agreed to by other members of the channel. A channel would not be useful if an organization
could join the channel and read the data on the ledger without getting the approval of other organizations. Any changes
to the channel structure need to be approved by a set of organizations that can satisfy the channel policies.

Policies also govern the processes of how users interact with the channel, such as the set of organizations that need
to approve a chaincode before it can be deployed to a channel or which actions need to be completed by channel
administrators.

Channel policies are important enough that they need to be discussed in their own topic. Unlike other parts of the chan-
nel configuration, the policies that govern the channel are determined by how different sections of the configtx.
yaml file work together. While channel policies can be configured for any use case with few constraints, this topic
will focus on how to use the default policies provided by Hyperledger Fabric. If you use the default policies used by
the Fabric test network or the Fabric sample configuration, each channel you create will use a combination of signature
policies, ImplicitMeta policies, and Access Control Lists to determine how organizations interact with the channel and
agree to update the channel structure. You can learn more about the role of policies in Hyperledger Fabric by visiting
the Policies concept topic.

Signature policies

By default, each channel member defines a set of signature policies that references their organization. When a proposal
is submitted to a peer, or a transaction is submitted to the ordering nodes, the nodes read the signatures attached to
the transaction and evaluate them against the signature policies defined in the channel configuration. Every signature
policy has rule that specifies the set of organizations and identities whose signatures can satisfy the policy. You can
see the signature policies defined by Org1 in the Organizations section of configtx.yaml below:

- &Org1

...

Policies:
Readers:

Type: Signature
Rule: "OR('Org1MSP.admin', 'Org1MSP.peer', 'Org1MSP.client')"

Writers:
Type: Signature
Rule: "OR('Org1MSP.admin', 'Org1MSP.client')"

Admins:
Type: Signature
Rule: "OR('Org1MSP.admin')"

Endorsement:
Type: Signature
Rule: "OR('Org1MSP.peer')"

All the policies above can be satisfied by signatures from Org1. However, each policy lists a different set of roles from
within the organization that are able to satisfy the policy. The Admins policy can only be satisfied by transactions
submitted by an identity with an admin role, while only identities with a peer role can satisfy the Endorsement
policy. A set of signatures attached to a single transaction can satisfy multiple signature policies. For example, if the
endorsements attached to a transaction were provided by both Org1 and Org2, then this signature set would satisfy the
Endorsement policy of Org1 and Org2.

290 Chapter 7. Tutorials

https://github.com/hyperledger/fabric/blob/master/sampleconfig/configtx.yaml
../policies.html

hyperledger-fabricdocs Documentation, Release master

ImplicitMeta Policies

If your channel uses the default policies, the signature policies for each organization are evaluated by ImplicitMeta
policies at higher levels of the channel configuration. Instead of directly evaluating the signatures that are submitted to
the channel, ImplicitMeta policies have rules specify a set of other policies in the channel configuration that can satisfy
the policy. A transaction can satisfy an ImplicitMeta policy if it can satisfy the underlying set of signature policies that
are referenced by the policy.

You can see the ImplicitMeta policies defined in the Application section of configtx.yaml file below:

Policies:
Readers:

Type: ImplicitMeta
Rule: "ANY Readers"

Writers:
Type: ImplicitMeta
Rule: "ANY Writers"

Admins:
Type: ImplicitMeta
Rule: "MAJORITY Admins"

LifecycleEndorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement"

Endorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement"

The ImplicitMeta policies in the Application section govern how peer organizations interact with the channel. Each
policy references the signature policies associated with each channel member. You see the relationship between the
policies in the Application section and the policies in the Organization section below:

Figure 1: The Admins ImplicitMeta policy can be satisfied by a majority of the Admins signature policies that are
defined by each organization.

Each policy is referred to its path in the channel configuration. Because the policies in the Application section
are located in the application group, which is located inside the channel group, they are referred to as Channel/
Application policies. Since most places in the Fabric documentation refer to policies by their path, we will refer

7.6. Creating a channel 291

hyperledger-fabricdocs Documentation, Release master

to policies by their path for the rest of the tutorial.

The Rule in each ImplicitMeta references the name of the signature policies that can satisfy the policy. For ex-
ample, the Channel/Application/Admins ImplicitMeta policy references the Admins signature policies for
each organization. Each Rule also contains the number of signature policies that are required to satisfy the Implicit-
Meta policy. For example, the Channel/Application/Admins policy requires that a majority of the Admins
signature policies be satisfied.

Figure 2: A channel update request submitted to the channel contains signatures from Org1, Org2, and Org3, satisfying
the signature policies for each organization. As a result, the request satisfies the Channel/Application/Admins policy.
The Org3 check is in light green because the signature was not required to reach to a majority.

To provide another example, the Channel/Application/Endorsement policy can be satisfied by a majority
of organization Endorsement policies, which require signatures from the peers of each organization. This policy is
used by the Fabric chaincode lifecycle as the default chaincode endorsement policy. Unless you commit a chaincode
definition with a different endorsement policy, transactions that invoke a chaincode need to be endorsed by a majority
of channel members.

292 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

Figure 3: A transaction from a client application invoked a chaincode on the peers of Org1 and Org2. The chaincode
invoke was successful, and the application received an endorsement from the peers of both organizations. Because
this transaction satisfies the Channel/Application/Endorsement policy, the transaction meets the default endorsement
policy and can be added to the channel ledger.

The advantage of using ImplicitMeta policies and signature policies together is that you can set the rules for governance
at the channel level, while allowing each channel member to select the identities that are required to sign for their
organization. For example, a channel can specify that a majority of organization admins are required to sign a channel
configuration update. However, each organization can use their signature policies to select which identities from their
organization are admins, or even require that multiple identities from their organization need to sign in order to approve
a channel update.

Another advantage of ImplicitMeta policies is that they do not need to be updated when an organization is added
or removed from the channel. Using Figure 3 as an example, if two new organizations are added to the channel,
the Channel/Application/Endorsement would require an endorsement from three organizations in order to
validate a transaction.

A disadvantage of ImplicitMeta policies is that they do not explicitly read the signature policies used by the channel
members (which is why they are called implicit policies). Instead, they assume that users have the required signature
policies based on the configuration of the channel. The rule of the Channel/Application/Endorsement
policy is based on the number of peer organizations in the channel. If two of the three organizations in Figure 3 do not
possess the Endorsement signature polices, no transaction would be able to get the majority required to meet the
Channel/Application/Endorsement ImplicitMeta policy.

Channel modification policies

The channel structure is governed by modification policies within the channel configuration. Each component of the
channel configuration has a modification policy that needs to be satisfied in order to be updated by channel members.
For example, the policies and channel MSP defined by each organization, the application group that contains the
members of the channel, and the components of the configuration that define the channel consenter set each have a
different modification policy.

Each modification policy can reference an ImplicitMeta policy or a signature policy. For example, if you use the
default policies, the values that define each organization reference the Admins signature policy associated with that
organization. As a result, an organization can update their channel MSP or set an anchor peer without approval from

7.6. Creating a channel 293

hyperledger-fabricdocs Documentation, Release master

other channel members. The modification policy of the application group that defines the set of channel members is
the Channel/Application/Admins ImplicitMeta policy. As a result, the default policy is that a majority of
organizations need to approve the addition or removal of a channel member.

Channel policies and Access Control Lists

The policies within the channel configuration are also referenced by Access Control Lists (ACLs) that are used to
restrict access to Fabric resources used by the channel. The ACLs extend the policies within the channel configuration
to govern the processes of the channel. You can see the default ACLs in the sample configtx.yaml file. Each ACL
refers to a channel policy using the path. For example, the following ACL restricts who can invoke a chaincode based
on the /Channel/Application/Writers policy:

ACL policy for invoking chaincodes on peer
peer/Propose: /Channel/Application/Writers

Most of the default ACLs point to the ImplicitMeta policies in the application section of the channel configura-
tion. To extend the example above, an organization can invoke a chaincode if they can satisfy the /Channel/
Application/Writers policy.

Figure 4: The peer/Propose ACL is satisfied by the /Channel/Application/Writers policy. This policy can be satisfied
by a transaction submitted by a client application from any organization with the writers signature policy.

Orderer policies

The ImplicitMeta policies in the Orderer section of configtx.yaml govern the ordering nodes of a channel in a
similar way as the Application section governs the peer organizations. The ImplicitMeta policies point to the signature
policies associated with the organizations that are ordering service administrators.

294 Chapter 7. Tutorials

../access_control.html
http://github.com/hyperledger/fabric/blob/master/sampleconfig/configtx.yaml

hyperledger-fabricdocs Documentation, Release master

Figure 5: The Channel/Orderer/Admins policy points to the Admins signature policies associated with the administra-
tors of the ordering service.

If you use the default policies, a majority of orderer organizations are required to approve the addition or removal of
an ordering node.

Figure 6: A request submitted to remove an ordering node from the channel contains signatures from the three ordering
organizations in the network, satisfying the Channel/Orderer/Admins policy. The Org3 check is in light green because
the signature was not required to reach to a majority.

The Channel/Orderer/BlockValidation policy is used by peers to confirm that new blocks being added
to the channel were generated by an ordering node that is part of the channel consenter set, and that the block was
not tampered with or created by another peer organization. By default, any orderer organization with a Writers
signature policy can create and validate blocks for the channel.

7.7 Adding an Org to a Channel

7.7. Adding an Org to a Channel 295

hyperledger-fabricdocs Documentation, Release master

Note: Ensure that you have downloaded the appropriate images and binaries as outlined in Install Samples, Binaries,
and Docker Images and Prerequisites that conform to the version of this documentation (which can be found at the
bottom of the table of contents to the left).

This tutorial extends the Fabric test network by adding a new organization – Org3 – to an application channel.

While we will focus on adding a new organization to the channel, you can use a similar process to make other channel
configuration updates (updating modification policies or altering batch size, for example). To learn more about the
process and possibilities of channel config updates in general, check out Updating a channel configuration). It’s also
worth noting that channel configuration updates like the one demonstrated here will usually be the responsibility of an
organization admin (rather than a chaincode or application developer).

7.7.1 Setup the Environment

We will be operating from the root of the test-network subdirectory within your local clone of
fabric-samples. Change into that directory now.

cd fabric-samples/test-network

First, use the network.sh script to tidy up. This command will kill any active or stale Docker containers and
remove previously generated artifacts. It is by no means necessary to bring down a Fabric network in order to perform
channel configuration update tasks. However, for the sake of this tutorial, we want to operate from a known initial
state. Therefore let’s run the following command to clean up any previous environments:

./network.sh down

You can now use the script to bring up the test network with one channel named mychannel:

./network.sh up createChannel

If the command was successful, you can see the following message printed in your logs:

========= Channel successfully joined ===========

Now that you have a clean version of the test network running on your machine, we can start the process of adding a
new org to the channel we created. First, we are going use a script to add Org3 to the channel to confirm that the process
works. Then, we will go through the step by step process of adding Org3 by updating the channel configuration.

7.7.2 Bring Org3 into the Channel with the Script

You should be in the test-network directory. To use the script, simply issue the following commands:

cd addOrg3
./addOrg3.sh up

The output here is well worth reading. You’ll see the Org3 crypto material being generated, the Org3 organization
definition being created, and then the channel configuration being updated, signed, and then submitted to the channel.

If everything goes well, you’ll get this message:

========= Finished adding Org3 to your test network! =========

Now that we have confirmed we can add Org3 to our channel, we can go through the steps to update the channel
configuration that the script completed behind the scenes.

296 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

7.7.3 Bring Org3 into the Channel Manually

If you just used the addOrg3.sh script, you’ll need to bring your network down. The following command will bring
down all running components and remove the crypto material for all organizations:

./addOrg3.sh down

After the network is brought down, bring it back up again:

cd ..
./network.sh up createChannel

This will bring your network back to the same state it was in before you executed the addOrg3.sh script.

Now we’re ready to add Org3 to the channel manually. As a first step, we’ll need to generate Org3’s crypto material.

7.7.4 Generate the Org3 Crypto Material

In another terminal, change into the addOrg3 subdirectory from test-network.

cd addOrg3

First, we are going to create the certificates and keys for the Org3 peer, along with an application and admin user.
Because we are updating an example channel, we are going to use the cryptogen tool instead of using a Certificate
Authority. The following command uses cryptogen to read the org3-crypto.yaml file and generate the Org3
crypto material in a new org3.example.com folder:

../../bin/cryptogen generate --config=org3-crypto.yaml --output="../organizations"

You can find the generated Org3 crypto material alongside the certificates and keys for Org1 and Org2 in the
test-network/organizations/peerOrganizations directory.

Once we have created the Org3 crypto material, we can use the configtxgen tool to print out the Org3 organization
definition. We will preface the command by telling the tool to look in the current directory for the configtx.yaml
file that it needs to ingest.

export FABRIC_CFG_PATH=$PWD
../../bin/configtxgen -printOrg Org3MSP > ../organizations/peerOrganizations/org3.
→˓example.com/org3.json

The above command creates a JSON file – org3.json – and writes it to the test-network/organizations/
peerOrganizations/org3.example.com folder. The organization definition contains the policy definitions
for Org3, as well as three important certificates encoded in base64 format:

• a CA root cert, used to establish the organizations root of trust

• a TLS root cert, used by the gossip protocol to identify Org3 for block dissemination and service discovery

• The admin user certificate (which will be needed to act as the admin of Org3 later on)

We will add Org3 to the channel by appending this organization definition to the channel configuration.

7.7.5 Bring up Org3 components

After we have created the Org3 certificate material, we can now bring up the Org3 peer. From the addOrg3 directory,
issue the following command:

7.7. Adding an Org to a Channel 297

hyperledger-fabricdocs Documentation, Release master

docker-compose -f docker/docker-compose-org3.yaml up -d

If the command is successful, you will see the creation of the Org3 peer and an instance of the Fabric tools container
named Org3CLI:

Creating peer0.org3.example.com ... done
Creating Org3cli ... done

This Docker Compose file has been configured to bridge across our initial network, so that the Org3 peer and Org3CLI
resolve with the existing peers and ordering node of the test network. We will use the Org3CLI container to commu-
nicate with the network and issue the peer commands that will add Org3 to the channel.

7.7.6 Prepare the CLI Environment

The update process makes use of the configuration translator tool – configtxlator. This tool provides a stateless REST
API independent of the SDK. Additionally it provides a CLI tool that can be used to simplify configuration tasks in
Fabric networks. The tool allows for the easy conversion between different equivalent data representations/formats (in
this case, between protobufs and JSON). Additionally, the tool can compute a configuration update transaction based
on the differences between two channel configurations.

Use the following command to exec into the Org3CLI container:

docker exec -it Org3cli bash

This container has been mounted with the organizations folder, giving us access to the crypto material and TLS
certificates for all organizations and the Orderer Org. We can use environment variables to operate the Org3CLI
container as the admin of Org1, Org2, or Org3. First, we need to set the environment variables for the orderer TLS
certificate and the channel name:

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/organizations/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem
export CHANNEL_NAME=mychannel

Check to make sure the variables have been properly set:

echo $ORDERER_CA && echo $CHANNEL_NAME

Note: If for any reason you need to restart the Org3CLI container, you will also need to re-export the two environment
variables – ORDERER_CA and CHANNEL_NAME.

7.7.7 Fetch the Configuration

Now we have the Org3CLI container with our two key environment variables – ORDERER_CA and CHANNEL_NAME
exported. Let’s go fetch the most recent config block for the channel – mychannel.

The reason why we have to pull the latest version of the config is because channel config elements are versioned.
Versioning is important for several reasons. It prevents config changes from being repeated or replayed (for instance,
reverting to a channel config with old CRLs would represent a security risk). Also it helps ensure concurrency (if you
want to remove an Org from your channel, for example, after a new Org has been added, versioning will help prevent
you from removing both Orgs, instead of just the Org you want to remove).

298 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

Because Org3 is not yet a member of the channel, we need to operate as the admin of another organization to fetch the
channel config. Because Org1 is a member of the channel, the Org1 admin has permission to fetch the channel config
from the ordering service. Issue the following commands to operate as the Org1 admin.

you can issue all of these commands at once

export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/
→˓organizations/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/
→˓ca.crt
export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/
→˓organizations/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=peer0.org1.example.com:7051

We can now issue the command to fetch the latest config block:

peer channel fetch config config_block.pb -o orderer.example.com:7050 -c $CHANNEL_
→˓NAME --tls --cafile $ORDERER_CA

This command saves the binary protobuf channel configuration block to config_block.pb. Note that the choice
of name and file extension is arbitrary. However, following a convention which identifies both the type of object being
represented and its encoding (protobuf or JSON) is recommended.

When you issued the peer channel fetch command, the following output is displayed in your logs:

2017-11-07 17:17:57.383 UTC [channelCmd] readBlock -> DEBU 011 Received block: 2

This is telling us that the most recent configuration block for mychannel is actually block 2, NOT the genesis block.
By default, the peer channel fetch config command returns the most recent configuration block for the
targeted channel, which in this case is the third block. This is because the test network script, network.sh, defined
anchor peers for our two organizations – Org1 and Org2 – in two separate channel update transactions. As a result,
we have the following configuration sequence:

• block 0: genesis block

• block 1: Org1 anchor peer update

• block 2: Org2 anchor peer update

7.7.8 Convert the Configuration to JSON and Trim It Down

Now we will make use of the configtxlator tool to decode this channel configuration block into JSON format
(which can be read and modified by humans). We also must strip away all of the headers, metadata, creator signatures,
and so on that are irrelevant to the change we want to make. We accomplish this by means of the jq tool:

configtxlator proto_decode --input config_block.pb --type common.Block | jq .data.
→˓data[0].payload.data.config > config.json

This command leaves us with a trimmed down JSON object – config.json – which will serve as the baseline for
our config update.

Take a moment to open this file inside your text editor of choice (or in your browser). Even after you’re done with this
tutorial, it will be worth studying it as it reveals the underlying configuration structure and the other kind of channel
updates that can be made. We discuss them in more detail in Updating a channel configuration.

7.7.9 Add the Org3 Crypto Material

7.7. Adding an Org to a Channel 299

hyperledger-fabricdocs Documentation, Release master

Note: The steps you’ve taken up to this point will be nearly identical no matter what kind of config update you’re try-
ing to make. We’ve chosen to add an org with this tutorial because it’s one of the most complex channel configuration
updates you can attempt.

We’ll use the jq tool once more to append the Org3 configuration definition – org3.json – to the channel’s appli-
cation groups field, and name the output – modified_config.json.

jq -s '.[0] * {"channel_group":{"groups":{"Application":{"groups": {"Org3MSP":.[1]}}}}
→˓}' config.json ./organizations/peerOrganizations/org3.example.com/org3.json >
→˓modified_config.json

Now, within the Org3CLI container we have two JSON files of interest – config.json and modified_config.
json. The initial file contains only Org1 and Org2 material, whereas the “modified” file contains all three Orgs. At
this point it’s simply a matter of re-encoding these two JSON files and calculating the delta.

First, translate config.json back into a protobuf called config.pb:

configtxlator proto_encode --input config.json --type common.Config --output config.pb

Next, encode modified_config.json to modified_config.pb:

configtxlator proto_encode --input modified_config.json --type common.Config --output
→˓modified_config.pb

Now use configtxlator to calculate the delta between these two config protobufs. This command will output a
new protobuf binary named org3_update.pb:

configtxlator compute_update --channel_id $CHANNEL_NAME --original config.pb --
→˓updated modified_config.pb --output org3_update.pb

This new proto – org3_update.pb – contains the Org3 definitions and high level pointers to the Org1 and Org2
material. We are able to forgo the extensive MSP material and modification policy information for Org1 and Org2
because this data is already present within the channel’s genesis block. As such, we only need the delta between the
two configurations.

Before submitting the channel update, we need to perform a few final steps. First, let’s decode this object into editable
JSON format and call it org3_update.json:

configtxlator proto_decode --input org3_update.pb --type common.ConfigUpdate | jq . >
→˓org3_update.json

Now, we have a decoded update file – org3_update.json – that we need to wrap in an envelope mes-
sage. This step will give us back the header field that we stripped away earlier. We’ll name this file
org3_update_in_envelope.json:

echo '{"payload":{"header":{"channel_header":{"channel_id":"'$CHANNEL_NAME'", "type
→˓":2}},"data":{"config_update":'$(cat org3_update.json)'}}}' | jq . > org3_update_in_
→˓envelope.json

Using our properly formed JSON – org3_update_in_envelope.json – we will leverage the
configtxlator tool one last time and convert it into the fully fledged protobuf format that Fabric requires. We’ll
name our final update object org3_update_in_envelope.pb:

configtxlator proto_encode --input org3_update_in_envelope.json --type common.
→˓Envelope --output org3_update_in_envelope.pb

300 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

7.7.10 Sign and Submit the Config Update

Almost done!

We now have a protobuf binary – org3_update_in_envelope.pb – within the Org3CLI container. However,
we need signatures from the requisite Admin users before the config can be written to the ledger. The modification
policy (mod_policy) for our channel Application group is set to the default of “MAJORITY”, which means that we
need a majority of existing org admins to sign it. Because we have only two orgs – Org1 and Org2 – and the majority
of two is two, we need both of them to sign. Without both signatures, the ordering service will reject the transaction
for failing to fulfill the policy.

First, let’s sign this update proto as Org1. Remember that we exported the necessary environment variables to operate
the Org3CLI container as the Org1 admin. As a result, the following peer channel signconfigtx command
will sign the update as Org1.

peer channel signconfigtx -f org3_update_in_envelope.pb

The final step is to switch the container’s identity to reflect the Org2 Admin user. We do this by exporting four
environment variables specific to the Org2 MSP.

Note: Switching between organizations to sign a config transaction (or to do anything else) is not reflective of a real-
world Fabric operation. A single container would never be mounted with an entire network’s crypto material. Rather,
the config update would need to be securely passed out-of-band to an Org2 Admin for inspection and approval.

Export the Org2 environment variables:

you can issue all of these commands at once

export CORE_PEER_LOCALMSPID="Org2MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/
→˓organizations/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/
→˓ca.crt
export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/
→˓organizations/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp
export CORE_PEER_ADDRESS=peer0.org2.example.com:9051

Lastly, we will issue the peer channel update command. The Org2 Admin signature will be attached to this
call so there is no need to manually sign the protobuf a second time:

Note: The upcoming update call to the ordering service will undergo a series of systematic signature and policy
checks. As such you may find it useful to stream and inspect the ordering node’s logs. You can issue a docker
logs -f orderer.example.com command from a terminal outside the Org3CLI container to display them.

Send the update call:

peer channel update -f org3_update_in_envelope.pb -c $CHANNEL_NAME -o orderer.example.
→˓com:7050 --tls --cafile $ORDERER_CA

You should see a message similar to the following if your update has been submitted successfully:

2020-01-09 21:30:45.791 UTC [channelCmd] update -> INFO 002 Successfully submitted
→˓channel update

The successful channel update call returns a new block – block 3 – to all of the peers on the channel. If you remember,
blocks 0-2 are the initial channel configurations. Block 3 serves as the most recent channel configuration with Org3

7.7. Adding an Org to a Channel 301

hyperledger-fabricdocs Documentation, Release master

now defined on the channel.

You can inspect the logs for peer0.org1.example.com by navigating to a terminal outside the Org3CLI con-
tainer and issuing the following command:

docker logs -f peer0.org1.example.com

7.7.11 Join Org3 to the Channel

At this point, the channel configuration has been updated to include our new organization – Org3 – meaning that peers
attached to it can now join mychannel.

Inside the Org3CLI container, export the following environment variables to operate as the Org3 Admin:

you can issue all of these commands at once

export CORE_PEER_LOCALMSPID="Org3MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/
→˓organizations/peerOrganizations/org3.example.com/peers/peer0.org3.example.com/tls/
→˓ca.crt
export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/
→˓organizations/peerOrganizations/org3.example.com/users/Admin@org3.example.com/msp
export CORE_PEER_ADDRESS=peer0.org3.example.com:11051

Now let’s send a call to the ordering service asking for the genesis block of mychannel. As a result of the successful
channel update, the ordering service will verify that Org3 can pull the genesis block and join the channel. If Org3 had
not been successfully appended to the channel config, the ordering service would reject this request.

Note: Again, you may find it useful to stream the ordering node’s logs to reveal the sign/verify logic and policy
checks.

Use the peer channel fetch command to retrieve this block:

peer channel fetch 0 mychannel.block -o orderer.example.com:7050 -c $CHANNEL_NAME --
→˓tls --cafile $ORDERER_CA

Notice, that we are passing a 0 to indicate that we want the first block on the channel’s ledger; the genesis block.
If we simply passed the peer channel fetch config command, then we would have received block 3 – the
updated config with Org3 defined. However, we can’t begin our ledger with a downstream block – we must start with
block 0.

If successful, the command returned the genesis block to a file named mychannel.block. We can now use this
block to join the peer to the channel. Issue the peer channel join command and pass in the genesis block to
join the Org3 peer to the channel:

peer channel join -b mychannel.block

7.7.12 Configuring Leader Election

Note: This section is included as a general reference for understanding the leader election settings when adding
organizations to a network after the initial channel configuration has completed. This sample defaults to dynamic
leader election, which is set for all peers in the network.

302 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

Newly joining peers are bootstrapped with the genesis block, which does not contain information about the organi-
zation that is being added in the channel configuration update. Therefore new peers are not able to utilize gossip
as they cannot verify blocks forwarded by other peers from their own organization until they get the configuration
transaction which added the organization to the channel. Newly added peers must therefore have one of the following
configurations so that they receive blocks from the ordering service:

1. To utilize static leader mode, configure the peer to be an organization leader:

CORE_PEER_GOSSIP_USELEADERELECTION=false
CORE_PEER_GOSSIP_ORGLEADER=true

Note: This configuration must be the same for all new peers added to the channel.

2. To utilize dynamic leader election, configure the peer to use leader election:

CORE_PEER_GOSSIP_USELEADERELECTION=true
CORE_PEER_GOSSIP_ORGLEADER=false

Note: Because peers of the newly added organization won’t be able to form membership view, this option will
be similar to the static configuration, as each peer will start proclaiming itself to be a leader. However, once they get
updated with the configuration transaction that adds the organization to the channel, there will be only one active leader
for the organization. Therefore, it is recommended to leverage this option if you eventually want the organization’s
peers to utilize leader election.

7.7.13 Install, define, and invoke chaincode

We can confirm that Org3 is a member of mychannel by installing and invoking a chaincode on the channel. If the
existing channel members have already committed a chaincode definition to the channel, a new organization can start
using the chaincode by approving the chaincode definition.

Note: These instructions use the Fabric chaincode lifecycle introduced in the v2.0 release. If you would like to use
the previous lifecycle to install and instantiate a chaincode, visit the v1.4 version of the Adding an org to a channel
tutorial.

Before we install a chaincode as Org3, we can use the ./network.sh script to deploy the Fabcar chaincode on the
channel. Open a new terminal outside the Org3CLI container and navigate to the test-network directory. You can
then use use the test-network script to deploy the Fabcar chaincode:

cd fabric-samples/test-network
./network.sh deployCC

The script will install the Fabcar chaincode on the Org1 and Org2 peers, approve the chaincode definition for Org1
and Org2, and then commit the chaincode definition to the channel. Once the chaincode definition has been committed
to the channel, the Fabcar chaincode is initialized and invoked to put initial data on the ledger. The commands below
assume that we are still using the channel mychannel.

After the chaincode has been to deployed we can use the following steps to use invoke Fabcar chaincode as Org3.
These steps can be completed from the test-network directory, without having to exec into Org3CLI container.
Copy and paste the following environment variables in your terminal in order to interact with the network as the Org3
admin:

7.7. Adding an Org to a Channel 303

https://hyperledger-fabric.readthedocs.io/en/release-1.4/channel_update_tutorial.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/channel_update_tutorial.html

hyperledger-fabricdocs Documentation, Release master

export PATH=${PWD}/../bin:$PATH
export FABRIC_CFG_PATH=$PWD/../config/
export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org3MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org3.
→˓example.com/peers/peer0.org3.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org3.example.
→˓com/users/Admin@org3.example.com/msp
export CORE_PEER_ADDRESS=localhost:11051

The first step is to package the Fabcar chaincode:

peer lifecycle chaincode package fabcar.tar.gz --path ../chaincode/fabcar/go/ --lang
→˓golang --label fabcar_1

This command will create a chaincode package named fabcar.tar.gz, which we can install on the Org3 peer.
Modify the command accordingly if the channel is running a chaincode written in Java or Node.js. Issue the following
command to install the chaincode package peer0.org3.example.com:

peer lifecycle chaincode install fabcar.tar.gz

The next step is to approve the chaincode definition of Fabcar as Org3. Org3 needs to approve the same definition that
Org1 and Org2 approved and committed to the channel. In order to invoke the chaincode, Org3 needs to include the
package identifier in the chaincode definition. You can find the package identifier by querying your peer:

peer lifecycle chaincode queryinstalled

You should see output similar to the following:

Get installed chaincodes on peer:
Package ID: fabcar_1:25f28c212da84a8eca44d14cf12549d8f7b674a0d8288245561246fa90f7ab03,
→˓ Label: fabcar_1

We are going to need the package ID in a future command, so lets go ahead and save it as an environment variable.
Paste the package ID returned by the peer lifecycle chaincode queryinstalled command into the
command below. The package ID may not be the same for all users, so you need to complete this step using the
package ID returned from your console.

export CC_PACKAGE_ID=fabcar_
→˓1:25f28c212da84a8eca44d14cf12549d8f7b674a0d8288245561246fa90f7ab03

Use the following command to approve a definition of the Fabcar chaincode for Org3:

use the --package-id flag to provide the package identifier
use the --init-required flag to request the ``Init`` function be invoked to
→˓initialize the chaincode
peer lifecycle chaincode approveformyorg -o localhost:7050 --
→˓ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name fabcar -
→˓-version 1 --init-required --package-id $CC_PACKAGE_ID --sequence 1 --tls --cafile $
→˓{PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/
→˓msp/tlscacerts/tlsca.example.com-cert.pem

You can use the peer lifecycle chaincode querycommitted command to check if the chaincode defi-
nition you have approved has already been committed to the channel.

304 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

use the --name flag to select the chaincode whose definition you want to query
peer lifecycle chaincode querycommitted --channelID mychannel --name fabcar --cafile $
→˓{PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/
→˓msp/tlscacerts/tlsca.example.com-cert.pem

A successful command will return information about the committed definition:

Committed chaincode definition for chaincode 'fabcar' on channel 'mychannel':
Version: 1, Sequence: 1, Endorsement Plugin: escc, Validation Plugin: vscc,
→˓Approvals: [Org1MSP: true, Org2MSP: true, Org3MSP: true]

Org3 can use the Fabcar chaincode after it approves the chaincode definition that was committed to the channel. The
chaincode definition uses the default endorsement policy, which requires a majority of organizations on the channel
endorse a transaction. This implies that if an organization is added to or removed from the channel, the endorsement
policy will be updated automatically. We previously needed endorsements from Org1 and Org2 (2 out of 2). Now we
need endorsements from two organizations out of Org1, Org2, and Org3 (2 out of 3).

You can query the chaincode to ensure that it has started on the Org3 peer. Note that you may need to wait for the
chaincode container to start.

peer chaincode query -C mychannel -n fabcar -c '{"Args":["queryAllCars"]}'

You should see the initial list of cars that were added to the ledger as a response.

Now, invoke the chaincode to add a new car to the ledger. In the command below, we target a peer in Org1 and Org3
to collect a sufficient number of endorsements.

peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
→˓com --tls --cafile ${PWD}/organizations/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n
→˓fabcar --peerAddresses localhost:7051 --tlsRootCertFiles ${PWD}/organizations/
→˓peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt --
→˓peerAddresses localhost:11051 --tlsRootCertFiles ${PWD}/organizations/
→˓peerOrganizations/org3.example.com/peers/peer0.org3.example.com/tls/ca.crt -c '{
→˓"function":"createCar","Args":["CAR11","Honda","Accord","Black","Tom"]}'

We can query again to see the new car, “CAR11” on the our the ledger:

peer chaincode query -C mychannel -n fabcar -c '{"Args":["queryCar","CAR11"]}'

7.7.14 Conclusion

The channel configuration update process is indeed quite involved, but there is a logical method to the various steps.
The endgame is to form a delta transaction object represented in protobuf binary format and then acquire the requisite
number of admin signatures such that the channel configuration update transaction fulfills the channel’s modification
policy.

The configtxlator and jq tools, along with the peer channel commands, provide us with the functionality
to accomplish this task.

7.7.15 Updating the Channel Config to include an Org3 Anchor Peer (Optional)

The Org3 peers were able to establish gossip connection to the Org1 and Org2 peers since Org1 and Org2 had anchor
peers defined in the channel configuration. Likewise newly added organizations like Org3 should also define their
anchor peers in the channel configuration so that any new peers from other organizations can directly discover an Org3

7.7. Adding an Org to a Channel 305

hyperledger-fabricdocs Documentation, Release master

peer. In this section, we will make a channel configuration update to define an Org3 anchor peer. The process will be
similar to the previous configuration update, therefore we’ll go faster this time.

If you don’t have it open, exec back into the Org3CLI container:

docker exec -it Org3cli bash

Export the $ORDERER_CA and $CHANNEL_NAME variables if they are not already set:

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/organizations/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem
export CHANNEL_NAME=mychannel

As before, we will fetch the latest channel configuration to get started. Inside the Org3CLI container, fetch the most
recent config block for the channel, using the peer channel fetch command.

peer channel fetch config config_block.pb -o orderer.example.com:7050 -c $CHANNEL_
→˓NAME --tls --cafile $ORDERER_CA

After fetching the config block we will want to convert it into JSON format. To do this we will use the configtxlator
tool, as done previously when adding Org3 to the channel. When converting it we need to remove all the headers,
metadata, and signatures that are not required to update Org3 to include an anchor peer by using the jq tool. This
information will be reincorporated later before we proceed to update the channel configuration.

configtxlator proto_decode --input config_block.pb --type common.Block | jq .data.
→˓data[0].payload.data.config > config.json

The config.json is the now trimmed JSON representing the latest channel configuration that we will update.

Using the jq tool again, we will update the configuration JSON with the Org3 anchor peer we want to add.

jq '.channel_group.groups.Application.groups.Org3MSP.values += {"AnchorPeers":{"mod_
→˓policy": "Admins","value":{"anchor_peers": [{"host": "peer0.org3.example.com","port
→˓": 11051}]},"version": "0"}}' config.json > modified_anchor_config.json

We now have two JSON files, one for the current channel configuration, config.json, and one for the desired
channel configuration modified_anchor_config.json. Next we convert each of these back into protobuf
format and calculate the delta between the two.

Translate config.json back into protobuf format as config.pb

configtxlator proto_encode --input config.json --type common.Config --output config.pb

Translate the modified_anchor_config.json into protobuf format as modified_anchor_config.pb

configtxlator proto_encode --input modified_anchor_config.json --type common.Config --
→˓output modified_anchor_config.pb

Calculate the delta between the two protobuf formatted configurations.

configtxlator compute_update --channel_id $CHANNEL_NAME --original config.pb --
→˓updated modified_anchor_config.pb --output anchor_update.pb

Now that we have the desired update to the channel we must wrap it in an envelope message so that it can be properly
read. To do this we must first convert the protobuf back into a JSON that can be wrapped.

We will use the configtxlator command again to convert anchor_update.pb into anchor_update.json

306 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

configtxlator proto_decode --input anchor_update.pb --type common.ConfigUpdate | jq .
→˓> anchor_update.json

Next we will wrap the update in an envelope message, restoring the previously stripped away header, outputting it to
anchor_update_in_envelope.json

echo '{"payload":{"header":{"channel_header":{"channel_id":"'$CHANNEL_NAME'", "type
→˓":2}},"data":{"config_update":'$(cat anchor_update.json)'}}}' | jq . > anchor_
→˓update_in_envelope.json

Now that we have reincorporated the envelope we need to convert it to a protobuf so it can be properly signed and
submitted to the orderer for the update.

configtxlator proto_encode --input anchor_update_in_envelope.json --type common.
→˓Envelope --output anchor_update_in_envelope.pb

Now that the update has been properly formatted it is time to sign off and submit it. Since this is only an update
to Org3 we only need to have Org3 sign off on the update. Run the following commands to make sure that we are
operating as the Org3 admin:

you can issue all of these commands at once

export CORE_PEER_LOCALMSPID="Org3MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/
→˓organizations/peerOrganizations/org3.example.com/peers/peer0.org3.example.com/tls/
→˓ca.crt
export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/
→˓organizations/peerOrganizations/org3.example.com/users/Admin@org3.example.com/msp
export CORE_PEER_ADDRESS=peer0.org3.example.com:11051

We can now just use the peer channel update command to sign the update as the Org3 admin before submitting
it to the orderer.

peer channel update -f anchor_update_in_envelope.pb -c $CHANNEL_NAME -o orderer.
→˓example.com:7050 --tls --cafile $ORDERER_CA

The orderer receives the config update request and cuts a block with the updated configuration. As peers receive the
block, they will process the configuration updates.

Inspect the logs for one of the peers. While processing the configuration transaction from the new block, you will see
gossip re-establish connections using the new anchor peer for Org3. This is proof that the configuration update has
been successfully applied!

docker logs -f peer0.org1.example.com

2019-06-12 17:08:57.924 UTC [gossip.gossip] learnAnchorPeers -> INFO 89a Learning
→˓about the configured anchor peers of Org1MSP for channel mychannel : [{peer0.org1.
→˓example.com 7051}]
2019-06-12 17:08:57.926 UTC [gossip.gossip] learnAnchorPeers -> INFO 89b Learning
→˓about the configured anchor peers of Org2MSP for channel mychannel : [{peer0.org2.
→˓example.com 9051}]
2019-06-12 17:08:57.926 UTC [gossip.gossip] learnAnchorPeers -> INFO 89c Learning
→˓about the configured anchor peers of Org3MSP for channel mychannel : [{peer0.org3.
→˓example.com 11051}]

Congratulations, you have now made two configuration updates — one to add Org3 to the channel, and a second to
define an anchor peer for Org3.

7.7. Adding an Org to a Channel 307

hyperledger-fabricdocs Documentation, Release master

7.8 Updating a channel configuration

Audience: network administrators, node administrators

7.8.1 What is a channel configuration?

Like many complex systems, Hyperledger Fabric networks are comprised of both structure and a number related of
processes.

• Structure: encompassing users (like admins), organizations, peers, ordering nodes, CAs, smart contracts, and
applications.

• Process: the way these structures interact. Most important of these are Policies, the rules that govern which
users can do what, and under what conditions.

Information identifying the structure of blockchain networks and the processes governing how structures interact are
contained in channel configurations. These configurations are collectively decided upon by the members of channels
and are contained in blocks that are committed to the ledger of a channel. Channel configurations can be built using a
tool called configtxgen, which uses a configtx.yaml file as its input. You can look at a sample configtx.
yaml file here.

Because configurations are contained in blocks (the first of these is known as the genesis block with the latest rep-
resenting the current configuration of the channel), the process for updating a channel configuration (changing the
structure by adding members, for example, or processes by modifying channel policies) is known as a configuration
update transaction.

In production networks, these configuration update transactions will normally be proposed by a single channel admin
after an out of band discussion, just as the initial configuration of the channel will be decided on out of band by the
initial members of the channel.

In this topic, we’ll:

• Show a full sample configuration of an application channel.

• Discuss many of the channel parameters that can be edited.

• Show the process for updating a channel configuration, including the commands necessary to pull, translate, and
scope a configuration into something that humans can read.

• Discuss the methods that can be used to edit a channel configuration.

• Show the process used to reformat a configuration and get the signatures necessary for it to be approved.

7.8.2 Channel parameters that can be updated

Channels are highly configurable, but not infinitely so. Once certain things about a channel (for example, the name of
the channel) have been specified, they cannot be changed. And changing one of the parameters we’ll talk about in this
topic requires satisfying the relevant policy as specified in the channel configuration.

In this section, we’ll look a sample channel configuration and show the configuration parameters that can be updated.

Sample channel configuration

To see what the configuration file of an application channel looks like after it has been pulled and scoped, click Click
here to see the config below. For ease of readability, it might be helpful to put this config into a viewer that supports
JSON folding, like atom or Visual Studio.

308 Chapter 7. Tutorials

./policies/policies.html
http://github.com/hyperledger/fabric/blob/release-2.0/sampleconfig/configtx.yaml
http://github.com/hyperledger/fabric/blob/release-2.0/sampleconfig/configtx.yaml

hyperledger-fabricdocs Documentation, Release master

Note: for simplicity, we are only showing an application channel configuration here. The configuration of the orderer
system channel is very similar, but not identical, to the configuration of an application channel. However, the same
basic rules and structure apply, as do the commands to pull and edit a configuration, as you can see in our topic on
Updating the capability level of a channel.

Click here to see the config. Note that this is the configuration of an application channel, not the orderer system
channel.

{
"channel_group": {
"groups": {

"Application": {
"groups": {
"Org1MSP": {

"groups": {},
"mod_policy": "Admins",
"policies": {
"Admins": {
"mod_policy": "Admins",
"policy": {
"type": 1,
"value": {
"identities": [
{
"principal": {
"msp_identifier": "Org1MSP",
"role": "ADMIN"

},
"principal_classification": "ROLE"

}
],
"rule": {
"n_out_of": {
"n": 1,
"rules": [
{
"signed_by": 0

}
]

}
},
"version": 0

}
},
"version": "0"

},
"Endorsement": {
"mod_policy": "Admins",
"policy": {
"type": 1,
"value": {
"identities": [
{
"principal": {
"msp_identifier": "Org1MSP",
"role": "PEER"

},
"principal_classification": "ROLE"

(continues on next page)

7.8. Updating a channel configuration 309

./updating_capabilities.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

}
],
"rule": {
"n_out_of": {
"n": 1,
"rules": [
{
"signed_by": 0

}
]

}
},
"version": 0

}
},
"version": "0"

},
"Readers": {
"mod_policy": "Admins",
"policy": {
"type": 1,
"value": {
"identities": [
{
"principal": {
"msp_identifier": "Org1MSP",
"role": "ADMIN"

},
"principal_classification": "ROLE"

},
{
"principal": {
"msp_identifier": "Org1MSP",
"role": "PEER"

},
"principal_classification": "ROLE"

},
{
"principal": {
"msp_identifier": "Org1MSP",
"role": "CLIENT"

},
"principal_classification": "ROLE"

}
],
"rule": {
"n_out_of": {
"n": 1,
"rules": [
{
"signed_by": 0

},
{
"signed_by": 1

},
{
"signed_by": 2

(continues on next page)

310 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

}
]

}
},
"version": 0

}
},
"version": "0"

},
"Writers": {
"mod_policy": "Admins",
"policy": {
"type": 1,
"value": {
"identities": [
{
"principal": {
"msp_identifier": "Org1MSP",
"role": "ADMIN"

},
"principal_classification": "ROLE"

},
{
"principal": {
"msp_identifier": "Org1MSP",
"role": "CLIENT"

},
"principal_classification": "ROLE"

}
],
"rule": {
"n_out_of": {
"n": 1,
"rules": [
{
"signed_by": 0

},
{
"signed_by": 1

}
]

}
},
"version": 0

}
},
"version": "0"

}
},
"values": {
"AnchorPeers": {
"mod_policy": "Admins",
"value": {
"anchor_peers": [
{
"host": "peer0.org1.example.com",
"port": 7051

(continues on next page)

7.8. Updating a channel configuration 311

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

}
]

},
"version": "0"

},
"MSP": {
"mod_policy": "Admins",
"value": {
"config": {
"admins": [],
"crypto_config": {
"identity_identifier_hash_function": "SHA256",
"signature_hash_family": "SHA2"

},
"fabric_node_ous": {
"admin_ou_identifier": {
"certificate":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNKekNDQWMyZ0F3SUJBZ0lVYWVSeWNkQytlR1lUTUNyWTg2UFVXUEdzQUw0d0NnWUlLb1pJemowRUF3SXcKY0RFTE1Ba0dBMVVFQmhNQ1ZWTXhGekFWQmdOVkJBZ1REazV2Y25Sb0lFTmhjbTlzYVc1aE1ROHdEUVlEVlFRSApFd1pFZFhKb1lXMHhHVEFYQmdOVkJBb1RFRzl5WnpFdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekV1WlhoaGJYQnNaUzVqYjIwd0hoY05NakF3TXpJME1qQXhPREF3V2hjTk16VXdNekl4TWpBeE9EQXcKV2pCd01Rc3dDUVlEVlFRR0V3SlZVekVYTUJVR0ExVUVDQk1PVG05eWRHZ2dRMkZ5YjJ4cGJtRXhEekFOQmdOVgpCQWNUQmtSMWNtaGhiVEVaTUJjR0ExVUVDaE1RYjNKbk1TNWxlR0Z0Y0d4bExtTnZiVEVjTUJvR0ExVUVBeE1UClkyRXViM0puTVM1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJLWXIKSmtqcEhjRkcxMVZlU200emxwSmNCZEtZVjc3SEgvdzI0V09sZnphYWZWK3VaaEZ2YTFhQm9aaGx5RloyMGRWeApwMkRxb09BblZ4MzZ1V3o2SXl1alJUQkRNQTRHQTFVZER3RUIvd1FFQXdJQkJqQVNCZ05WSFJNQkFmOEVDREFHCkFRSC9BZ0VCTUIwR0ExVWREZ1FXQkJTcHpDQWdPaGRuSkE3VVpxUWlFSVFXSFpnYXZEQUtCZ2dxaGtqT1BRUUQKQWdOSUFEQkZBaUVBbEZtYWdIQkJoblFUd3dDOXBQRTRGbFY2SlhIbTdnQ1JyWUxUbVgvc0VySUNJRUhLZG51KwpIWDgrVTh1ZkFKbTdrL1laZEtVVnlWS2E3bGREUjlWajNveTIKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓",

"organizational_unit_identifier": "admin"
},
"client_ou_identifier": {
"certificate":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNKekNDQWMyZ0F3SUJBZ0lVYWVSeWNkQytlR1lUTUNyWTg2UFVXUEdzQUw0d0NnWUlLb1pJemowRUF3SXcKY0RFTE1Ba0dBMVVFQmhNQ1ZWTXhGekFWQmdOVkJBZ1REazV2Y25Sb0lFTmhjbTlzYVc1aE1ROHdEUVlEVlFRSApFd1pFZFhKb1lXMHhHVEFYQmdOVkJBb1RFRzl5WnpFdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekV1WlhoaGJYQnNaUzVqYjIwd0hoY05NakF3TXpJME1qQXhPREF3V2hjTk16VXdNekl4TWpBeE9EQXcKV2pCd01Rc3dDUVlEVlFRR0V3SlZVekVYTUJVR0ExVUVDQk1PVG05eWRHZ2dRMkZ5YjJ4cGJtRXhEekFOQmdOVgpCQWNUQmtSMWNtaGhiVEVaTUJjR0ExVUVDaE1RYjNKbk1TNWxlR0Z0Y0d4bExtTnZiVEVjTUJvR0ExVUVBeE1UClkyRXViM0puTVM1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJLWXIKSmtqcEhjRkcxMVZlU200emxwSmNCZEtZVjc3SEgvdzI0V09sZnphYWZWK3VaaEZ2YTFhQm9aaGx5RloyMGRWeApwMkRxb09BblZ4MzZ1V3o2SXl1alJUQkRNQTRHQTFVZER3RUIvd1FFQXdJQkJqQVNCZ05WSFJNQkFmOEVDREFHCkFRSC9BZ0VCTUIwR0ExVWREZ1FXQkJTcHpDQWdPaGRuSkE3VVpxUWlFSVFXSFpnYXZEQUtCZ2dxaGtqT1BRUUQKQWdOSUFEQkZBaUVBbEZtYWdIQkJoblFUd3dDOXBQRTRGbFY2SlhIbTdnQ1JyWUxUbVgvc0VySUNJRUhLZG51KwpIWDgrVTh1ZkFKbTdrL1laZEtVVnlWS2E3bGREUjlWajNveTIKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓",

"organizational_unit_identifier": "client"
},
"enable": true,
"orderer_ou_identifier": {
"certificate":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNKekNDQWMyZ0F3SUJBZ0lVYWVSeWNkQytlR1lUTUNyWTg2UFVXUEdzQUw0d0NnWUlLb1pJemowRUF3SXcKY0RFTE1Ba0dBMVVFQmhNQ1ZWTXhGekFWQmdOVkJBZ1REazV2Y25Sb0lFTmhjbTlzYVc1aE1ROHdEUVlEVlFRSApFd1pFZFhKb1lXMHhHVEFYQmdOVkJBb1RFRzl5WnpFdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekV1WlhoaGJYQnNaUzVqYjIwd0hoY05NakF3TXpJME1qQXhPREF3V2hjTk16VXdNekl4TWpBeE9EQXcKV2pCd01Rc3dDUVlEVlFRR0V3SlZVekVYTUJVR0ExVUVDQk1PVG05eWRHZ2dRMkZ5YjJ4cGJtRXhEekFOQmdOVgpCQWNUQmtSMWNtaGhiVEVaTUJjR0ExVUVDaE1RYjNKbk1TNWxlR0Z0Y0d4bExtTnZiVEVjTUJvR0ExVUVBeE1UClkyRXViM0puTVM1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJLWXIKSmtqcEhjRkcxMVZlU200emxwSmNCZEtZVjc3SEgvdzI0V09sZnphYWZWK3VaaEZ2YTFhQm9aaGx5RloyMGRWeApwMkRxb09BblZ4MzZ1V3o2SXl1alJUQkRNQTRHQTFVZER3RUIvd1FFQXdJQkJqQVNCZ05WSFJNQkFmOEVDREFHCkFRSC9BZ0VCTUIwR0ExVWREZ1FXQkJTcHpDQWdPaGRuSkE3VVpxUWlFSVFXSFpnYXZEQUtCZ2dxaGtqT1BRUUQKQWdOSUFEQkZBaUVBbEZtYWdIQkJoblFUd3dDOXBQRTRGbFY2SlhIbTdnQ1JyWUxUbVgvc0VySUNJRUhLZG51KwpIWDgrVTh1ZkFKbTdrL1laZEtVVnlWS2E3bGREUjlWajNveTIKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓",

"organizational_unit_identifier": "orderer"
},
"peer_ou_identifier": {
"certificate":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNKekNDQWMyZ0F3SUJBZ0lVYWVSeWNkQytlR1lUTUNyWTg2UFVXUEdzQUw0d0NnWUlLb1pJemowRUF3SXcKY0RFTE1Ba0dBMVVFQmhNQ1ZWTXhGekFWQmdOVkJBZ1REazV2Y25Sb0lFTmhjbTlzYVc1aE1ROHdEUVlEVlFRSApFd1pFZFhKb1lXMHhHVEFYQmdOVkJBb1RFRzl5WnpFdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekV1WlhoaGJYQnNaUzVqYjIwd0hoY05NakF3TXpJME1qQXhPREF3V2hjTk16VXdNekl4TWpBeE9EQXcKV2pCd01Rc3dDUVlEVlFRR0V3SlZVekVYTUJVR0ExVUVDQk1PVG05eWRHZ2dRMkZ5YjJ4cGJtRXhEekFOQmdOVgpCQWNUQmtSMWNtaGhiVEVaTUJjR0ExVUVDaE1RYjNKbk1TNWxlR0Z0Y0d4bExtTnZiVEVjTUJvR0ExVUVBeE1UClkyRXViM0puTVM1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJLWXIKSmtqcEhjRkcxMVZlU200emxwSmNCZEtZVjc3SEgvdzI0V09sZnphYWZWK3VaaEZ2YTFhQm9aaGx5RloyMGRWeApwMkRxb09BblZ4MzZ1V3o2SXl1alJUQkRNQTRHQTFVZER3RUIvd1FFQXdJQkJqQVNCZ05WSFJNQkFmOEVDREFHCkFRSC9BZ0VCTUIwR0ExVWREZ1FXQkJTcHpDQWdPaGRuSkE3VVpxUWlFSVFXSFpnYXZEQUtCZ2dxaGtqT1BRUUQKQWdOSUFEQkZBaUVBbEZtYWdIQkJoblFUd3dDOXBQRTRGbFY2SlhIbTdnQ1JyWUxUbVgvc0VySUNJRUhLZG51KwpIWDgrVTh1ZkFKbTdrL1laZEtVVnlWS2E3bGREUjlWajNveTIKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓",

"organizational_unit_identifier": "peer"
}

},
"intermediate_certs": [],
"name": "Org1MSP",
"organizational_unit_identifiers": [],
"revocation_list": [],
"root_certs": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNKekNDQWMyZ0F3SUJBZ0lVYWVSeWNkQytlR1lUTUNyWTg2UFVXUEdzQUw0d0NnWUlLb1pJemowRUF3SXcKY0RFTE1Ba0dBMVVFQmhNQ1ZWTXhGekFWQmdOVkJBZ1REazV2Y25Sb0lFTmhjbTlzYVc1aE1ROHdEUVlEVlFRSApFd1pFZFhKb1lXMHhHVEFYQmdOVkJBb1RFRzl5WnpFdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekV1WlhoaGJYQnNaUzVqYjIwd0hoY05NakF3TXpJME1qQXhPREF3V2hjTk16VXdNekl4TWpBeE9EQXcKV2pCd01Rc3dDUVlEVlFRR0V3SlZVekVYTUJVR0ExVUVDQk1PVG05eWRHZ2dRMkZ5YjJ4cGJtRXhEekFOQmdOVgpCQWNUQmtSMWNtaGhiVEVaTUJjR0ExVUVDaE1RYjNKbk1TNWxlR0Z0Y0d4bExtTnZiVEVjTUJvR0ExVUVBeE1UClkyRXViM0puTVM1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJLWXIKSmtqcEhjRkcxMVZlU200emxwSmNCZEtZVjc3SEgvdzI0V09sZnphYWZWK3VaaEZ2YTFhQm9aaGx5RloyMGRWeApwMkRxb09BblZ4MzZ1V3o2SXl1alJUQkRNQTRHQTFVZER3RUIvd1FFQXdJQkJqQVNCZ05WSFJNQkFmOEVDREFHCkFRSC9BZ0VCTUIwR0ExVWREZ1FXQkJTcHpDQWdPaGRuSkE3VVpxUWlFSVFXSFpnYXZEQUtCZ2dxaGtqT1BRUUQKQWdOSUFEQkZBaUVBbEZtYWdIQkJoblFUd3dDOXBQRTRGbFY2SlhIbTdnQ1JyWUxUbVgvc0VySUNJRUhLZG51KwpIWDgrVTh1ZkFKbTdrL1laZEtVVnlWS2E3bGREUjlWajNveTIKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓"

],
"signing_identity": null,
"tls_intermediate_certs": [],
"tls_root_certs": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNKekNDQWMyZ0F3SUJBZ0lVYWVSeWNkQytlR1lUTUNyWTg2UFVXUEdzQUw0d0NnWUlLb1pJemowRUF3SXcKY0RFTE1Ba0dBMVVFQmhNQ1ZWTXhGekFWQmdOVkJBZ1REazV2Y25Sb0lFTmhjbTlzYVc1aE1ROHdEUVlEVlFRSApFd1pFZFhKb1lXMHhHVEFYQmdOVkJBb1RFRzl5WnpFdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekV1WlhoaGJYQnNaUzVqYjIwd0hoY05NakF3TXpJME1qQXhPREF3V2hjTk16VXdNekl4TWpBeE9EQXcKV2pCd01Rc3dDUVlEVlFRR0V3SlZVekVYTUJVR0ExVUVDQk1PVG05eWRHZ2dRMkZ5YjJ4cGJtRXhEekFOQmdOVgpCQWNUQmtSMWNtaGhiVEVaTUJjR0ExVUVDaE1RYjNKbk1TNWxlR0Z0Y0d4bExtTnZiVEVjTUJvR0ExVUVBeE1UClkyRXViM0puTVM1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJLWXIKSmtqcEhjRkcxMVZlU200emxwSmNCZEtZVjc3SEgvdzI0V09sZnphYWZWK3VaaEZ2YTFhQm9aaGx5RloyMGRWeApwMkRxb09BblZ4MzZ1V3o2SXl1alJUQkRNQTRHQTFVZER3RUIvd1FFQXdJQkJqQVNCZ05WSFJNQkFmOEVDREFHCkFRSC9BZ0VCTUIwR0ExVWREZ1FXQkJTcHpDQWdPaGRuSkE3VVpxUWlFSVFXSFpnYXZEQUtCZ2dxaGtqT1BRUUQKQWdOSUFEQkZBaUVBbEZtYWdIQkJoblFUd3dDOXBQRTRGbFY2SlhIbTdnQ1JyWUxUbVgvc0VySUNJRUhLZG51KwpIWDgrVTh1ZkFKbTdrL1laZEtVVnlWS2E3bGREUjlWajNveTIKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓"

]
(continues on next page)

312 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

},
"type": 0

},
"version": "0"

}
},
"version": "1"

},
"Org2MSP": {

"groups": {},
"mod_policy": "Admins",
"policies": {
"Admins": {
"mod_policy": "Admins",
"policy": {
"type": 1,
"value": {
"identities": [
{
"principal": {
"msp_identifier": "Org2MSP",
"role": "ADMIN"

},
"principal_classification": "ROLE"

}
],
"rule": {
"n_out_of": {
"n": 1,
"rules": [
{
"signed_by": 0

}
]

}
},
"version": 0

}
},
"version": "0"

},
"Endorsement": {
"mod_policy": "Admins",
"policy": {
"type": 1,
"value": {
"identities": [
{
"principal": {
"msp_identifier": "Org2MSP",
"role": "PEER"

},
"principal_classification": "ROLE"

}
],
"rule": {
"n_out_of": {

(continues on next page)

7.8. Updating a channel configuration 313

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"n": 1,
"rules": [
{
"signed_by": 0

}
]

}
},
"version": 0

}
},
"version": "0"

},
"Readers": {
"mod_policy": "Admins",
"policy": {
"type": 1,
"value": {
"identities": [
{
"principal": {
"msp_identifier": "Org2MSP",
"role": "ADMIN"

},
"principal_classification": "ROLE"

},
{
"principal": {
"msp_identifier": "Org2MSP",
"role": "PEER"

},
"principal_classification": "ROLE"

},
{
"principal": {
"msp_identifier": "Org2MSP",
"role": "CLIENT"

},
"principal_classification": "ROLE"

}
],
"rule": {
"n_out_of": {
"n": 1,
"rules": [
{
"signed_by": 0

},
{
"signed_by": 1

},
{
"signed_by": 2

}
]

}
},

(continues on next page)

314 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"version": 0
}

},
"version": "0"

},
"Writers": {
"mod_policy": "Admins",
"policy": {
"type": 1,
"value": {
"identities": [
{
"principal": {
"msp_identifier": "Org2MSP",
"role": "ADMIN"

},
"principal_classification": "ROLE"

},
{
"principal": {
"msp_identifier": "Org2MSP",
"role": "CLIENT"

},
"principal_classification": "ROLE"

}
],
"rule": {
"n_out_of": {
"n": 1,
"rules": [
{
"signed_by": 0

},
{
"signed_by": 1

}
]

}
},
"version": 0

}
},
"version": "0"

}
},
"values": {
"AnchorPeers": {
"mod_policy": "Admins",
"value": {
"anchor_peers": [
{
"host": "peer0.org2.example.com",
"port": 9051

}
]

},
"version": "0"

(continues on next page)

7.8. Updating a channel configuration 315

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

},
"MSP": {
"mod_policy": "Admins",
"value": {
"config": {
"admins": [],
"crypto_config": {
"identity_identifier_hash_function": "SHA256",
"signature_hash_family": "SHA2"

},
"fabric_node_ous": {
"admin_ou_identifier": {
"certificate":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNIakNDQWNXZ0F3SUJBZ0lVQVFkb1B0S0E0bEk2a0RrMituYzk5NzNhSC9Vd0NnWUlLb1pJemowRUF3SXcKYkRFTE1Ba0dBMVVFQmhNQ1ZVc3hFakFRQmdOVkJBZ1RDVWhoYlhCemFHbHlaVEVRTUE0R0ExVUVCeE1IU0hWeQpjMnhsZVRFWk1CY0dBMVVFQ2hNUWIzSm5NaTVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFQXhNVFkyRXViM0puCk1pNWxlR0Z0Y0d4bExtTnZiVEFlRncweU1EQXpNalF5TURFNE1EQmFGdzB6TlRBek1qRXlNREU0TURCYU1Hd3gKQ3pBSkJnTlZCQVlUQWxWTE1SSXdFQVlEVlFRSUV3bElZVzF3YzJocGNtVXhFREFPQmdOVkJBY1RCMGgxY25OcwpaWGt4R1RBWEJnTlZCQW9URUc5eVp6SXVaWGhoYlhCc1pTNWpiMjB4SERBYUJnTlZCQU1URTJOaExtOXlaekl1ClpYaGhiWEJzWlM1amIyMHdXVEFUQmdjcWhrak9QUUlCQmdncWhrak9QUU1CQndOQ0FBVFk3VGJqQzdYSHNheC8Kem1yVk1nWnpmODBlb3JFbTNIdis2ZnRqMFgzd2cxdGZVM3hyWWxXZVJwR0JGeFQzNnJmVkdLLzhUQWJ2cnRuZgpUQ1hKak93a28wVXdRekFPQmdOVkhROEJBZjhFQkFNQ0FRWXdFZ1lEVlIwVEFRSC9CQWd3QmdFQi93SUJBVEFkCkJnTlZIUTRFRmdRVWJJNkV4dVRZSEpjczRvNEl5dXZWOVFRa1lGZ3dDZ1lJS29aSXpqMEVBd0lEUndBd1JBSWcKWndjdElBNmdoSlFCZmpDRXdRK1NmYi9iemdsQlV4b0g3ZHVtOUJrUjFkd0NJQlRqcEZkWlcyS2UzSVBMS1h2aApERmQvVmMrcloyMksyeVdKL1BIYXZWWmkKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓",

"organizational_unit_identifier": "admin"
},
"client_ou_identifier": {
"certificate":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNIakNDQWNXZ0F3SUJBZ0lVQVFkb1B0S0E0bEk2a0RrMituYzk5NzNhSC9Vd0NnWUlLb1pJemowRUF3SXcKYkRFTE1Ba0dBMVVFQmhNQ1ZVc3hFakFRQmdOVkJBZ1RDVWhoYlhCemFHbHlaVEVRTUE0R0ExVUVCeE1IU0hWeQpjMnhsZVRFWk1CY0dBMVVFQ2hNUWIzSm5NaTVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFQXhNVFkyRXViM0puCk1pNWxlR0Z0Y0d4bExtTnZiVEFlRncweU1EQXpNalF5TURFNE1EQmFGdzB6TlRBek1qRXlNREU0TURCYU1Hd3gKQ3pBSkJnTlZCQVlUQWxWTE1SSXdFQVlEVlFRSUV3bElZVzF3YzJocGNtVXhFREFPQmdOVkJBY1RCMGgxY25OcwpaWGt4R1RBWEJnTlZCQW9URUc5eVp6SXVaWGhoYlhCc1pTNWpiMjB4SERBYUJnTlZCQU1URTJOaExtOXlaekl1ClpYaGhiWEJzWlM1amIyMHdXVEFUQmdjcWhrak9QUUlCQmdncWhrak9QUU1CQndOQ0FBVFk3VGJqQzdYSHNheC8Kem1yVk1nWnpmODBlb3JFbTNIdis2ZnRqMFgzd2cxdGZVM3hyWWxXZVJwR0JGeFQzNnJmVkdLLzhUQWJ2cnRuZgpUQ1hKak93a28wVXdRekFPQmdOVkhROEJBZjhFQkFNQ0FRWXdFZ1lEVlIwVEFRSC9CQWd3QmdFQi93SUJBVEFkCkJnTlZIUTRFRmdRVWJJNkV4dVRZSEpjczRvNEl5dXZWOVFRa1lGZ3dDZ1lJS29aSXpqMEVBd0lEUndBd1JBSWcKWndjdElBNmdoSlFCZmpDRXdRK1NmYi9iemdsQlV4b0g3ZHVtOUJrUjFkd0NJQlRqcEZkWlcyS2UzSVBMS1h2aApERmQvVmMrcloyMksyeVdKL1BIYXZWWmkKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓",

"organizational_unit_identifier": "client"
},
"enable": true,
"orderer_ou_identifier": {
"certificate":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNIakNDQWNXZ0F3SUJBZ0lVQVFkb1B0S0E0bEk2a0RrMituYzk5NzNhSC9Vd0NnWUlLb1pJemowRUF3SXcKYkRFTE1Ba0dBMVVFQmhNQ1ZVc3hFakFRQmdOVkJBZ1RDVWhoYlhCemFHbHlaVEVRTUE0R0ExVUVCeE1IU0hWeQpjMnhsZVRFWk1CY0dBMVVFQ2hNUWIzSm5NaTVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFQXhNVFkyRXViM0puCk1pNWxlR0Z0Y0d4bExtTnZiVEFlRncweU1EQXpNalF5TURFNE1EQmFGdzB6TlRBek1qRXlNREU0TURCYU1Hd3gKQ3pBSkJnTlZCQVlUQWxWTE1SSXdFQVlEVlFRSUV3bElZVzF3YzJocGNtVXhFREFPQmdOVkJBY1RCMGgxY25OcwpaWGt4R1RBWEJnTlZCQW9URUc5eVp6SXVaWGhoYlhCc1pTNWpiMjB4SERBYUJnTlZCQU1URTJOaExtOXlaekl1ClpYaGhiWEJzWlM1amIyMHdXVEFUQmdjcWhrak9QUUlCQmdncWhrak9QUU1CQndOQ0FBVFk3VGJqQzdYSHNheC8Kem1yVk1nWnpmODBlb3JFbTNIdis2ZnRqMFgzd2cxdGZVM3hyWWxXZVJwR0JGeFQzNnJmVkdLLzhUQWJ2cnRuZgpUQ1hKak93a28wVXdRekFPQmdOVkhROEJBZjhFQkFNQ0FRWXdFZ1lEVlIwVEFRSC9CQWd3QmdFQi93SUJBVEFkCkJnTlZIUTRFRmdRVWJJNkV4dVRZSEpjczRvNEl5dXZWOVFRa1lGZ3dDZ1lJS29aSXpqMEVBd0lEUndBd1JBSWcKWndjdElBNmdoSlFCZmpDRXdRK1NmYi9iemdsQlV4b0g3ZHVtOUJrUjFkd0NJQlRqcEZkWlcyS2UzSVBMS1h2aApERmQvVmMrcloyMksyeVdKL1BIYXZWWmkKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓",

"organizational_unit_identifier": "orderer"
},
"peer_ou_identifier": {
"certificate":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNIakNDQWNXZ0F3SUJBZ0lVQVFkb1B0S0E0bEk2a0RrMituYzk5NzNhSC9Vd0NnWUlLb1pJemowRUF3SXcKYkRFTE1Ba0dBMVVFQmhNQ1ZVc3hFakFRQmdOVkJBZ1RDVWhoYlhCemFHbHlaVEVRTUE0R0ExVUVCeE1IU0hWeQpjMnhsZVRFWk1CY0dBMVVFQ2hNUWIzSm5NaTVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFQXhNVFkyRXViM0puCk1pNWxlR0Z0Y0d4bExtTnZiVEFlRncweU1EQXpNalF5TURFNE1EQmFGdzB6TlRBek1qRXlNREU0TURCYU1Hd3gKQ3pBSkJnTlZCQVlUQWxWTE1SSXdFQVlEVlFRSUV3bElZVzF3YzJocGNtVXhFREFPQmdOVkJBY1RCMGgxY25OcwpaWGt4R1RBWEJnTlZCQW9URUc5eVp6SXVaWGhoYlhCc1pTNWpiMjB4SERBYUJnTlZCQU1URTJOaExtOXlaekl1ClpYaGhiWEJzWlM1amIyMHdXVEFUQmdjcWhrak9QUUlCQmdncWhrak9QUU1CQndOQ0FBVFk3VGJqQzdYSHNheC8Kem1yVk1nWnpmODBlb3JFbTNIdis2ZnRqMFgzd2cxdGZVM3hyWWxXZVJwR0JGeFQzNnJmVkdLLzhUQWJ2cnRuZgpUQ1hKak93a28wVXdRekFPQmdOVkhROEJBZjhFQkFNQ0FRWXdFZ1lEVlIwVEFRSC9CQWd3QmdFQi93SUJBVEFkCkJnTlZIUTRFRmdRVWJJNkV4dVRZSEpjczRvNEl5dXZWOVFRa1lGZ3dDZ1lJS29aSXpqMEVBd0lEUndBd1JBSWcKWndjdElBNmdoSlFCZmpDRXdRK1NmYi9iemdsQlV4b0g3ZHVtOUJrUjFkd0NJQlRqcEZkWlcyS2UzSVBMS1h2aApERmQvVmMrcloyMksyeVdKL1BIYXZWWmkKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓",

"organizational_unit_identifier": "peer"
}

},
"intermediate_certs": [],
"name": "Org2MSP",
"organizational_unit_identifiers": [],
"revocation_list": [],
"root_certs": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNIakNDQWNXZ0F3SUJBZ0lVQVFkb1B0S0E0bEk2a0RrMituYzk5NzNhSC9Vd0NnWUlLb1pJemowRUF3SXcKYkRFTE1Ba0dBMVVFQmhNQ1ZVc3hFakFRQmdOVkJBZ1RDVWhoYlhCemFHbHlaVEVRTUE0R0ExVUVCeE1IU0hWeQpjMnhsZVRFWk1CY0dBMVVFQ2hNUWIzSm5NaTVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFQXhNVFkyRXViM0puCk1pNWxlR0Z0Y0d4bExtTnZiVEFlRncweU1EQXpNalF5TURFNE1EQmFGdzB6TlRBek1qRXlNREU0TURCYU1Hd3gKQ3pBSkJnTlZCQVlUQWxWTE1SSXdFQVlEVlFRSUV3bElZVzF3YzJocGNtVXhFREFPQmdOVkJBY1RCMGgxY25OcwpaWGt4R1RBWEJnTlZCQW9URUc5eVp6SXVaWGhoYlhCc1pTNWpiMjB4SERBYUJnTlZCQU1URTJOaExtOXlaekl1ClpYaGhiWEJzWlM1amIyMHdXVEFUQmdjcWhrak9QUUlCQmdncWhrak9QUU1CQndOQ0FBVFk3VGJqQzdYSHNheC8Kem1yVk1nWnpmODBlb3JFbTNIdis2ZnRqMFgzd2cxdGZVM3hyWWxXZVJwR0JGeFQzNnJmVkdLLzhUQWJ2cnRuZgpUQ1hKak93a28wVXdRekFPQmdOVkhROEJBZjhFQkFNQ0FRWXdFZ1lEVlIwVEFRSC9CQWd3QmdFQi93SUJBVEFkCkJnTlZIUTRFRmdRVWJJNkV4dVRZSEpjczRvNEl5dXZWOVFRa1lGZ3dDZ1lJS29aSXpqMEVBd0lEUndBd1JBSWcKWndjdElBNmdoSlFCZmpDRXdRK1NmYi9iemdsQlV4b0g3ZHVtOUJrUjFkd0NJQlRqcEZkWlcyS2UzSVBMS1h2aApERmQvVmMrcloyMksyeVdKL1BIYXZWWmkKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓"

],
"signing_identity": null,
"tls_intermediate_certs": [],
"tls_root_certs": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNIakNDQWNXZ0F3SUJBZ0lVQVFkb1B0S0E0bEk2a0RrMituYzk5NzNhSC9Vd0NnWUlLb1pJemowRUF3SXcKYkRFTE1Ba0dBMVVFQmhNQ1ZVc3hFakFRQmdOVkJBZ1RDVWhoYlhCemFHbHlaVEVRTUE0R0ExVUVCeE1IU0hWeQpjMnhsZVRFWk1CY0dBMVVFQ2hNUWIzSm5NaTVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFQXhNVFkyRXViM0puCk1pNWxlR0Z0Y0d4bExtTnZiVEFlRncweU1EQXpNalF5TURFNE1EQmFGdzB6TlRBek1qRXlNREU0TURCYU1Hd3gKQ3pBSkJnTlZCQVlUQWxWTE1SSXdFQVlEVlFRSUV3bElZVzF3YzJocGNtVXhFREFPQmdOVkJBY1RCMGgxY25OcwpaWGt4R1RBWEJnTlZCQW9URUc5eVp6SXVaWGhoYlhCc1pTNWpiMjB4SERBYUJnTlZCQU1URTJOaExtOXlaekl1ClpYaGhiWEJzWlM1amIyMHdXVEFUQmdjcWhrak9QUUlCQmdncWhrak9QUU1CQndOQ0FBVFk3VGJqQzdYSHNheC8Kem1yVk1nWnpmODBlb3JFbTNIdis2ZnRqMFgzd2cxdGZVM3hyWWxXZVJwR0JGeFQzNnJmVkdLLzhUQWJ2cnRuZgpUQ1hKak93a28wVXdRekFPQmdOVkhROEJBZjhFQkFNQ0FRWXdFZ1lEVlIwVEFRSC9CQWd3QmdFQi93SUJBVEFkCkJnTlZIUTRFRmdRVWJJNkV4dVRZSEpjczRvNEl5dXZWOVFRa1lGZ3dDZ1lJS29aSXpqMEVBd0lEUndBd1JBSWcKWndjdElBNmdoSlFCZmpDRXdRK1NmYi9iemdsQlV4b0g3ZHVtOUJrUjFkd0NJQlRqcEZkWlcyS2UzSVBMS1h2aApERmQvVmMrcloyMksyeVdKL1BIYXZWWmkKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓"

]
},
"type": 0

},
"version": "0"

(continues on next page)

316 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

}
},
"version": "1"

}
},
"mod_policy": "Admins",
"policies": {
"Admins": {

"mod_policy": "Admins",
"policy": {
"type": 3,
"value": {
"rule": "MAJORITY",
"sub_policy": "Admins"

}
},
"version": "0"

},
"Endorsement": {

"mod_policy": "Admins",
"policy": {
"type": 3,
"value": {
"rule": "MAJORITY",
"sub_policy": "Endorsement"

}
},
"version": "0"

},
"LifecycleEndorsement": {

"mod_policy": "Admins",
"policy": {
"type": 3,
"value": {
"rule": "MAJORITY",
"sub_policy": "Endorsement"

}
},
"version": "0"

},
"Readers": {

"mod_policy": "Admins",
"policy": {
"type": 3,
"value": {
"rule": "ANY",
"sub_policy": "Readers"

}
},
"version": "0"

},
"Writers": {

"mod_policy": "Admins",
"policy": {
"type": 3,
"value": {
"rule": "ANY",

(continues on next page)

7.8. Updating a channel configuration 317

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"sub_policy": "Writers"
}

},
"version": "0"

}
},
"values": {
"Capabilities": {

"mod_policy": "Admins",
"value": {
"capabilities": {
"V2_0": {}

}
},
"version": "0"

}
},
"version": "1"

},
"Orderer": {
"groups": {

"OrdererOrg": {
"groups": {},
"mod_policy": "Admins",
"policies": {
"Admins": {
"mod_policy": "Admins",
"policy": {
"type": 1,
"value": {
"identities": [
{
"principal": {
"msp_identifier": "OrdererMSP",
"role": "ADMIN"

},
"principal_classification": "ROLE"

}
],
"rule": {
"n_out_of": {
"n": 1,
"rules": [
{
"signed_by": 0

}
]

}
},
"version": 0

}
},
"version": "0"

},
"Readers": {
"mod_policy": "Admins",
"policy": {

(continues on next page)

318 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"type": 1,
"value": {
"identities": [
{
"principal": {
"msp_identifier": "OrdererMSP",
"role": "MEMBER"

},
"principal_classification": "ROLE"

}
],
"rule": {
"n_out_of": {
"n": 1,
"rules": [
{
"signed_by": 0

}
]

}
},
"version": 0

}
},
"version": "0"

},
"Writers": {
"mod_policy": "Admins",
"policy": {
"type": 1,
"value": {
"identities": [
{
"principal": {
"msp_identifier": "OrdererMSP",
"role": "MEMBER"

},
"principal_classification": "ROLE"

}
],
"rule": {
"n_out_of": {
"n": 1,
"rules": [
{
"signed_by": 0

}
]

}
},
"version": 0

}
},
"version": "0"

}
},
"values": {

(continues on next page)

7.8. Updating a channel configuration 319

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"MSP": {
"mod_policy": "Admins",
"value": {
"config": {
"admins": [],
"crypto_config": {
"identity_identifier_hash_function": "SHA256",
"signature_hash_family": "SHA2"

},
"fabric_node_ous": {
"admin_ou_identifier": {
"certificate":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNDekNDQWJHZ0F3SUJBZ0lVUkgyT0tlV1loaStFMkFHZ3IwWUdlVTRUOWs0d0NnWUlLb1pJemowRUF3SXcKWWpFTE1Ba0dBMVVFQmhNQ1ZWTXhFVEFQQmdOVkJBZ1RDRTVsZHlCWmIzSnJNUkV3RHdZRFZRUUhFd2hPWlhjZwpXVzl5YXpFVU1CSUdBMVVFQ2hNTFpYaGhiWEJzWlM1amIyMHhGekFWQmdOVkJBTVREbU5oTG1WNFlXMXdiR1V1ClkyOXRNQjRYRFRJd01ETXlOREl3TVRnd01Gb1hEVE0xTURNeU1USXdNVGd3TUZvd1lqRUxNQWtHQTFVRUJoTUMKVlZNeEVUQVBCZ05WQkFnVENFNWxkeUJaYjNKck1SRXdEd1lEVlFRSEV3aE9aWGNnV1c5eWF6RVVNQklHQTFVRQpDaE1MWlhoaGJYQnNaUzVqYjIweEZ6QVZCZ05WQkFNVERtTmhMbVY0WVcxd2JHVXVZMjl0TUZrd0V3WUhLb1pJCnpqMENBUVlJS29aSXpqMERBUWNEUWdBRS9yb2dWY0hFcEVQMDhTUTl3VTVpdkNxaUFDKzU5WUx1dkRDNkx6UlIKWXdyZkFxdncvT0FodVlQRkhnRFZ1SFExOVdXMGxSV2FKWmpVcDFxNmRCWEhlYU5GTUVNd0RnWURWUjBQQVFILwpCQVFEQWdFR01CSUdBMVVkRXdFQi93UUlNQVlCQWY4Q0FRRXdIUVlEVlIwT0JCWUVGTG9kWFpjaTVNNlFxYkNUCm1YZ3lTbU1aYlZHWE1Bb0dDQ3FHU000OUJBTUNBMGdBTUVVQ0lRQ0hFTElvajJUNG15ODI0SENQRFc2bEZFRTEKSDc1c2FyN1V4TVJSNmFWckZnSWdMZUxYT0ZoSDNjZ0pGeDhJckVyTjlhZmdjVVIyd0ZYUkQ0V0V0MVp1bmxBPQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓",

"organizational_unit_identifier": "admin"
},
"client_ou_identifier": {
"certificate":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNDekNDQWJHZ0F3SUJBZ0lVUkgyT0tlV1loaStFMkFHZ3IwWUdlVTRUOWs0d0NnWUlLb1pJemowRUF3SXcKWWpFTE1Ba0dBMVVFQmhNQ1ZWTXhFVEFQQmdOVkJBZ1RDRTVsZHlCWmIzSnJNUkV3RHdZRFZRUUhFd2hPWlhjZwpXVzl5YXpFVU1CSUdBMVVFQ2hNTFpYaGhiWEJzWlM1amIyMHhGekFWQmdOVkJBTVREbU5oTG1WNFlXMXdiR1V1ClkyOXRNQjRYRFRJd01ETXlOREl3TVRnd01Gb1hEVE0xTURNeU1USXdNVGd3TUZvd1lqRUxNQWtHQTFVRUJoTUMKVlZNeEVUQVBCZ05WQkFnVENFNWxkeUJaYjNKck1SRXdEd1lEVlFRSEV3aE9aWGNnV1c5eWF6RVVNQklHQTFVRQpDaE1MWlhoaGJYQnNaUzVqYjIweEZ6QVZCZ05WQkFNVERtTmhMbVY0WVcxd2JHVXVZMjl0TUZrd0V3WUhLb1pJCnpqMENBUVlJS29aSXpqMERBUWNEUWdBRS9yb2dWY0hFcEVQMDhTUTl3VTVpdkNxaUFDKzU5WUx1dkRDNkx6UlIKWXdyZkFxdncvT0FodVlQRkhnRFZ1SFExOVdXMGxSV2FKWmpVcDFxNmRCWEhlYU5GTUVNd0RnWURWUjBQQVFILwpCQVFEQWdFR01CSUdBMVVkRXdFQi93UUlNQVlCQWY4Q0FRRXdIUVlEVlIwT0JCWUVGTG9kWFpjaTVNNlFxYkNUCm1YZ3lTbU1aYlZHWE1Bb0dDQ3FHU000OUJBTUNBMGdBTUVVQ0lRQ0hFTElvajJUNG15ODI0SENQRFc2bEZFRTEKSDc1c2FyN1V4TVJSNmFWckZnSWdMZUxYT0ZoSDNjZ0pGeDhJckVyTjlhZmdjVVIyd0ZYUkQ0V0V0MVp1bmxBPQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓",

"organizational_unit_identifier": "client"
},
"enable": true,
"orderer_ou_identifier": {
"certificate":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNDekNDQWJHZ0F3SUJBZ0lVUkgyT0tlV1loaStFMkFHZ3IwWUdlVTRUOWs0d0NnWUlLb1pJemowRUF3SXcKWWpFTE1Ba0dBMVVFQmhNQ1ZWTXhFVEFQQmdOVkJBZ1RDRTVsZHlCWmIzSnJNUkV3RHdZRFZRUUhFd2hPWlhjZwpXVzl5YXpFVU1CSUdBMVVFQ2hNTFpYaGhiWEJzWlM1amIyMHhGekFWQmdOVkJBTVREbU5oTG1WNFlXMXdiR1V1ClkyOXRNQjRYRFRJd01ETXlOREl3TVRnd01Gb1hEVE0xTURNeU1USXdNVGd3TUZvd1lqRUxNQWtHQTFVRUJoTUMKVlZNeEVUQVBCZ05WQkFnVENFNWxkeUJaYjNKck1SRXdEd1lEVlFRSEV3aE9aWGNnV1c5eWF6RVVNQklHQTFVRQpDaE1MWlhoaGJYQnNaUzVqYjIweEZ6QVZCZ05WQkFNVERtTmhMbVY0WVcxd2JHVXVZMjl0TUZrd0V3WUhLb1pJCnpqMENBUVlJS29aSXpqMERBUWNEUWdBRS9yb2dWY0hFcEVQMDhTUTl3VTVpdkNxaUFDKzU5WUx1dkRDNkx6UlIKWXdyZkFxdncvT0FodVlQRkhnRFZ1SFExOVdXMGxSV2FKWmpVcDFxNmRCWEhlYU5GTUVNd0RnWURWUjBQQVFILwpCQVFEQWdFR01CSUdBMVVkRXdFQi93UUlNQVlCQWY4Q0FRRXdIUVlEVlIwT0JCWUVGTG9kWFpjaTVNNlFxYkNUCm1YZ3lTbU1aYlZHWE1Bb0dDQ3FHU000OUJBTUNBMGdBTUVVQ0lRQ0hFTElvajJUNG15ODI0SENQRFc2bEZFRTEKSDc1c2FyN1V4TVJSNmFWckZnSWdMZUxYT0ZoSDNjZ0pGeDhJckVyTjlhZmdjVVIyd0ZYUkQ0V0V0MVp1bmxBPQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓",

"organizational_unit_identifier": "orderer"
},
"peer_ou_identifier": {
"certificate":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNDekNDQWJHZ0F3SUJBZ0lVUkgyT0tlV1loaStFMkFHZ3IwWUdlVTRUOWs0d0NnWUlLb1pJemowRUF3SXcKWWpFTE1Ba0dBMVVFQmhNQ1ZWTXhFVEFQQmdOVkJBZ1RDRTVsZHlCWmIzSnJNUkV3RHdZRFZRUUhFd2hPWlhjZwpXVzl5YXpFVU1CSUdBMVVFQ2hNTFpYaGhiWEJzWlM1amIyMHhGekFWQmdOVkJBTVREbU5oTG1WNFlXMXdiR1V1ClkyOXRNQjRYRFRJd01ETXlOREl3TVRnd01Gb1hEVE0xTURNeU1USXdNVGd3TUZvd1lqRUxNQWtHQTFVRUJoTUMKVlZNeEVUQVBCZ05WQkFnVENFNWxkeUJaYjNKck1SRXdEd1lEVlFRSEV3aE9aWGNnV1c5eWF6RVVNQklHQTFVRQpDaE1MWlhoaGJYQnNaUzVqYjIweEZ6QVZCZ05WQkFNVERtTmhMbVY0WVcxd2JHVXVZMjl0TUZrd0V3WUhLb1pJCnpqMENBUVlJS29aSXpqMERBUWNEUWdBRS9yb2dWY0hFcEVQMDhTUTl3VTVpdkNxaUFDKzU5WUx1dkRDNkx6UlIKWXdyZkFxdncvT0FodVlQRkhnRFZ1SFExOVdXMGxSV2FKWmpVcDFxNmRCWEhlYU5GTUVNd0RnWURWUjBQQVFILwpCQVFEQWdFR01CSUdBMVVkRXdFQi93UUlNQVlCQWY4Q0FRRXdIUVlEVlIwT0JCWUVGTG9kWFpjaTVNNlFxYkNUCm1YZ3lTbU1aYlZHWE1Bb0dDQ3FHU000OUJBTUNBMGdBTUVVQ0lRQ0hFTElvajJUNG15ODI0SENQRFc2bEZFRTEKSDc1c2FyN1V4TVJSNmFWckZnSWdMZUxYT0ZoSDNjZ0pGeDhJckVyTjlhZmdjVVIyd0ZYUkQ0V0V0MVp1bmxBPQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓",

"organizational_unit_identifier": "peer"
}

},
"intermediate_certs": [],
"name": "OrdererMSP",
"organizational_unit_identifiers": [],
"revocation_list": [],
"root_certs": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNDekNDQWJHZ0F3SUJBZ0lVUkgyT0tlV1loaStFMkFHZ3IwWUdlVTRUOWs0d0NnWUlLb1pJemowRUF3SXcKWWpFTE1Ba0dBMVVFQmhNQ1ZWTXhFVEFQQmdOVkJBZ1RDRTVsZHlCWmIzSnJNUkV3RHdZRFZRUUhFd2hPWlhjZwpXVzl5YXpFVU1CSUdBMVVFQ2hNTFpYaGhiWEJzWlM1amIyMHhGekFWQmdOVkJBTVREbU5oTG1WNFlXMXdiR1V1ClkyOXRNQjRYRFRJd01ETXlOREl3TVRnd01Gb1hEVE0xTURNeU1USXdNVGd3TUZvd1lqRUxNQWtHQTFVRUJoTUMKVlZNeEVUQVBCZ05WQkFnVENFNWxkeUJaYjNKck1SRXdEd1lEVlFRSEV3aE9aWGNnV1c5eWF6RVVNQklHQTFVRQpDaE1MWlhoaGJYQnNaUzVqYjIweEZ6QVZCZ05WQkFNVERtTmhMbVY0WVcxd2JHVXVZMjl0TUZrd0V3WUhLb1pJCnpqMENBUVlJS29aSXpqMERBUWNEUWdBRS9yb2dWY0hFcEVQMDhTUTl3VTVpdkNxaUFDKzU5WUx1dkRDNkx6UlIKWXdyZkFxdncvT0FodVlQRkhnRFZ1SFExOVdXMGxSV2FKWmpVcDFxNmRCWEhlYU5GTUVNd0RnWURWUjBQQVFILwpCQVFEQWdFR01CSUdBMVVkRXdFQi93UUlNQVlCQWY4Q0FRRXdIUVlEVlIwT0JCWUVGTG9kWFpjaTVNNlFxYkNUCm1YZ3lTbU1aYlZHWE1Bb0dDQ3FHU000OUJBTUNBMGdBTUVVQ0lRQ0hFTElvajJUNG15ODI0SENQRFc2bEZFRTEKSDc1c2FyN1V4TVJSNmFWckZnSWdMZUxYT0ZoSDNjZ0pGeDhJckVyTjlhZmdjVVIyd0ZYUkQ0V0V0MVp1bmxBPQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓"

],
"signing_identity": null,
"tls_intermediate_certs": [],
"tls_root_certs": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNDekNDQWJHZ0F3SUJBZ0lVUkgyT0tlV1loaStFMkFHZ3IwWUdlVTRUOWs0d0NnWUlLb1pJemowRUF3SXcKWWpFTE1Ba0dBMVVFQmhNQ1ZWTXhFVEFQQmdOVkJBZ1RDRTVsZHlCWmIzSnJNUkV3RHdZRFZRUUhFd2hPWlhjZwpXVzl5YXpFVU1CSUdBMVVFQ2hNTFpYaGhiWEJzWlM1amIyMHhGekFWQmdOVkJBTVREbU5oTG1WNFlXMXdiR1V1ClkyOXRNQjRYRFRJd01ETXlOREl3TVRnd01Gb1hEVE0xTURNeU1USXdNVGd3TUZvd1lqRUxNQWtHQTFVRUJoTUMKVlZNeEVUQVBCZ05WQkFnVENFNWxkeUJaYjNKck1SRXdEd1lEVlFRSEV3aE9aWGNnV1c5eWF6RVVNQklHQTFVRQpDaE1MWlhoaGJYQnNaUzVqYjIweEZ6QVZCZ05WQkFNVERtTmhMbVY0WVcxd2JHVXVZMjl0TUZrd0V3WUhLb1pJCnpqMENBUVlJS29aSXpqMERBUWNEUWdBRS9yb2dWY0hFcEVQMDhTUTl3VTVpdkNxaUFDKzU5WUx1dkRDNkx6UlIKWXdyZkFxdncvT0FodVlQRkhnRFZ1SFExOVdXMGxSV2FKWmpVcDFxNmRCWEhlYU5GTUVNd0RnWURWUjBQQVFILwpCQVFEQWdFR01CSUdBMVVkRXdFQi93UUlNQVlCQWY4Q0FRRXdIUVlEVlIwT0JCWUVGTG9kWFpjaTVNNlFxYkNUCm1YZ3lTbU1aYlZHWE1Bb0dDQ3FHU000OUJBTUNBMGdBTUVVQ0lRQ0hFTElvajJUNG15ODI0SENQRFc2bEZFRTEKSDc1c2FyN1V4TVJSNmFWckZnSWdMZUxYT0ZoSDNjZ0pGeDhJckVyTjlhZmdjVVIyd0ZYUkQ0V0V0MVp1bmxBPQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓"

]
},
"type": 0

},
"version": "0"

}
(continues on next page)

320 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

},
"version": "0"

}
},
"mod_policy": "Admins",
"policies": {
"Admins": {

"mod_policy": "Admins",
"policy": {
"type": 3,
"value": {
"rule": "MAJORITY",
"sub_policy": "Admins"

}
},
"version": "0"

},
"BlockValidation": {

"mod_policy": "Admins",
"policy": {
"type": 3,
"value": {
"rule": "ANY",
"sub_policy": "Writers"

}
},
"version": "0"

},
"Readers": {

"mod_policy": "Admins",
"policy": {
"type": 3,
"value": {
"rule": "ANY",
"sub_policy": "Readers"

}
},
"version": "0"

},
"Writers": {

"mod_policy": "Admins",
"policy": {
"type": 3,
"value": {
"rule": "ANY",
"sub_policy": "Writers"

}
},
"version": "0"

}
},
"values": {

"BatchSize": {
"mod_policy": "Admins",
"value": {
"absolute_max_bytes": 103809024,
"max_message_count": 10,

(continues on next page)

7.8. Updating a channel configuration 321

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"preferred_max_bytes": 524288
},
"version": "0"

},
"BatchTimeout": {

"mod_policy": "Admins",
"value": {
"timeout": "2s"

},
"version": "0"

},
"Capabilities": {

"mod_policy": "Admins",
"value": {
"capabilities": {
"V2_0": {}

}
},
"version": "0"

},
"ChannelRestrictions": {

"mod_policy": "Admins",
"value": null,
"version": "0"

},
"ConsensusType": {

"mod_policy": "Admins",
"value": {
"metadata": {
"consenters": [
{
"client_tls_cert":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUN3akNDQW1pZ0F3SUJBZ0lVZG9JbmpzaW5vVnZua0llbE5WUU8wbDRMbEdrd0NnWUlLb1pJemowRUF3SXcKWWpFTE1Ba0dBMVVFQmhNQ1ZWTXhFVEFQQmdOVkJBZ1RDRTVsZHlCWmIzSnJNUkV3RHdZRFZRUUhFd2hPWlhjZwpXVzl5YXpFVU1CSUdBMVVFQ2hNTFpYaGhiWEJzWlM1amIyMHhGekFWQmdOVkJBTVREbU5oTG1WNFlXMXdiR1V1ClkyOXRNQjRYRFRJd01ETXlOREl3TVRnd01Gb1hEVEl4TURNeU5ESXdNak13TUZvd1lERUxNQWtHQTFVRUJoTUMKVlZNeEZ6QVZCZ05WQkFnVERrNXZjblJvSUVOaGNtOXNhVzVoTVJRd0VnWURWUVFLRXd0SWVYQmxjbXhsWkdkbApjakVRTUE0R0ExVUVDeE1IYjNKa1pYSmxjakVRTUE0R0ExVUVBeE1IYjNKa1pYSmxjakJaTUJNR0J5cUdTTTQ5CkFnRUdDQ3FHU000OUF3RUhBMElBQkdGaFd3SllGbHR3clBVellIQ3loNTMvU3VpVU1ZYnVJakdGTWRQMW9FRzMKSkcrUlRSOFR4NUNYTXdpV05sZ285dU00a1NGTzBINURZUWZPQU5MU0o5NmpnZjB3Z2Zvd0RnWURWUjBQQVFILwpCQVFEQWdPb01CMEdBMVVkSlFRV01CUUdDQ3NHQVFVRkJ3TUJCZ2dyQmdFRkJRY0RBakFNQmdOVkhSTUJBZjhFCkFqQUFNQjBHQTFVZERnUVdCQlJ2M3lNUmh5cHc0Qi9Cc1NHTlVJL0VpU1lNN2pBZkJnTlZIU01FR0RBV2dCUzYKSFYyWEl1VE9rS213azVsNE1rcGpHVzFSbHpBZUJnTlZIUkVFRnpBVmdoTnZjbVJsY21WeUxtVjRZVzF3YkdVdQpZMjl0TUZzR0NDb0RCQVVHQndnQkJFOTdJbUYwZEhKeklqcDdJbWhtTGtGbVptbHNhV0YwYVc5dUlqb2lJaXdpCmFHWXVSVzV5YjJ4c2JXVnVkRWxFSWpvaWIzSmtaWEpsY2lJc0ltaG1MbFI1Y0dVaU9pSnZjbVJsY21WeUluMTkKTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFESHNrWUR5clNqeWpkTVVVWDNaT05McXJUNkdCcVNUdmZXN0dXMwpqVTg2cEFJZ0VIZkloVWxVV0VpN1hTb2Y4K2toaW9PYW5PWG80TWxQbGhlT0xjTGlqUzA9Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K
→˓",

"host": "orderer.example.com",
"port": 7050,
"server_tls_cert":

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUN3akNDQW1pZ0F3SUJBZ0lVZG9JbmpzaW5vVnZua0llbE5WUU8wbDRMbEdrd0NnWUlLb1pJemowRUF3SXcKWWpFTE1Ba0dBMVVFQmhNQ1ZWTXhFVEFQQmdOVkJBZ1RDRTVsZHlCWmIzSnJNUkV3RHdZRFZRUUhFd2hPWlhjZwpXVzl5YXpFVU1CSUdBMVVFQ2hNTFpYaGhiWEJzWlM1amIyMHhGekFWQmdOVkJBTVREbU5oTG1WNFlXMXdiR1V1ClkyOXRNQjRYRFRJd01ETXlOREl3TVRnd01Gb1hEVEl4TURNeU5ESXdNak13TUZvd1lERUxNQWtHQTFVRUJoTUMKVlZNeEZ6QVZCZ05WQkFnVERrNXZjblJvSUVOaGNtOXNhVzVoTVJRd0VnWURWUVFLRXd0SWVYQmxjbXhsWkdkbApjakVRTUE0R0ExVUVDeE1IYjNKa1pYSmxjakVRTUE0R0ExVUVBeE1IYjNKa1pYSmxjakJaTUJNR0J5cUdTTTQ5CkFnRUdDQ3FHU000OUF3RUhBMElBQkdGaFd3SllGbHR3clBVellIQ3loNTMvU3VpVU1ZYnVJakdGTWRQMW9FRzMKSkcrUlRSOFR4NUNYTXdpV05sZ285dU00a1NGTzBINURZUWZPQU5MU0o5NmpnZjB3Z2Zvd0RnWURWUjBQQVFILwpCQVFEQWdPb01CMEdBMVVkSlFRV01CUUdDQ3NHQVFVRkJ3TUJCZ2dyQmdFRkJRY0RBakFNQmdOVkhSTUJBZjhFCkFqQUFNQjBHQTFVZERnUVdCQlJ2M3lNUmh5cHc0Qi9Cc1NHTlVJL0VpU1lNN2pBZkJnTlZIU01FR0RBV2dCUzYKSFYyWEl1VE9rS213azVsNE1rcGpHVzFSbHpBZUJnTlZIUkVFRnpBVmdoTnZjbVJsY21WeUxtVjRZVzF3YkdVdQpZMjl0TUZzR0NDb0RCQVVHQndnQkJFOTdJbUYwZEhKeklqcDdJbWhtTGtGbVptbHNhV0YwYVc5dUlqb2lJaXdpCmFHWXVSVzV5YjJ4c2JXVnVkRWxFSWpvaWIzSmtaWEpsY2lJc0ltaG1MbFI1Y0dVaU9pSnZjbVJsY21WeUluMTkKTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFESHNrWUR5clNqeWpkTVVVWDNaT05McXJUNkdCcVNUdmZXN0dXMwpqVTg2cEFJZ0VIZkloVWxVV0VpN1hTb2Y4K2toaW9PYW5PWG80TWxQbGhlT0xjTGlqUzA9Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K
→˓"

}
],
"options": {
"election_tick": 10,
"heartbeat_tick": 1,
"max_inflight_blocks": 5,
"snapshot_interval_size": 16777216,
"tick_interval": "500ms"

}
},
"state": "STATE_NORMAL",
"type": "etcdraft"

},
"version": "0"

}
},
"version": "0"

}
(continues on next page)

322 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

},
"mod_policy": "Admins",
"policies": {

"Admins": {
"mod_policy": "Admins",
"policy": {
"type": 3,
"value": {
"rule": "MAJORITY",
"sub_policy": "Admins"

}
},
"version": "0"

},
"Readers": {

"mod_policy": "Admins",
"policy": {
"type": 3,
"value": {

"rule": "ANY",
"sub_policy": "Readers"

}
},
"version": "0"

},
"Writers": {

"mod_policy": "Admins",
"policy": {
"type": 3,
"value": {

"rule": "ANY",
"sub_policy": "Writers"

}
},
"version": "0"

}
},
"values": {

"BlockDataHashingStructure": {
"mod_policy": "Admins",
"value": {
"width": 4294967295

},
"version": "0"

},
"Capabilities": {

"mod_policy": "Admins",
"value": {
"capabilities": {

"V2_0": {}
}

},
"version": "0"

},
"Consortium": {

"mod_policy": "Admins",
"value": {

(continues on next page)

7.8. Updating a channel configuration 323

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"name": "SampleConsortium"
},
"version": "0"

},
"HashingAlgorithm": {

"mod_policy": "Admins",
"value": {
"name": "SHA256"

},
"version": "0"

},
"OrdererAddresses": {

"mod_policy": "/Channel/Orderer/Admins",
"value": {
"addresses": [

"orderer.example.com:7050"
]

},
"version": "0"

}
},
"version": "0"

},
"sequence": "3"

}

A config might look intimidating in this form, but once you study it you’ll see that it has a logical structure.

For example, let’s take a look at the config with a few of the tabs closed.

Note that this is the configuration of an application channel, not the orderer system channel.

324 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

7.8. Updating a channel configuration 325

hyperledger-fabricdocs Documentation, Release master

The structure of the config should now be more obvious. You can see the config groupings: Channel,
Application, and Orderer, and the configuration parameters related to each config grouping (we’ll talk more
about these in the next section), but also where the MSPs representing organizations are. Note that the Channel
config grouping is below the Orderer group config values.

More about these parameters

In this section, we’ll take a deeper look at the configurable values in the context of where they sit in the configuration.

First, there are config parameters that occur in multiple parts of the configuration:

• Policies. Policies are not just a configuration value (which can be updated as defined in a mod_policy), they
define the circumstances under which all parameters can be changed. For more information, check out Policies.

• Capabilities. Ensures that networks and channels process things in the same way, creating deterministic results
for things like channel configuration updates and chaincode invocations. Without deterministic results, one peer
on a channel might invalidate a transaction while another peer may validate it. For more information, check out
Capabilities.

Channel/Application

Governs the configuration parameters unique to application channels (for example, adding or removing channel mem-
bers). By default, changing these parameters requires the signature of a majority of the application organization
admins.

• Add orgs to a channel. To add an organization to a channel, their MSP and other organization parameters must
be generated and added here (under Channel/Application/groups).

• Organization-related parameters. Any parameters specific to an organization, (identifying an anchor peer, for
example, or the certificates of org admins), can be changed. Note that changing these values will by default not
require the majority of application organization admins but only an admin of the organization itself.

Channel/Orderer

Governs configuration parameters unique to the ordering service or the orderer system channel, requires a majority of
the ordering organizations’ admins (by default there is only one ordering organization, though more can be added, for
example when multiple organizations contribute nodes to the ordering service).

• Batch size. These parameters dictate the number and size of transactions in a block. No block will appear larger
than absolute_max_bytes large or with more than max_message_count transactions inside the block.
If it is possible to construct a block under preferred_max_bytes, then a block will be cut prematurely,
and transactions larger than this size will appear in their own block.

• Batch timeout. The amount of time to wait after the first transaction arrives for additional transactions before
cutting a block. Decreasing this value will improve latency, but decreasing it too much may decrease throughput
by not allowing the block to fill to its maximum capacity.

• Block validation. This policy specifies the signature requirements for a block to be considered valid. By default,
it requires a signature from some member of the ordering org.

• Consensus type. To enable the migration of Kafka based ordering services to Raft based ordering services, it is
possible to change the consensus type of a channel. For more information, check out Migrating from Kafka to
Raft.

• Raft ordering service parameters. For a look at the parameters unique to a Raft ordering service, check out
Raft configuration.

326 Chapter 7. Tutorials

./policies/policies.html
./capabilities_concept.html
./kafka_raft_migration.html
./kafka_raft_migration.html
./raft_configuration.html

hyperledger-fabricdocs Documentation, Release master

• Kafka brokers (where applicable). When ConsensusType is set to kafka, the brokers list enumerates
some subset (or preferably all) of the Kafka brokers for the orderer to initially connect to at startup.

Channel

Governs configuration parameters that both the peer orgs and the ordering service orgs need to consent to, requires
both the agreement of a majority of application organization admins and orderer organization admins.

• Orderer addresses. A list of addresses where clients may invoke the orderer Broadcast and Deliver
functions. The peer randomly chooses among these addresses and fails over between them for retrieving blocks.

• Hashing structure. The block data is an array of byte arrays. The hash of the block data is computed as
a Merkle tree. This value specifies the width of that Merkle tree. For the time being, this value is fixed to
4294967295 which corresponds to a simple flat hash of the concatenation of the block data bytes.

• Hashing algorithm. The algorithm used for computing the hash values encoded into the blocks of the
blockchain. In particular, this affects the data hash, and the previous block hash fields of the block. Note,
this field currently only has one valid value (SHA256) and should not be changed.

System channel configuration parameters

Certain configuration values are unique to the orderer system channel.

• Channel creation policy. Defines the policy value which will be set as the mod_policy for the Application
group of new channels for the consortium it is defined in. The signature set attached to the channel creation
request will be checked against the instantiation of this policy in the new channel to ensure that the channel
creation is authorized. Note that this config value is only set in the orderer system channel.

• Channel restrictions. Only editable in the orderer system channel. The total number of channels the orderer is
willing to allocate may be specified as max_count. This is primarily useful in pre-production environments
with weak consortium ChannelCreation policies.

7.8.3 Editing a config

Updating a channel configuration is a three step operation that’s conceptually simple:

1. Get the latest channel config

2. Create a modified channel config

3. Create a config update transaction

However, as you’ll see, this conceptual simplicity is wrapped in a somewhat convoluted process. As a result, some
users might choose to script the process of pulling, translating, and scoping a config update. Users also have the option
of how to modify the channel configuration itself, either manually or by using a tool like jq.

We have two tutorials that deal specifically with editing a channel configuration to achieve a specific end:

• Adding an Org to a Channel: shows the process for adding an additional organization to an existing channel.

• Updating channel capabilities: shows how to update channel capabilities.

In this topic, we’ll show the process of editing a channel configuration independent of the end goal of the configuration
update.

7.8. Updating a channel configuration 327

./channel_update_tutorial.html
./updating_a_channel.html

hyperledger-fabricdocs Documentation, Release master

Set environment variables for your config update

Before you attempt to use the sample commands, make sure to export the following environment variables, which will
depend on the way you have structured your deployment. Note that the channel name, CH_NAME will have to be set
for every channel being updated, as channel configuration updates only apply to the configuration of the channel being
updated (with the exception of the ordering system channel, whose configuration is copied into the configuration of
application channels by default).

• CH_NAME: the name of the channel being updated.

• TLS_ROOT_CA: the path to the root CA cert of the TLS CA of the organization proposing the update.

• CORE_PEER_LOCALMSPID: the name of your MSP.

• CORE_PEER_MSPCONFIGPATH: the absolute path to the MSP of your organization.

• ORDERER_CONTAINER: the name of an ordering node container. Note that when targeting the ordering ser-
vice, you can target any active node in the ordering service. Your requests will be forwarded to the leader
automatically.

Note: this topic will provide default names for the various JSON and protobuf files being pulled and modified
(config_block.pb, config_block.json, etc). You are free to use whatever names you want. However,
be aware that unless you go back and erase these files at the end of each config update, you will have to select different
when making an additional update.

Step 1: Pull and translate the config

The first step in updating a channel configuration is getting the latest config block. This is a three step process. First,
we’ll pull the channel configuration in protobuf format, creating a file called config_block.pb.

Make sure you are in the peer container.

Now issue:

peer channel fetch config config_block.pb -o $ORDERER_CONTAINER -c $CH_NAME --tls --
→˓cafile $TLS_ROOT_CA

Next, we’ll convert the protobuf version of the channel config into a JSON version called config_block.json
(JSON files are easier for humans to read and understand):

configtxlator proto_decode --input config_block.pb --type common.Block --output
→˓config_block.json

Finally, we’ll scope out all of the unnecessary metadata from the config, which makes it easier to read. You are free to
call this file whatever you want, but in this example we’ll call it config.json.

jq .data.data[0].payload.data.config config_block.json > config.json

Now let’s make a copy of config.json called modified_config.json. Do not edit config.json di-
rectly, as we will be using it to compute the difference between config.json and modified_config.json in
a later step.

cp config.json modified_config.json

Step 2: Modify the config

At this point, you have two options of how you want to modify the config.

328 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

1. Open modified_config.json using the text editor of your choice and make edits. Online tutorials exist
that describe how to copy a file from a container that does not have an editor, edit it, and add it back to the
container.

2. Use jq to apply edits to the config.

Whether you choose to edit the config manually or using jq depends on your use case. Because jq is concise and
scriptable (an advantage when the same configuration update will be made to multiple channels), it’s the recommend
method for performing a channel update. For an example on how jq can be used, check out Updating channel
capabilities, which shows multiple jq commands leveraging a capabilities config file called capabilities.json.
If you are updating something other than the capabilities in your channel, you will have to modify your jq command
and JSON file accordingly.

For more information about the content and structure of a channel configuration, check out our sample channel config
above.

Step 3: Re-encode and submit the config

Whether you make your config updates manually or using a tool like jq, you now have to run the process you ran to
pull and scope the config in reverse, along with a step to calculate the difference between the old config and the new
one, before submitting the config update to the other administrators on the channel to be approved.

First, we’ll turn our config.json file back to protobuf format, creating a file called config.pb. Then we’ll do
the same with our modified_config.json file. Afterwards, we’ll compute the difference between the two files,
creating a file called config_update.pb.

configtxlator proto_encode --input config.json --type common.Config --output config.pb

configtxlator proto_encode --input modified_config.json --type common.Config --output
→˓modified_config.pb

configtxlator compute_update --channel_id $CH_NAME --original config.pb --updated
→˓modified_config.pb --output config_update.pb

Now that we have calculated the difference between the old config and the new one, we can apply the changes to the
config.

configtxlator proto_decode --input config_update.pb --type common.ConfigUpdate --
→˓output config_update.json

echo '{"payload":{"header":{"channel_header":{"channel_id":"'$CH_NAME'", "type":2}},
→˓"data":{"config_update":'$(cat config_update.json)'}}}' | jq . > config_update_in_
→˓envelope.json

configtxlator proto_encode --input config_update_in_envelope.json --type common.
→˓Envelope --output config_update_in_envelope.pb

Submit the config update transaction:

peer channel update -f config_update_in_envelope.pb -c $CH_NAME -o $ORDERER_CONTAINER
→˓--tls --cafile $TLS_ROOT_CA

Our config update transaction represents the difference between the original config and the modified one, but the
ordering service will translate this into a full channel config.

7.8. Updating a channel configuration 329

./updating_a_channel.html#Create-a-capabilities-config-file
./updating_a_channel.html#Create-a-capabilities-config-file

hyperledger-fabricdocs Documentation, Release master

7.8.4 Get the Necessary Signatures

Once you’ve successfully generated the new configuration protobuf file, it will need to satisfy the relevant policy for
whatever it is you’re trying to change, typically (though not always) by requiring signatures from other organizations.

Note: you may be able to script the signature collection, dependent on your application. In general, you may always
collect more signatures than are required.

The actual process of getting these signatures will depend on how you’ve set up your system, but there are two main
implementations. Currently, the Fabric command line defaults to a “pass it along” system. That is, the Admin of the
Org proposing a config update sends the update to someone else (another Admin, typically) who needs to sign it. This
Admin signs it (or doesn’t) and passes it along to the next Admin, and so on, until there are enough signatures for the
config to be submitted.

This has the virtue of simplicity — when there are enough signatures, the last admin can simply submit the config
transaction (in Fabric, the peer channel update command includes a signature by default). However, this
process will only be practical in smaller channels, since the “pass it along” method can be time consuming.

The other option is to submit the update to every Admin on a channel and wait for enough signatures to come back.
These signatures can then be stitched together and submitted. This makes life a bit more difficult for the Admin who
created the config update (forcing them to deal with a file per signer) but is the recommended workflow for users which
are developing Fabric management applications.

Once the config has been added to the ledger, it will be a best practice to pull it and convert it to JSON to check to
make sure everything was added correctly. This will also serve as a useful copy of the latest config.

7.9 Chaincode for Developers

7.9.1 What is Chaincode?

Chaincode is a program, written in Go, Node.js, or Java that implements a prescribed interface. Chaincode runs
in a separate process from the peer and initializes and manages the ledger state through transactions submitted by
applications.

A chaincode typically handles business logic agreed to by members of the network, so it similar to a “smart contract”.
A chaincode can be invoked to update or query the ledger in a proposal transaction. Given the appropriate permission,
a chaincode may invoke another chaincode, either in the same channel or in different channels, to access its state. Note
that, if the called chaincode is on a different channel from the calling chaincode, only read query is allowed. That is,
the called chaincode on a different channel is only a Query, which does not participate in state validation checks in
subsequent commit phase.

In the following sections, we will explore chaincode through the eyes of an application developer. We’ll present a
simple chaincode sample application and walk through the purpose of each method in the Chaincode Shim API. If
you are a network operator who is deploying a chaincode to running network, visit the Deploying a smart contract to
a channel tutorial and the Fabric chaincode lifecycle concept topic.

This tutorial provides an overview of the low level APIs provided by the Fabric Chaincode Shim API. You can also
use the higher level APIs provided by the Fabric Contract API. To learn more about developing smart contracts using
the Fabric contract API, visit the Smart Contract Processing topic.

7.9.2 Chaincode API

Every chaincode program must implement the Chaincode interface whose methods are called in response to received
transactions. You can find the reference documentation of the Chaincode Shim API for different languages below:

• Go

330 Chapter 7. Tutorials

https://golang.org
https://nodejs.org
https://java.com/en/
https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#Chaincode

hyperledger-fabricdocs Documentation, Release master

• Node.js

• Java

In each language, the Invoke method is called by clients to submit transaction proposals. This method allows you to
use the chaincode to read and write data on the channel ledger.

You also need to include an Init method in your chaincode that will serve as the initialization function. This function
is required by the chaincode interface, but does not necessarily need to invoked by your applications. You can use the
Fabric chaincode lifecycle process to specify whether the Init function must be called prior to Invokes. For more
information, refer to the initialization parameter in the Approving a chaincode definition step of the Fabric chaincode
lifecycle documentation.

The other interface in the chaincode “shim” APIs is the ChaincodeStubInterface:

• Go

• Node.js

• Java

which is used to access and modify the ledger, and to make invocations between chaincodes.

In this tutorial using Go chaincode, we will demonstrate the use of these APIs by implementing a simple chaincode
application that manages simple “assets”.

7.9.3 Simple Asset Chaincode

Our application is a basic sample chaincode to create assets (key-value pairs) on the ledger.

Choosing a Location for the Code

If you haven’t been doing programming in Go, you may want to make sure that you have Go installed and your system
properly configured. We assume you are using a version that supports modules.

Now, you will want to create a directory for your chaincode application.

To keep things simple, let’s use the following command:

mkdir sacc && cd sacc

Now, let’s create the module and the source file that we’ll fill in with code:

go mod init sacc
touch sacc.go

Housekeeping

First, let’s start with some housekeeping. As with every chaincode, it implements the Chaincode interface in particular,
Init and Invoke functions. So, let’s add the Go import statements for the necessary dependencies for our chaincode.
We’ll import the chaincode shim package and the peer protobuf package. Next, let’s add a struct SimpleAsset as a
receiver for Chaincode shim functions.

package main

import (
"fmt"

(continues on next page)

7.9. Chaincode for Developers 331

https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeInterface.html
https://hyperledger.github.io/fabric-chaincode-java/master/api/org/hyperledger/fabric/shim/Chaincode.html
chaincode_lifecycle.html#step-three-approve-a-chaincode-definition-for-your-organization
https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStubInterface
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html
https://hyperledger.github.io/fabric-chaincode-java/master/api/org/hyperledger/fabric/shim/ChaincodeStub.html
https://golang.org
https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#Chaincode
https://godoc.org/github.com/hyperledger/fabric-protos-go/peer

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"github.com/hyperledger/fabric-chaincode-go/shim"
"github.com/hyperledger/fabric-protos-go/peer"

)

// SimpleAsset implements a simple chaincode to manage an asset
type SimpleAsset struct {
}

Initializing the Chaincode

Next, we’ll implement the Init function.

// Init is called during chaincode instantiation to initialize any data.
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {

}

Note: Note that chaincode upgrade also calls this function. When writing a chaincode that will upgrade an existing
one, make sure to modify the Init function appropriately. In particular, provide an empty “Init” method if there’s no
“migration” or nothing to be initialized as part of the upgrade.

Next, we’ll retrieve the arguments to the Init call using the ChaincodeStubInterface.GetStringArgs function and
check for validity. In our case, we are expecting a key-value pair.

// Init is called during chaincode instantiation to initialize any
// data. Note that chaincode upgrade also calls this function to reset
// or to migrate data, so be careful to avoid a scenario where you
// inadvertently clobber your ledger's data!
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {
// Get the args from the transaction proposal
args := stub.GetStringArgs()
if len(args) != 2 {

return shim.Error("Incorrect arguments. Expecting a key and a value")
}

}

Next, now that we have established that the call is valid, we’ll store the initial state in the ledger. To do this, we will
call ChaincodeStubInterface.PutState with the key and value passed in as the arguments. Assuming all went well,
return a peer.Response object that indicates the initialization was a success.

// Init is called during chaincode instantiation to initialize any
// data. Note that chaincode upgrade also calls this function to reset
// or to migrate data, so be careful to avoid a scenario where you
// inadvertently clobber your ledger's data!
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {

// Get the args from the transaction proposal
args := stub.GetStringArgs()
if len(args) != 2 {
return shim.Error("Incorrect arguments. Expecting a key and a value")

}

// Set up any variables or assets here by calling stub.PutState()

(continues on next page)

332 Chapter 7. Tutorials

https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStub.GetStringArgs
https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStub.PutState

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

// We store the key and the value on the ledger
err := stub.PutState(args[0], []byte(args[1]))
if err != nil {
return shim.Error(fmt.Sprintf("Failed to create asset: %s", args[0]))

}
return shim.Success(nil)

}

Invoking the Chaincode

First, let’s add the Invoke function’s signature.

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The 'set'
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {

}

As with the Init function above, we need to extract the arguments from the ChaincodeStubInterface. The
Invoke function’s arguments will be the name of the chaincode application function to invoke. In our case, our
application will simply have two functions: set and get, that allow the value of an asset to be set or its current state
to be retrieved. We first call ChaincodeStubInterface.GetFunctionAndParameters to extract the function name and the
parameters to that chaincode application function.

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {

// Extract the function and args from the transaction proposal
fn, args := stub.GetFunctionAndParameters()

}

Next, we’ll validate the function name as being either set or get, and invoke those chaincode application functions,
returning an appropriate response via the shim.Success or shim.Error functions that will serialize the response
into a gRPC protobuf message.

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {

// Extract the function and args from the transaction proposal
fn, args := stub.GetFunctionAndParameters()

var result string
var err error
if fn == "set" {

result, err = set(stub, args)
} else {

result, err = get(stub, args)
}
if err != nil {

(continues on next page)

7.9. Chaincode for Developers 333

https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStub.GetFunctionAndParameters

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

return shim.Error(err.Error())
}

// Return the result as success payload
return shim.Success([]byte(result))

}

Implementing the Chaincode Application

As noted, our chaincode application implements two functions that can be invoked via the Invoke function. Let’s
implement those functions now. Note that as we mentioned above, to access the ledger’s state, we will leverage the
ChaincodeStubInterface.PutState and ChaincodeStubInterface.GetState functions of the chaincode shim API.

// Set stores the asset (both key and value) on the ledger. If the key exists,
// it will override the value with the new one
func set(stub shim.ChaincodeStubInterface, args []string) (string, error) {

if len(args) != 2 {
return "", fmt.Errorf("Incorrect arguments. Expecting a key and a value")

}

err := stub.PutState(args[0], []byte(args[1]))
if err != nil {

return "", fmt.Errorf("Failed to set asset: %s", args[0])
}
return args[1], nil

}

// Get returns the value of the specified asset key
func get(stub shim.ChaincodeStubInterface, args []string) (string, error) {

if len(args) != 1 {
return "", fmt.Errorf("Incorrect arguments. Expecting a key")

}

value, err := stub.GetState(args[0])
if err != nil {

return "", fmt.Errorf("Failed to get asset: %s with error: %s", args[0],
→˓err)

}
if value == nil {

return "", fmt.Errorf("Asset not found: %s", args[0])
}
return string(value), nil

}

Pulling it All Together

Finally, we need to add the main function, which will call the shim.Start function. Here’s the whole chaincode
program source.

package main

import (
"fmt"

(continues on next page)

334 Chapter 7. Tutorials

https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStub.PutState
https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStub.GetState
https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#Start

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"github.com/hyperledger/fabric-chaincode-go/shim"
"github.com/hyperledger/fabric-protos-go/peer"

)

// SimpleAsset implements a simple chaincode to manage an asset
type SimpleAsset struct {
}

// Init is called during chaincode instantiation to initialize any
// data. Note that chaincode upgrade also calls this function to reset
// or to migrate data.
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {

// Get the args from the transaction proposal
args := stub.GetStringArgs()
if len(args) != 2 {

return shim.Error("Incorrect arguments. Expecting a key and a value")
}

// Set up any variables or assets here by calling stub.PutState()

// We store the key and the value on the ledger
err := stub.PutState(args[0], []byte(args[1]))
if err != nil {

return shim.Error(fmt.Sprintf("Failed to create asset: %s", args[0]))
}
return shim.Success(nil)

}

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {

// Extract the function and args from the transaction proposal
fn, args := stub.GetFunctionAndParameters()

var result string
var err error
if fn == "set" {

result, err = set(stub, args)
} else { // assume 'get' even if fn is nil

result, err = get(stub, args)
}
if err != nil {

return shim.Error(err.Error())
}

// Return the result as success payload
return shim.Success([]byte(result))

}

// Set stores the asset (both key and value) on the ledger. If the key exists,
// it will override the value with the new one
func set(stub shim.ChaincodeStubInterface, args []string) (string, error) {

if len(args) != 2 {
return "", fmt.Errorf("Incorrect arguments. Expecting a key and a value")

}
(continues on next page)

7.9. Chaincode for Developers 335

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

err := stub.PutState(args[0], []byte(args[1]))
if err != nil {

return "", fmt.Errorf("Failed to set asset: %s", args[0])
}
return args[1], nil

}

// Get returns the value of the specified asset key
func get(stub shim.ChaincodeStubInterface, args []string) (string, error) {

if len(args) != 1 {
return "", fmt.Errorf("Incorrect arguments. Expecting a key")

}

value, err := stub.GetState(args[0])
if err != nil {

return "", fmt.Errorf("Failed to get asset: %s with error: %s", args[0],
→˓err)

}
if value == nil {

return "", fmt.Errorf("Asset not found: %s", args[0])
}
return string(value), nil

}

// main function starts up the chaincode in the container during instantiate
func main() {

if err := shim.Start(new(SimpleAsset)); err != nil {
fmt.Printf("Error starting SimpleAsset chaincode: %s", err)

}
}

7.9.4 Chaincode access control

Chaincode can utilize the client (submitter) certificate for access control decisions by calling the GetCreator() function.
Additionally the Go shim provides extension APIs that extract client identity from the submitter’s certificate that can
be used for access control decisions, whether that is based on client identity itself, or the org identity, or on a client
identity attribute.

For example an asset that is represented as a key/value may include the client’s identity as part of the value (for
example as a JSON attribute indicating that asset owner), and only this client may be authorized to make updates to
the key/value in the future. The client identity library extension APIs can be used within chaincode to retrieve this
submitter information to make such access control decisions.

See the client identity (CID) library documentation for more details.

To add the client identity shim extension to your chaincode as a dependency, see Managing external dependencies for
chaincode written in Go.

7.9.5 Managing external dependencies for chaincode written in Go

Your Go chaincode depends on Go packages (like the chaincode shim) that are not part of the standard library. The
source to these packages must be included in your chaincode package when it is installed to a peer. If you have
structured your chaincode as a module, the easiest way to do this is to “vendor” the dependencies with go mod
vendor before packaging your chaincode.

336 Chapter 7. Tutorials

https://github.com/hyperledger/fabric-chaincode-go/blob/master/pkg/cid/README.md

hyperledger-fabricdocs Documentation, Release master

go mod tidy
go mod vendor

This places the external dependencies for your chaincode into a local vendor directory.

Once dependencies are vendored in your chaincode directory, peer chaincode package and peer
chaincode install operations will then include code associated with the dependencies into the chaincode pack-
age.

7.10 Videos

Refer to the Hyperledger Fabric channel on YouTube

This collection contains developers demonstrating various v1 features and components such as: ledger, channels,
gossip, SDK, chaincode, MSP, and more. . .

7.10. Videos 337

hyperledger-fabricdocs Documentation, Release master

338 Chapter 7. Tutorials

CHAPTER 8

Deploying a production network

This deployment guide is a high level overview of the proper sequence for setting up production Fabric network
components, in addition to best practices and a few of the many considerations to keep in mind when deploying. Note
that this topic will discuss “setting up the network” as a holistic process from the perspective of a single individual.
More likely than not, real world production networks will not be set up by a single individual but as a collaborative
effort directed by several individuals (a collection of banks each setting up their own components, for example) instead.

The process for deploying a Fabric network is complex and presumes an understanding of Public Key Infrastructure
and managing distributed systems. If you are a smart contract or application developer, you should not need this level
of expertise in deploying a production level Fabric network. However, you might need to be aware of how networks
are deployed in order to develop effective smart contracts and applications.

If all you need is a development environment to test chaincode, smart contracts, and applications against, check out
Using the Fabric test network. It includes two organizations, each owning one peer, and a single ordering service
organization that owns a single ordering node. This test network is not meant to provide a blueprint for deploying
production components, and should not be used as such, as it makes assumptions and decisions that production
deployments will not make.

The guide will give you an overview of the steps of setting up production components and a production network:

• Step one: Decide on your network configuration

• Step two: Set up a cluster for your resources

• Step three: Set up your CAs

• Step four: Use the CA to create identities and MSPs

• Step five: Deploy nodes

– Create a peer

– Create an ordering node

339

hyperledger-fabricdocs Documentation, Release master

8.1 Step one: Decide on your network configuration

The structure of a blockchain network must be dictated by the use case. These fundamental business decisions will
vary according to your use case, but let’s consider a few scenarios.

In contrast to development environments or proofs of concept, security, resource management, and high availability
become a priority when operating in production. How many nodes do you need to satisfy high availability, and in what
data centers do you wish to deploy them in to satisfy both the needs of disaster recovery and data residency? How will
you ensure that your private keys and roots of trust remain secure?

In addition to the above, here is a sampling of the decisions you will need to make before deploying components:

• Certificate Authority configuration. As part of the overall decisions you have to make about your peers (how
many, how many on each channel, and so on) and about your ordering service (how many nodes, who will own
them), you also have to decide on how the CAs for your organization will be deployed. Production networks
should be using Transport Layer Security (TLS), which will require setting up a TLS CA and using it to generate
TLS certificates. This TLS CA will need to be deployed before your enrollment CA. We’ll discuss this more in
Step three: Set up your CAs.

• Use Organizational Units or not? Some organizations might find it necessary to establish Organizational Units
to create a separation between certain identities and MSPs created by a single CA.

• Database type. Some channels in a network might require all data to be modeled in a way CouchDB as the
State Database can understand, while other networks, prioritizing speed, might decide that all peers will use
LevelDB. Note that channels should not have peers that use both CouchDB and LevelDB on them, as the two
database types model data slightly differently.

• Channels and private data. Some networks might decide that Channels are the best way to ensure privacy
and isolation for certain transactions. Others might decide that a single channel, along with Private data, better
serves their need for privacy.

• Container orchestration. Different users might also make different decisions about their container orchestra-
tion, creating separate containers for their peer process, logging for the peer, CouchDB, gRPC communications,
and chaincode, while other users might decide to combine some of these processes.

• Chaincode deployment method. Users now have the option to deploy their chaincode using either the built
in build and run support, a customized build and run using the External Builders and Launchers, or using an
Chaincode as an external service.

• Using firewalls. In a production deployment, components belonging to one organization might need access to
components from other organizations, necessitating the use of firewalls and advanced networking configuration.
For example, applications using the Fabric SDK require access to all endorsing peers from all organizations and
the ordering services for all channels. Similarly, peers need access to the ordering service on the channels that
they are receiving new blocks from.

However and wherever your components are deployed, you will need a high degree of expertise in your management
system of choice (such as Kubernetes) in order to efficiently operate your network. Similarly, the structure of the
network must be designed to fit the business use case and any relevant laws and regulations government of the industry
in which the network will be designed to function.

This deployment guide will not go through every iteration and potential network configuration, but does give common
guidelines and rules to consider.

8.2 Step two: Set up a cluster for your resources

Generally speaking, Fabric is agnostic to the method used to deploy and manage it. It is possible, for example, to
deploy and manage a peer from a laptop. For a number of reasons, this is likely to be unadvisable, but there is nothing

340 Chapter 8. Deploying a production network

hyperledger-fabricdocs Documentation, Release master

in Fabric that prohibits it.

As long as you have the ability to deploy containers, whether locally (or behind a firewall), or in a cloud, it should be
possible to stand up components and connect them to each other. However, Kubernetes features a number of helpful
tools that have made it a popular container management platform for deploying and managing Fabric networks. For
more information about Kubernetes, check out the Kubernetes documentation. This topic will mostly limit its scope
to the binaries and provide instructions that can be applied when using a Docker deployment or Kubernetes.

However and wherever you choose to deploy your components, you will need to make sure you have enough resources
for the components to run effectively. The sizes you need will largely depend on your use case. If you plan to join
a single peer to several high volume channels, it will need much more CPU and memory than a peer a user plans to
join to a single channel. As a rough estimate, plan to dedicate approximately three times the resources to a peer as
you plan to allocate to a single ordering node (as you will see below, it is recommended to deploy at least three and
optimally five nodes in an ordering service). Similarly, you should need approximately a tenth of the resources for
a CA as you will for a peer. You will also need to add storage to your cluster (some cloud providers may provide
storage) as you cannot configure Persistent Volumes and Persistent Volume Claims without storage being set up with
your cloud provider first.

By deploying a proof of concept network and testing it under load, you will have a better sense of the resources you
will require.

8.2.1 Managing your infrastructure

The exact methods and tools you use to manage your backend will depend on the backend you choose. However, here
are some considerations worth noting.

• Using secret objects to securely store important configuration files in your cluster. For information about Ku-
bernetes secrets, check out Kubernetes secrets. You also have the option to use Hardened Security Modules
(HSMs) or encrypted Persistent Volumes (PVs). Along similar lines, after deploying Fabric components, you
will likely want to connect to a container on your own backend, for example using a private repo in a service
like Docker Hub. In that case, you will need to code the login information in the form of a Kubernetes secret
and include it in the YAML file when deploying components.

• Cluster considerations and node sizing. In step 2 above, we discussed a general outline for how to think about
the sizings of nodes. Your use case, as well as a robust period of development, is the only way you will truly
know how large your peers, ordering nodes, and CAs will need to be.

• How you choose to mount your volumes. It is a best practice to mount the volumes relevant to your nodes
external to the place where your nodes are deployed. This will allow you to reference these volumes later on
(for example, restarting a node or a container that has crashed) without having to redeploy or regenerate your
crypto material.

• How you will monitor your resources. It is critical that you establish a strategy and method for monitoring the
resources used by your individual nodes and the resources deployed to your cluster generally. As you join your
peers to more channels, you will need likely need to increase its CPU and memory allocation. Similarly, you
will need to make sure you have enough storage space for your state database and blockchain.

8.3 Step three: Set up your CAs

The first component that must be deployed in a Fabric network is a CA. This is because the certificates associated with
a node (not just for the node itself but also the certificates identifying who can administer the node) must be created
before the node itself can be deployed. While it is not necessary to use the Fabric CA to create these certificates, the
Fabric CA also creates MSP structures that are needed for components and organizations to be properly defined. If a
user chooses to use a CA other than the Fabric CA, they will have to create the MSP folders themselves.

8.3. Step three: Set up your CAs 341

https://kubernetes.io/docs
https://kubernetes.io/docs/concepts/configuration/secret/

hyperledger-fabricdocs Documentation, Release master

• One CA (or more, if you are using intermediate CAs — more on intermediate CAs below) is used to generate
(through a process called “enrollment”) the certificates of the admin of an organization, the MSP of that organi-
zation, and any nodes owned by that organization. This CA will also generate the certificates for any additional
users. Because of its role in “enrolling” identities, this CA is sometimes called the “enrollment CA” or the “ecert
CA”.

• The other CA generates the certificates used to secure communications on Transport Layer Security (TLS). For
this reason, this CA is often referred to as a “TLS CA”. These TLS certificates are attached to actions as a way
of preventing “man in the middle” attacks. Note that the TLS CA is only used for issuing certificates for nodes
and can be shut down when that activity is completed. Users have the option to use one way (client only) TLS as
well as two way (server and client) TLS, with the latter also known as “mutual TLS”. Because specifying that
your network will be using TLS (which is recommended) should be decided before deploying the “enrollment”
CA (the YAML file specifying the configuration of this CA has a field for enabling TLS), you should deploy
your TLS CA first and use its root certificate when bootstrapping your enrollment CA. This TLS certificate will
also be used by the fabric-ca client when connecting to the enrollment CA to enroll identities for users
and nodes.

While all of the non-TLS certificates associated with an organization can be created by a single “root” CA (that is,
a CA that is its own root of trust), for added security organizations can decide to use “intermediate” CAs whose
certificates are created by a root CA (or another intermediate CA that eventually leads back to a root CA). Because a
compromise in the root CA leads to a collapse for its entire trust domain (the certs for the admins, nodes, and any CAs
it has generated certificates for), intermediate CAs are a useful way to limit the exposure of the root CA. Whether you
choose to use intermediate CAs will depend on the needs of your use case. They are not mandatory. Note that it is
also possible to configure a Lightweight Directory Access Protocol (LDAP) to manage identities on a Fabric network
for those enterprises that already have this implementation and do not want to add a layer of identity management to
their existing infrastructure. The LDAP effectively pre registers all of the members of the directory and allows them
to enroll based on the criteria given.

In a production network, it is recommended to deploy at least one CA per organization for enrollment purposes
and another for TLS. For example, if you deploy three peers that are associated with one organization and an ordering
node that is associated with an ordering organization, you will need at least four CAs. Two of the CAs will be for
the peer organization (generating the enrollment and TLS certificates for the peer, admins, communications, and the
folder structure of the MSP representing the organization) and the other two will be for the orderer organization. Note
that users will generally only register and enroll with the enrollment CA, while nodes will register and enroll with both
the enrollment CA (where the node will get its signing certificates that identify it when it attempts to sign its actions)
and with the TLS CA (where it will get the TLS certificates it uses to authenticate its communications).

For an example of how to setup an organization CA and a TLS CA and enroll their admin identity, check out the
Fabric CA Deployment Guide. The deploy guide uses the Fabric CA client to register and enroll the identities that are
required when setting up CAs.

8.4 Step four: Use the CA to create identities and MSPs

After you have created your CAs, you can use them to create the certificates for the identities and components related
to your organization (which is represented by an MSP). For each organization, you will need to, at a minimum:

• Register and enroll an admin identity and create an MSP. After the CA that will be associated with an
organization has been created, it can be used to first register an identity and then enroll it. In the first step, a
username and password for the identity is assigned by the admin of the CA. Attributes and affiliations can also
be given to the identity (for example, a role of admin, which is necessary for organization admins). After
the identity has been registered, it can be enrolled by using the username and password. The CA will generate
two certificates for this identity — a public certificate (also known as a signcert) known to the other members
of the network, and the private key (stored in the keystore folder) used to sign actions taken by the identity.
The CA will also generate an MSP file containing the public certificate of the CA issuing the certificate and
the root of trust for the CA (this may or may not be the same CA). This MSP can be thought of as defining the

342 Chapter 8. Deploying a production network

https://hyperledger-fabric-ca.readthedocs.io/en/latest/deployguide/ca-deploy.html

hyperledger-fabricdocs Documentation, Release master

organization associated with the identity of the admin. For an example of how this process looks, check out the
this example of how an admin is enrolled. In cases where the admin of the org will also be an admin of a node
(which will be typical), you must create the org admin identity before creating the local MSP of a node,
since the certificate of the node admin must be used when creating the local MSP.

• Register and enroll node identities. Just as an org admin identity is registered and enrolled, the identity of
a node must be registered and enrolled with both an enrollment CA and the TLS CA. For this reason, it can
be useful for your enrollment CA and TLS to share a database (which allows the node identity to only be
registered once and enrolled by each CA server separately), though this is an optional configuration option.
Instead of giving a node a role of admin or user when registering it with the enrollment CA, give it a role
of peer or orderer. As with the admin, attributes and affiliations for this identity can also be assigned.
The MSP structure for a node is known as a “local MSP”, since the permissions assigned to the identities are
only relevant at the local (node) level. This MSP is created when the node identity is created, and is used
when bootstrapping the node. You will use the TLS root certificate generated when enrolling with the TLS CA
when joining your organization to the channel (this certificate must be added to the org MSP that was created
when you enrolled your admin) and when using the peer binary as a CLI client to make calls to other peers
(as in peer chaincode invoke) or ordering nodes (as in peer channel fetch) because there is no
orderer CLI. It is not necessary to add the TLS root certificates to the local MSP of a node because these
certificates are contained in the channel configuration.

For more conceptual information about identities and permissions in a Fabric-based blockchain network, see Identity
and Membership Service Provider (MSP).

For a look at how to use a CA to generate an admin identity and MSP, check out Enroll Org1’s Admin.

To see how to use the enrollment CA to and the TLS CA to generate the certificates for a node, check out Setup Org1’s
Peers.

8.5 Step five: Deploy nodes

Once you have gathered all of the certificates and MSPs you need, you’re almost ready to create a node. As discussed
above, there are a number of valid ways to deploy nodes.

8.5.1 Create a peer

Before you can create a peer, you will need to customize the configuration file for the peer. In Fabric, this file is called
core.yaml. You can find a sample core.yaml configuration file in the sampleconfig directory of Hyperledger
Fabric.

As you can see in the file, there are quite a number of parameters you either have the option to set or will need to
set for your node to work properly. In general, if you do not have the need to change a tuning value, leave it alone.
You will, however, likely need to adjust the various addresses, specify the database type you want to use, as well as to
specify where the MSP for the node is located.

You have two main options for tuning your configuration.

1. Edit the YAML file bundled with the binaries.

2. Use environment variable overrides when deploying.

3. Specify flags on CLI commands.

Option 1 has the advantage of persisting your changes whenever you bring down and bring back up the node. The
downside is that you will have to port the options you customized to the new YAML when upgrading to a new binary
version (you should use the latest YAML when upgrading to a new version).

Either way, here are some values in core.yaml you must review.

8.5. Step five: Deploy nodes 343

https://hyperledger-fabric-ca.readthedocs.io/en/latest/operations_guide.html#enroll-org1-s-admin
https://hyperledger-fabric-ca.readthedocs.io/en/latest/operations_guide.html#enroll-org1-s-admin
https://hyperledger-fabric-ca.readthedocs.io/en/latest/operations_guide.html#setup-org1-s-peers
https://hyperledger-fabric-ca.readthedocs.io/en/latest/operations_guide.html#setup-org1-s-peers
https://github.com/hyperledger/fabric/blob/master/sampleconfig/core.yaml
https://github.com/hyperledger/fabric/blob/master/sampleconfig/core.yaml

hyperledger-fabricdocs Documentation, Release master

• peer.localMspID: this is the name of the local MSP of your peer organization. This MSP is where your
peer organization admins will be listed as well as the peer organization’s root CA and TLS CA certificates.

• peer.mspConfigPath: the place where the local MSP for the peer is located. Note that it is a best practice
to mount this volume external to your container. This ensures that even if the container is stopped (for example,
during a maintenance cycle) that the MSPs are not lost and have to be recreated.

• peer.address: represents the endpoint to other peers in the same organization, an important consideration
when establishing gossip communication within an organization.

• peer.tls: When you set the enabled value to true (as should be done in a production network), you will
have to specify the locations of the relevant TLS certificates. Note that all of the nodes in a network (both the
peers and the ordering nodes) must either all have TLS enabled or not enabled. For production networks, it is
highly recommended to enable TLS. As with your MSP, it is a best practice to mount this volume external to
your container.

• ledger: users have a number of decisions to make about their ledger, including the state database type (Lev-
elDB or CouchDB, for example), and its location (specified in fileSystemPath). Note that for CouchDB, it
is a best practice to operate your state database external to the peer (for example, in a separate container), as you
will be better able to allocate specific resources to the database this way. For latency and security reasons, it is a
best practice to have the CouchDB container on the same server as the peer. Access to the CouchDB container
should be restricted to only the peer container.

• gossip: there are a number of configuration options to think about when setting up Gossip data dissemina-
tion protocol, including the externalEndpoint (which makes peers discoverable to peers owned by other
organizations) as well as the bootstrap address (which identifies a peer in the peer’s own organization).

• chaincode.externalBuilders: this field is important to set when using Chaincode as an external ser-
vice.

When you’re comfortable with how your peer has been configured, how your volumes are mounted, and your backend
configuration, you can run the command to launch the peer (this command will depend on your backend configuration).

8.5.2 Create an ordering node

Unlike the creation of a peer, you will need to create a genesis block (or reference a block that has already been
created, if adding an ordering node to an existing ordering service) and specify the path to it before launching the
ordering node.

In Fabric, this configuration file for ordering nodes is called orderer.yaml. You can find a sample orderer.
yaml configuration file in the sampleconfig directory of Hyperledger Fabric. Note that orderer.yaml is different
than the “genesis block” of an ordering service. This block, which includes the initial configuration of the orderer
system channel, must be created before an ordering node is created because it is used to bootstrap the node.

As with the peer, you will see that there are quite a number of parameters you either have the option to set or will need
to set for your node to work properly. In general, if you do not have the need to change a tuning value, leave it alone.

You have two main options for tuning your configuration.

1. Edit the YAML file bundled with the binaries.

2. Use environment variable overrides when deploying.

3. Specify flags on CLI commands.

Option 1 has the advantage of persisting your changes whenever you bring down and bring back up the node. The
downside is that you will have to port the options you customized to the new YAML when upgrading to a new binary
version (you should use the latest YAML when upgrading to a new version).

Either way, here are some values in orderer.yaml you must review. You will notice that some of these fields are
the same as those in core.yaml only with different names.

344 Chapter 8. Deploying a production network

https://github.com/hyperledger/fabric/blob/master/sampleconfig/orderer.yaml

hyperledger-fabricdocs Documentation, Release master

• General.LocalMSPID: this is the name of the local MSP, generated by your CA, of your orderer organiza-
tion.

• General.LocalMSPDir: the place where the local MSP for the ordering node is located. Note that it is a
best practice to mount this volume external to your container.

• General.ListenAddress and General.ListenPort: represents the endpoint to other ordering nodes
in the same organization.

• FileLedger: although ordering nodes do not have a state database, they still all carry copies of the blockchain,
as this allows them to verify permissions using the latest config block. Therefore the ledger fields should be
customized with the correct file path.

• Cluster: these values are important for ordering service nodes that communicate with other ordering nodes,
such as in a Raft based ordering service.

• General.BootstrapFile: this is the name of the configuration block used to bootstrap an ordering node.
If this node is the first node generated in an ordering service, this file will have to be generated and is known as
the “genesis block”.

• General.BootstrapMethod: the method by which the bootstrap block is given. For now, this can only be
file, in which the file in the BootstrapFile is specified. Starting in 2.0, you can specify none to simply
start the orderer without bootstrapping.

• Consensus: determines the key/value pairs allowed by the consensus plugin (Raft ordering services are sup-
ported and recommended) for the Write Ahead Logs (WALDir) and Snapshots (SnapDir).

When you’re comfortable with how your ordering node has been configured, how your volumes are mounted, and
your backend configuration, you can run the command to launch the ordering node (this command will depend on
your backend configuration).

8.6 Next steps

Blockchain networks are all about connection, so once you’ve deployed nodes, you’ll obviously want to connect them
to other nodes! If you have a peer organization and a peer, you’ll want to join your organization to a consortium and
join or Channels. If you have an ordering node, you will want to add peer organizations to your consortium. You’ll
also want to learn how to develop chaincode, which you can learn about in the topics The scenario and Chaincode for
Developers.

Part of the process of connecting nodes and creating channels will involve modifying policies to fit the use cases of
business networks. For more information about policies, check out Policies.

One of the common tasks in a Fabric will be the editing of existing channels. For a tutorial about that process, check
out Updating a channel configuration. One popular channel update is to add an org to an existing channel. For a
tutorial about that specific process, check out Adding an Org to a Channel. For information about upgrading nodes
after they have been deployed, check out Upgrading your components.

8.6. Next steps 345

hyperledger-fabricdocs Documentation, Release master

346 Chapter 8. Deploying a production network

CHAPTER 9

Operations Guides

9.1 Setting up an ordering node

In this topic, we’ll describe the process for bootstrapping an ordering node. If you want more information about
the different ordering service implementations and their relative strengths and weaknesses, check out our conceptual
documentation about ordering.

Broadly, this topic will involve a few interrelated steps:

1. Creating the organization your ordering node belongs to (if you have not already done so)

2. Configuring your node (using orderer.yaml)

3. Creating the genesis block for the orderer system channel

4. Bootstrapping the orderer

Note: this topic assumes you have already pulled the Hyperledger Fabric orderer images from docker hub.

9.1.1 Create an organization definition

Like peers, all orderers must belong to an organization that must be created before the orderer itself is created. This
organization has a definition encapsulated by a Membership Service Provider (MSP) that is created by a Certificate
Authority (CA) dedicated to creating the certificates and MSP for the organization.

For information about creating a CA and using it to create users and an MSP, check out the Fabric CA user’s guide.

9.1.2 Configure your node

The configuration of the orderer is handled through a yaml file called orderer.yaml. The FABRIC_CFG_PATH
environment variable is used to point to an orderer.yaml file you’ve configured, which will extract a series of files
and certificates on your file system.

To look at a sample orderer.yaml, check out the fabric-samples github repo, which should be read and
studied closely before proceeding. Note in particular a few values:

347

./orderer/ordering_service.html
./orderer/ordering_service.html
./membership/membership.html
https://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html
https://github.com/hyperledger/fabric/blob/release-2.0/sampleconfig/orderer.yaml

hyperledger-fabricdocs Documentation, Release master

• LocalMSPID — this is the name of the MSP, generated by your CA, of your orderer organization. This is
where your orderer organization admins will be listed.

• LocalMSPDir — the place in your file system where the local MSP is located.

• # TLS enabled, Enabled: false. This is where you specify whether you want to enable TLS. If you
set this value to true, you will have to specify the locations of the relevant TLS certificates. Note that this is
mandatory for Raft nodes.

• BootstrapFile — this is the name of the genesis block you will generate for this ordering service.

• BootstrapMethod — the method by which the bootstrap block is given. For now, this can only be file, in
which the file in the BootstrapFile is specified.

If you are deploying this node as part of a cluster (for example, as part of a cluster of Raft nodes), make note of the
Cluster and Consensus sections.

If you plan to deploy a Kafka based ordering service, you will need to complete the Kafka section.

9.1.3 Generate the genesis block of the orderer

The first block of a newly created channel is known as a “genesis block”. If this genesis block is being created as part
of the creation of a new network (in other words, if the orderer being created will not be joined to an existing cluster
of orderers), then this genesis block will be the first block of the “orderer system channel” (also known as the “ordering
system channel”), a special channel managed by the orderer admins which includes a list of the organizations permitted
to create channels. The genesis block of the orderer system channel is special: it must be created and included in the
configuration of the node before the node can be started.

To learn how to create a genesis block using the configtxgen tool, check out Channel Configuration (configtx).

9.1.4 Bootstrap the ordering node

Once you have built the images, created the MSP, configured your orderer.yaml, and created the genesis block,
you’re ready to start your orderer using a command that will look similar to:

docker-compose -f docker-compose-cli.yaml up -d --no-deps orderer.example.com

With the address of your orderer replacing orderer.example.com.

9.2 Membership Service Providers (MSP)

The document serves to provide details on the setup and best practices for MSPs.

Membership Service Provider (MSP) is a Hyperledger Fabric component that offers an abstraction of membership
operations.

In particular, an MSP abstracts away all cryptographic mechanisms and protocols behind issuing certificates, validating
certificates, and user authentication. An MSP may define its own notion of identity, and the rules by which those
identities are governed (identity validation) and authenticated (signature generation and verification).

A Hyperledger Fabric blockchain network can be governed by one or more MSPs. This provides modularity of
membership operations, and interoperability across different membership standards and architectures.

In the rest of this document we elaborate on the setup of the MSP implementation supported by Hyperledger Fabric,
and discuss best practices concerning its use.

348 Chapter 9. Operations Guides

enable_tls.html
configtx.html

hyperledger-fabricdocs Documentation, Release master

9.2.1 MSP Configuration

To setup an instance of the MSP, its configuration needs to be specified locally at each peer and orderer (to enable peer
and orderer signing), and on the channels to enable peer, orderer, client identity validation, and respective signature
verification (authentication) by and for all channel members.

Firstly, for each MSP a name needs to be specified in order to reference that MSP in the network (e.g. msp1, org2,
and org3.divA). This is the name under which membership rules of an MSP representing a consortium, organization
or organization division is to be referenced in a channel. This is also referred to as the MSP Identifier or MSP ID. MSP
Identifiers are required to be unique per MSP instance. For example, shall two MSP instances with the same identifier
be detected at the system channel genesis, orderer setup will fail.

In the case of the default MSP implementation, a set of parameters need to be specified to allow for identity (certificate)
validation and signature verification. These parameters are deduced by RFC5280, and include:

• A list of self-signed (X.509) CA certificates to constitute the root of trust

• A list of X.509 certificates to represent intermediate CAs this provider considers for certificate validation; these
certificates ought to be certified by exactly one of the certificates in the root of trust; intermediate CAs are
optional parameters

• A list of X.509 certificates representing the administrators of this MSP with a verifiable certificate path to exactly
one of the CA certificates of the root of trust; owners of these certificates are authorized to request changes to
this MSP configuration (e.g. root CAs, intermediate CAs)

• A list of Organizational Units that valid members of this MSP should include in their X.509 certificate; this is
an optional configuration parameter, used when, e.g., multiple organizations leverage the same root of trust, and
intermediate CAs, and have reserved an OU field for their members

• A list of certificate revocation lists (CRLs) each corresponding to exactly one of the listed (intermediate or root)
MSP Certificate Authorities; this is an optional parameter

• A list of self-signed (X.509) certificates to constitute the TLS root of trust for TLS certificates.

• A list of X.509 certificates to represent intermediate TLS CAs this provider considers; these certificates ought to
be certified by exactly one of the certificates in the TLS root of trust; intermediate CAs are optional parameters.

Valid identities for this MSP instance are required to satisfy the following conditions:

• They are in the form of X.509 certificates with a verifiable certificate path to exactly one of the root of trust
certificates;

• They are not included in any CRL;

• And they list one or more of the Organizational Units of the MSP configuration in the OU field of their X.509
certificate structure.

For more information on the validity of identities in the current MSP implementation, we refer the reader to msp-
identity-validity-rules.

In addition to verification related parameters, for the MSP to enable the node on which it is instantiated to sign or
authenticate, one needs to specify:

• The signing key used for signing by the node (currently only ECDSA keys are supported), and

• The node’s X.509 certificate, that is a valid identity under the verification parameters of this MSP.

It is important to note that MSP identities never expire; they can only be revoked by adding them to the appropriate
CRLs. Additionally, there is currently no support for enforcing revocation of TLS certificates.

9.2. Membership Service Providers (MSP) 349

http://www.ietf.org/rfc/rfc5280.txt

hyperledger-fabricdocs Documentation, Release master

9.2.2 How to generate MSP certificates and their signing keys?

Openssl can be used to generate X.509 certificates and keys. Please note that Hyperledger Fabric does not support
RSA key and certificates.

Alternatively, the cryptogen tool can be used as described in Getting Started.

Hyperledger Fabric CA can also be used to generate the keys and certificates needed to configure an MSP.

9.2.3 MSP setup on the peer & orderer side

To set up a local MSP (for either a peer or an orderer), the administrator should create a folder (e.g. $MY_PATH/
mspconfig) that contains six subfolders and a file:

1. a folder admincerts to include PEM files each corresponding to an administrator certificate

2. a folder cacerts to include PEM files each corresponding to a root CA’s certificate

3. (optional) a folder intermediatecerts to include PEM files each corresponding to an intermediate CA’s
certificate

4. (optional) a file config.yaml to configure the supported Organizational Units and identity classifications
(see respective sections below).

5. (optional) a folder crls to include the considered CRLs

6. a folder keystore to include a PEM file with the node’s signing key; we emphasise that currently RSA keys
are not supported

7. a folder signcerts to include a PEM file with the node’s X.509 certificate

8. (optional) a folder tlscacerts to include PEM files each corresponding to a TLS root CA’s certificate

9. (optional) a folder tlsintermediatecerts to include PEM files each corresponding to an intermediate
TLS CA’s certificate

In the configuration file of the node (core.yaml file for the peer, and orderer.yaml for the orderer), one needs to specify
the path to the mspconfig folder, and the MSP Identifier of the node’s MSP. The path to the mspconfig folder is
expected to be relative to FABRIC_CFG_PATH and is provided as the value of parameter mspConfigPath for
the peer, and LocalMSPDir for the orderer. The identifier of the node’s MSP is provided as a value of parameter
localMspId for the peer and LocalMSPID for the orderer. These variables can be overridden via the environment
using the CORE prefix for peer (e.g. CORE_PEER_LOCALMSPID) and the ORDERER prefix for the orderer (e.g.
ORDERER_GENERAL_LOCALMSPID). Notice that for the orderer setup, one needs to generate, and provide to the
orderer the genesis block of the system channel. The MSP configuration needs of this block are detailed in the next
section.

Reconfiguration of a “local” MSP is only possible manually, and requires that the peer or orderer process is restarted.
In subsequent releases we aim to offer online/dynamic reconfiguration (i.e. without requiring to stop the node by using
a node managed system chaincode).

9.2.4 Organizational Units

In order to configure the list of Organizational Units that valid members of this MSP should include in their X.509
certificate, the config.yaml file needs to specify the organizational unit (OU, for short) identifiers. You can find
an example below:

350 Chapter 9. Operations Guides

https://www.openssl.org/
http://hyperledger-fabric-ca.readthedocs.io/en/latest/

hyperledger-fabricdocs Documentation, Release master

OrganizationalUnitIdentifiers:
- Certificate: "cacerts/cacert1.pem"
OrganizationalUnitIdentifier: "commercial"

- Certificate: "cacerts/cacert2.pem"
OrganizationalUnitIdentifier: "administrators"

The above example declares two organizational unit identifiers: commercial and administrators. An MSP identity
is valid if it carries at least one of these organizational unit identifiers. The Certificate field refers to the CA
or intermediate CA certificate path under which identities, having that specific OU, should be validated. The path is
relative to the MSP root folder and cannot be empty.

9.2.5 Identity Classification

The default MSP implementation allows organizations to further classify identities into clients, admins, peers, and
orderers based on the OUs of their x509 certificates.

• An identity should be classified as a client if it transacts on the network.

• An identity should be classified as an admin if it handles administrative tasks such as joining a peer to a channel
or signing a channel configuration update transaction.

• An identity should be classified as a peer if it endorses or commits transactions.

• An identity should be classified as an orderer if belongs to an ordering node.

In order to define the clients, admins, peers, and orderers of a given MSP, the config.yaml file needs to be set
appropriately. You can find an example NodeOU section of the config.yaml file below:

NodeOUs:
Enable: true
For each identity classification that you would like to utilize, specify
an OU identifier.
You can optionally configure that the OU identifier must be issued by a specific

→˓CA
or intermediate certificate from your organization. However, it is typical to NOT
configure a specific Certificate. By not configuring a specific Certificate, you

→˓will be
able to add other CA or intermediate certs later, without having to reissue all

→˓credentials.
For this reason, the sample below comments out the Certificate field.
ClientOUIdentifier:
Certificate: "cacerts/cacert.pem"
OrganizationalUnitIdentifier: "client"

AdminOUIdentifier:
Certificate: "cacerts/cacert.pem"
OrganizationalUnitIdentifier: "admin"

PeerOUIdentifier:
Certificate: "cacerts/cacert.pem"
OrganizationalUnitIdentifier: "peer"

OrdererOUIdentifier:
Certificate: "cacerts/cacert.pem"
OrganizationalUnitIdentifier: "orderer"

Identity classification is enabled when NodeOUs.Enable is set to true. Then the client (admin, peer, orderer) orga-
nizational unit identifier is defined by setting the properties of the NodeOUs.ClientOUIdentifier (NodeOUs.
AdminOUIdentifier, NodeOUs.PeerOUIdentifier, NodeOUs.OrdererOUIdentifier) key:

9.2. Membership Service Providers (MSP) 351

hyperledger-fabricdocs Documentation, Release master

1. OrganizationalUnitIdentifier: Is the OU value that the x509 certificate needs to contain to be con-
sidered a client (admin, peer, orderer respectively). If this field is empty, then the classification is not applied.

2. Certificate: (Optional) Set this to the path of the CA or intermediate CA certificate under which client
(peer, admin or orderer) identities should be validated. The field is relative to the MSP root folder. Only a single
Certificate can be specified. If you do not set this field, then the identities are validated under any CA defined
in the organization’s MSP configuration, which could be desirable in the future if you need to add other CA or
intermediate certificates.

Notice that if the NodeOUs.ClientOUIdentifier section (NodeOUs.AdminOUIdentifier, NodeOUs.
PeerOUIdentifier, NodeOUs.OrdererOUIdentifier) is missing, then the classification is not applied. If
NodeOUs.Enable is set to true and no classification keys are defined, then identity classification is assumed to be
disabled.

Identities can use organizational units to be classified as either a client, an admin, a peer, or an orderer. The four
classifications are mutually exclusive. The 1.1 channel capability needs to be enabled before identities can be classified
as clients or peers. The 1.4.3 channel capability needs to be enabled for identities to be classified as an admin or orderer.

Classification allows identities to be classified as admins (and conduct administrator actions) without the certificate
being stored in the admincerts folder of the MSP. Instead, the admincerts folder can remain empty and admin-
istrators can be created by enrolling identities with the admin OU. Certificates in the admincerts folder will still
grant the role of administrator to their bearer, provided that they possess the client or admin OU.

9.2.6 Channel MSP setup

At the genesis of the system, verification parameters of all the MSPs that appear in the network need to be specified,
and included in the system channel’s genesis block. Recall that MSP verification parameters consist of the MSP
identifier, the root of trust certificates, intermediate CA and admin certificates, as well as OU specifications and CRLs.
The system genesis block is provided to the orderers at their setup phase, and allows them to authenticate channel
creation requests. Orderers would reject the system genesis block, if the latter includes two MSPs with the same
identifier, and consequently the bootstrapping of the network would fail.

For application channels, the verification components of only the MSPs that govern a channel need to reside in the
channel’s genesis block. We emphasize that it is the responsibility of the application to ensure that correct MSP
configuration information is included in the genesis blocks (or the most recent configuration block) of a channel prior
to instructing one or more of their peers to join the channel.

When bootstrapping a channel with the help of the configtxgen tool, one can configure the channel MSPs by including
the verification parameters of MSP in the mspconfig folder, and setting that path in the relevant section in configtx.
yaml.

Reconfiguration of an MSP on the channel, including announcements of the certificate revocation lists associated to
the CAs of that MSP is achieved through the creation of a config_update object by the owner of one of the
administrator certificates of the MSP. The client application managed by the admin would then announce this update
to the channels in which this MSP appears.

9.2.7 Best Practices

In this section we elaborate on best practices for MSP configuration in commonly met scenarios.

1) Mapping between organizations/corporations and MSPs

We recommend that there is a one-to-one mapping between organizations and MSPs. If a different type of mapping is
chosen, the following needs to be to considered:

• One organization employing various MSPs. This corresponds to the case of an organization including a
variety of divisions each represented by its MSP, either for management independence reasons, or for privacy

352 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

reasons. In this case a peer can only be owned by a single MSP, and will not recognize peers with identities from
other MSPs as peers of the same organization. The implication of this is that peers may share through gossip
organization-scoped data with a set of peers that are members of the same subdivision, and NOT with the full
set of providers constituting the actual organization.

• Multiple organizations using a single MSP. This corresponds to a case of a consortium of organizations that are
governed by similar membership architecture. One needs to know here that peers would propagate organization-
scoped messages to the peers that have an identity under the same MSP regardless of whether they belong to
the same actual organization. This is a limitation of the granularity of MSP definition, and/or of the peer’s
configuration.

2) One organization has different divisions (say organizational units), to which it wants to grant access to
different channels.

Two ways to handle this:

• Define one MSP to accommodate membership for all organization’s members. Configuration of that MSP
would consist of a list of root CAs, intermediate CAs and admin certificates; and membership identities would
include the organizational unit (OU) a member belongs to. Policies can then be defined to capture members of
a specific role (should be one of: peer, admin, client, orderer, member), and these policies may constitute the
read/write policies of a channel or endorsement policies of a chaincode. Specifying custom OUs in the profile
section of configtx.yaml is currently not configured. A limitation of this approach is that gossip peers
would consider peers with membership identities under their local MSP as members of the same organization,
and would consequently gossip with them organization-scoped data (e.g. their status).

• Defining one MSP to represent each division. This would involve specifying for each division, a set of
certificates for root CAs, intermediate CAs, and admin Certs, such that there is no overlapping certification path
across MSPs. This would mean that, for example, a different intermediate CA per subdivision is employed.
Here the disadvantage is the management of more than one MSPs instead of one, but this circumvents the
issue present in the previous approach. One could also define one MSP for each division by leveraging an OU
extension of the MSP configuration.

3) Separating clients from peers of the same organization.

In many cases it is required that the “type” of an identity is retrievable from the identity itself (e.g. it may be needed
that endorsements are guaranteed to have derived by peers, and not clients or nodes acting solely as orderers).

There is limited support for such requirements.

One way to allow for this separation is to create a separate intermediate CA for each node type - one for clients and
one for peers/orderers; and configure two different MSPs - one for clients and one for peers/orderers. Channels this
organization should be accessing would need to include both MSPs, while endorsement policies will leverage only the
MSP that refers to the peers. This would ultimately result in the organization being mapped to two MSP instances,
and would have certain consequences on the way peers and clients interact.

Gossip would not be drastically impacted as all peers of the same organization would still belong to one MSP. Peers
can restrict the execution of certain system chaincodes to local MSP based policies. For example, peers would only
execute “joinChannel” request if the request is signed by the admin of their local MSP who can only be a client (end-
user should be sitting at the origin of that request). We can go around this inconsistency if we accept that the only
clients to be members of a peer/orderer MSP would be the administrators of that MSP.

Another point to be considered with this approach is that peers authorize event registration requests based on mem-
bership of request originator within their local MSP. Clearly, since the originator of the request is a client, the request
originator is always deemed to belong to a different MSP than the requested peer and the peer would reject the request.

4) Admin and CA certificates.

It is important to set MSP admin certificates to be different than any of the certificates considered by the MSP for
root of trust, or intermediate CAs. This is a common (security) practice to separate the duties of management
of membership components from the issuing of new certificates, and/or validation of existing ones.

9.2. Membership Service Providers (MSP) 353

hyperledger-fabricdocs Documentation, Release master

5) Blocking an intermediate CA.

As mentioned in previous sections, reconfiguration of an MSP is achieved by reconfiguration mechanisms (manual
reconfiguration for the local MSP instances, and via properly constructed config_update messages for MSP
instances of a channel). Clearly, there are two ways to ensure an intermediate CA considered in an MSP is no longer
considered for that MSP’s identity validation:

1. Reconfigure the MSP to no longer include the certificate of that intermediate CA in the list of trusted intermediate
CA certs. For the locally configured MSP, this would mean that the certificate of this CA is removed from the
intermediatecerts folder.

2. Reconfigure the MSP to include a CRL produced by the root of trust which denounces the mentioned interme-
diate CA’s certificate.

In the current MSP implementation we only support method (1) as it is simpler and does not require blocking the no
longer considered intermediate CA.

6) CAs and TLS CAs

MSP identities’ root CAs and MSP TLS certificates’ root CAs (and relative intermediate CAs) need to be declared in
different folders. This is to avoid confusion between different classes of certificates. It is not forbidden to reuse the
same CAs for both MSP identities and TLS certificates but best practices suggest to avoid this in production.

9.3 Using a Hardware Security Module (HSM)

The cryptographic operations performed by Fabric nodes can be delegated to a Hardware Security Module (HSM). An
HSM protects your private keys and handles cryptographic operations, allowing your peers and orderer nodes to sign
and endorse transactions without exposing their private keys. If you require compliance with government standards
such as FIPS 140-2, there are multiple certified HSMs from which to choose.

Fabric currently leverages the PKCS11 standard to communicate with an HSM.

9.3.1 Configuring an HSM

To use an HSM with your Fabric node, you need to update the bccsp (Crypto Service Provider) section of the node
configuration file such as core.yaml or orderer.yaml. In the bccsp section, you need to select PKCS11 as the provider
and enter the path to the PKCS11 library that you would like to use. You also need to provide the Label and PIN
of the token that you created for your cryptographic operations. You can use one token to generate and store multiple
keys.

The prebuilt Hyperledger Fabric Docker images are not enabled to use PKCS11. If you are deploying Fabric using
docker, you need to build your own images and enable PKCS11 using the following command:

make docker GO_TAGS=pkcs11

You also need to ensure that the PKCS11 library is available to be used by the node by installing it or mounting it
inside the container.

Example

The following example demonstrates how to configure a Fabric node to use an HSM.

First, you will need to install an implementation of the PKCS11 interface. This example uses the softhsm open
source implementation. After downloading and configuring softhsm, you will need to set the SOFTHSM2_CONF
environment variable to point to the softhsm2 configuration file.

354 Chapter 9. Operations Guides

https://github.com/opendnssec/SoftHSMv2

hyperledger-fabricdocs Documentation, Release master

You can then use softhsm to create the token that will handle the cryptographic operations of your Fabric node inside
an HSM slot. In this example, we create a token labelled “fabric” and set the pin to “71811222”. After you have
created the token, update the configuration file to use PKCS11 and your token as the crypto service provider. You can
find an example bccsp section below:

###
BCCSP (BlockChain Crypto Service Provider) section is used to select which
crypto library implementation to use
###
bccsp:

default: PKCS11
pkcs11:
Library: /etc/hyperledger/fabric/libsofthsm2.so
Pin: "71811222"
Label: fabric
hash: SHA2
security: 256
Immutable: false

By default, when private keys are generated using the HSM, the private key is mutable, meaning PKCS11 private key
attributes can be changed after the key is generated. Setting Immutable to truemeans that the private key attributes
cannot be altered after key generation. Before you configure immutability by setting Immutable: true, ensure
that PKCS11 object copy is supported by the HSM.

You can also use environment variables to override the relevant fields of the configuration file. If you are connect-
ing to softhsm2 using the Fabric CA server, you could set the following environment variables or directly set the
corresponding values in the CA server config file:

FABRIC_CA_SERVER_BCCSP_DEFAULT=PKCS11
FABRIC_CA_SERVER_BCCSP_PKCS11_LIBRARY=/etc/hyperledger/fabric/libsofthsm2.so
FABRIC_CA_SERVER_BCCSP_PKCS11_PIN=71811222
FABRIC_CA_SERVER_BCCSP_PKCS11_LABEL=fabric

If you are connecting to softhsm2 using the Fabric peer, you could set the following environment variables or directly
set the corresponding values in the peer config file:

CORE_PEER_BCCSP_DEFAULT=PKCS11
CORE_PEER_BCCSP_PKCS11_LIBRARY=/etc/hyperledger/fabric/libsofthsm2.so
CORE_PEER_BCCSP_PKCS11_PIN=71811222
CORE_PEER_BCCSP_PKCS11_LABEL=fabric

If you are connecting to softhsm2 using the Fabric orderer, you could set the following environment variables or
directly set the corresponding values in the orderer config file:

ORDERER_GENERAL_BCCSP_DEFAULT=PKCS11
ORDERER_GENERAL_BCCSP_PKCS11_LIBRARY=/etc/hyperledger/fabric/libsofthsm2.so
ORDERER_GENERAL_BCCSP_PKCS11_PIN=71811222
ORDERER_GENERAL_BCCSP_PKCS11_LABEL=fabric

If you are deploying your nodes using docker compose, after building your own images, you can update your docker
compose files to mount the softhsm library and configuration file inside the container using volumes. As an example,
you would add the following environment and volumes variables to your docker compose file:

environment:
- SOFTHSM2_CONF=/etc/hyperledger/fabric/config.file

volumes:

(continues on next page)

9.3. Using a Hardware Security Module (HSM) 355

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

- /home/softhsm/config.file:/etc/hyperledger/fabric/config.file
- /usr/local/Cellar/softhsm/2.1.0/lib/softhsm/libsofthsm2.so:/etc/hyperledger/

→˓fabric/libsofthsm2.so

9.3.2 Setting up a network using HSM

If you are deploying Fabric nodes using an HSM, your private keys need to be generated and stored inside the HSM
rather than inside the keystore folder of the node’s local MSP folder. The keystore folder of the MSP will
remain empty. Instead, the Fabric node will use the subject key identifier of the signing certificate in the signcerts
folder to retrieve the private key from inside the HSM. The process for creating the node MSP folder differs depending
on whether you are using a Fabric Certificate Authority (CA) your own CA.

Before you begin

Before configuring a Fabric node to use an HSM, you should have completed the following steps:

1. Created a partition on your HSM Server and recorded the Label and PIN of the partition.

2. Followed instructions in the documentation from your HSM provider to configure an HSM Client that commu-
nicates with your HSM server.

Using an HSM with a Fabric CA

You can set up a Fabric CA to use an HSM by making the same edits to the CA server configuration file as you would
make to a peer or ordering node. Because you can use the Fabric CA to generate keys inside an HSM, the process of
creating the local MSP folders is straightforward. Use the following steps:

1. Modify the bccsp section of the Fabric CA server configuration file and point to the Label and PIN that you
created for your HSM. When the Fabric CA server starts, the private key is generated and stored in the HSM. If
you are not concerned about exposing your CA signing certificate, you can skip this step and only configure an
HSM for your peer or ordering nodes, described in the next steps.

2. Use the Fabric CA client to register the peer or ordering node identities with your CA.

3. Before you deploy a peer or ordering node with HSM support, you need to enroll the node identity by storing
its private key in the HSM. Edit the bccsp section of the Fabric CA client config file or use the associated
environment variables to point to the HSM configuration for your peer or ordering node. In the Fabric CA
Client configuration file, replace the default SW configuration with the PKCS11 configuration and provide the
values for your own HSM:

bccsp:
default: PKCS11
pkcs11:
Library: /etc/hyperledger/fabric/libsofthsm2.so
Pin: "71811222"
Label: fabric
hash: SHA2
security: 256
Immutable: false

Then for each node, use the Fabric CA client to generate the peer or ordering node’s MSP folder by enrolling against the
node identity that you registered in step 2. Instead of storing the private key in the keystore folder of the associated
MSP, the enroll command uses the node’s HSM to generate and store the private key for the peer or ordering node.
The keystore folder remains empty.

356 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

1. To configure a peer or ordering node to use the HSM, similarly update the bccsp section of the peer or
orderer configuration file to use PKCS11 and provide the Label and PIN. Also, edit the value of the
mspConfigPath (for a peer node) or the LocalMSPDir (for an ordering node) to point to the MSP folder
that was generated in the previous step using the Fabric CA client. Now that the peer or ordering node is con-
figured to use HSM, when you start the node it will be able sign and endorse transactions with the private key
protected by the HSM.

Using an HSM with your own CA

If you are using your own Certificate Authority to deploy Fabric components, you can use an HSM using the following
steps:

1. Configure your CA to communicate with an HSM using PKCS11 and create a Label and PIN. Then use your
CA to generate the private key and signing certificate for each node, with the private key generated inside the
HSM.

2. Use your CA to build the peer or ordering node MSP folder. Place the signing certificate that you generated in
step 1 inside the signcerts folder. You can leave the keystore folder empty.

3. To configure a peer or ordering node to use the HSM, similarly update the bccsp section of the peer or orderer
configuration file to use PKCS11 andand provide the Label and PIN. Edit the value of the mspConfigPath
(for a peer node) or the LocalMSPDir (for an ordering node) to point to the MSP folder that was generated
in the previous step using the Fabric CA client. Now that the peer or ordering node is configured to use HSM,
when you start the node it will be able sign and endorse transactions with the private key protected by the HSM.

9.4 Channel Configuration (configtx)

Shared configuration for a Hyperledger Fabric blockchain network is stored in a collection configuration transactions,
one per channel. Each configuration transaction is usually referred to by the shorter name configtx.

Channel configuration has the following important properties:

1. Versioned: All elements of the configuration have an associated version which is advanced with every modifi-
cation. Further, every committed configuration receives a sequence number.

2. Permissioned: Each element of the configuration has an associated policy which governs whether or not modi-
fication to that element is permitted. Anyone with a copy of the previous configtx (and no additional info) may
verify the validity of a new config based on these policies.

3. Hierarchical: A root configuration group contains sub-groups, and each group of the hierarchy has associated
values and policies. These policies can take advantage of the hierarchy to derive policies at one level from
policies of lower levels.

9.4.1 Anatomy of a configuration

Configuration is stored as a transaction of type HeaderType_CONFIG in a block with no other transactions. These
blocks are referred to as Configuration Blocks, the first of which is referred to as the Genesis Block.

The proto structures for configuration are stored in fabric-protos/common/configtx.proto. The Enve-
lope of type HeaderType_CONFIG encodes a ConfigEnvelope message as the Payload data field. The
proto for ConfigEnvelope is defined as follows:

9.4. Channel Configuration (configtx) 357

hyperledger-fabricdocs Documentation, Release master

message ConfigEnvelope {
Config config = 1;
Envelope last_update = 2;

}

The last_update field is defined below in the Updates to configuration section, but is only necessary when
validating the configuration, not reading it. Instead, the currently committed configuration is stored in the config
field, containing a Config message.

message Config {
uint64 sequence = 1;
ConfigGroup channel_group = 2;

}

The sequence number is incremented by one for each committed configuration. The channel_group field is the
root group which contains the configuration. The ConfigGroup structure is recursively defined, and builds a tree of
groups, each of which contains values and policies. It is defined as follows:

message ConfigGroup {
uint64 version = 1;
map<string,ConfigGroup> groups = 2;
map<string,ConfigValue> values = 3;
map<string,ConfigPolicy> policies = 4;
string mod_policy = 5;

}

Because ConfigGroup is a recursive structure, it has hierarchical arrangement. The following example is expressed
for clarity in Go syntax.

// Assume the following groups are defined
var root, child1, child2, grandChild1, grandChild2, grandChild3 *ConfigGroup

// Set the following values
root.Groups["child1"] = child1
root.Groups["child2"] = child2
child1.Groups["grandChild1"] = grandChild1
child2.Groups["grandChild2"] = grandChild2
child2.Groups["grandChild3"] = grandChild3

// The resulting config structure of groups looks like:
// root:
// child1:
// grandChild1
// child2:
// grandChild2
// grandChild3

Each group defines a level in the config hierarchy, and each group has an associated set of values (indexed by string
key) and policies (also indexed by string key).

Values are defined by:

message ConfigValue {
uint64 version = 1;
bytes value = 2;
string mod_policy = 3;

}

358 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

Policies are defined by:

message ConfigPolicy {
uint64 version = 1;
Policy policy = 2;
string mod_policy = 3;

}

Note that Values, Policies, and Groups all have a version and a mod_policy. The version of an el-
ement is incremented each time that element is modified. The mod_policy is used to govern the required
signatures to modify that element. For Groups, modification is adding or removing elements to the Values,
Policies, or Groups maps (or changing the mod_policy). For Values and Policies, modification is chang-
ing the Value and Policy fields respectively (or changing the mod_policy). Each element’s mod_policy is
evaluated in the context of the current level of the config. Consider the following example mod policies de-
fined at Channel.Groups["Application"] (Here, we use the Go map reference syntax, so Channel.
Groups["Application"].Policies["policy1"] refers to the base Channel group’s Application
group’s Policies map’s policy1 policy.)

• policy1 maps to Channel.Groups["Application"].Policies["policy1"]

• Org1/policy2 maps to Channel.Groups["Application"].Groups["Org1"].
Policies["policy2"]

• /Channel/policy3 maps to Channel.Policies["policy3"]

Note that if a mod_policy references a policy which does not exist, the item cannot be modified.

9.4.2 Configuration updates

Configuration updates are submitted as an Envelope message of type HeaderType_CONFIG_UPDATE. The
Payload data of the transaction is a marshaled ConfigUpdateEnvelope. The ConfigUpdateEnvelope
is defined as follows:

message ConfigUpdateEnvelope {
bytes config_update = 1;
repeated ConfigSignature signatures = 2;

}

The signatures field contains the set of signatures which authorizes the config update. Its message definition is:

message ConfigSignature {
bytes signature_header = 1;
bytes signature = 2;

}

The signature_header is as defined for standard transactions, while the signature is over the concatenation of
the signature_header bytes and the config_update bytes from the ConfigUpdateEnvelope message.

The ConfigUpdateEnvelope config_update bytes are a marshaled ConfigUpdate message which is de-
fined as follows:

message ConfigUpdate {
string channel_id = 1;
ConfigGroup read_set = 2;
ConfigGroup write_set = 3;

}

9.4. Channel Configuration (configtx) 359

hyperledger-fabricdocs Documentation, Release master

The channel_id is the channel ID the update is bound for, this is necessary to scope the signatures which support
this reconfiguration.

The read_set specifies a subset of the existing configuration, specified sparsely where only the version field is
set and no other fields must be populated. The particular ConfigValue value or ConfigPolicy policy fields
should never be set in the read_set. The ConfigGroup may have a subset of its map fields populated, so as to
reference an element deeper in the config tree. For instance, to include the Application group in the read_set,
its parent (the Channel group) must also be included in the read set, but, the Channel group does not need to
populate all of the keys, such as the Orderer group key, or any of the values or policies keys.

The write_set specifies the pieces of configuration which are modified. Because of the hierarchical nature of the
configuration, a write to an element deep in the hierarchy must contain the higher level elements in its write_set
as well. However, for any element in the write_set which is also specified in the read_set at the same version,
the element should be specified sparsely, just as in the read_set.

For example, given the configuration:

Channel: (version 0)
Orderer (version 0)
Application (version 3)

Org1 (version 2)

To submit a configuration update which modifies Org1, the read_set would be:

Channel: (version 0)
Application: (version 3)

and the write_set would be

Channel: (version 0)
Application: (version 3)

Org1 (version 3)

When the CONFIG_UPDATE is received, the orderer computes the resulting CONFIG by doing the following:

1. Verifies the channel_id and read_set. All elements in the read_set must exist at the given versions.

2. Computes the update set by collecting all elements in the write_set which do not appear at the same version
in the read_set.

3. Verifies that each element in the update set increments the version number of the element update by exactly 1.

4. Verifies that the signature set attached to the ConfigUpdateEnvelope satisfies the mod_policy for each
element in the update set.

5. Computes a new complete version of the config by applying the update set to the current config.

6. Writes the new config into a ConfigEnvelopewhich includes the CONFIG_UPDATE as the last_update
field and the new config encoded in the config field, along with the incremented sequence value.

7. Writes the new ConfigEnvelope into a Envelope of type CONFIG, and ultimately writes this as the sole
transaction in a new configuration block.

When the peer (or any other receiver for Deliver) receives this configuration block, it should verify that the config
was appropriately validated by applying the last_update message to the current config and verifying that the
orderer-computed config field contains the correct new configuration.

360 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

9.4.3 Permitted configuration groups and values

Any valid configuration is a subset of the following configuration. Here we use the notation peer.<MSG> to define
a ConfigValue whose value field is a marshaled proto message of name <MSG> defined in fabric-protos/
peer/configuration.proto. The notations common.<MSG>, msp.<MSG>, and orderer.<MSG> cor-
respond similarly, but with their messages defined in fabric-protos/common/configuration.proto,
fabric-protos/msp/mspconfig.proto, and fabric-protos/orderer/configuration.proto
respectively.

Note, that the keys {{org_name}} and {{consortium_name}} represent arbitrary names, and indicate an
element which may be repeated with different names.

&ConfigGroup{
Groups: map<string, *ConfigGroup> {

"Application":&ConfigGroup{
Groups:map<String, *ConfigGroup> {

{{org_name}}:&ConfigGroup{
Values:map<string, *ConfigValue>{

"MSP":msp.MSPConfig,
"AnchorPeers":peer.AnchorPeers,

},
},

},
},
"Orderer":&ConfigGroup{

Groups:map<String, *ConfigGroup> {
{{org_name}}:&ConfigGroup{

Values:map<string, *ConfigValue>{
"MSP":msp.MSPConfig,

},
},

},

Values:map<string, *ConfigValue> {
"ConsensusType":orderer.ConsensusType,
"BatchSize":orderer.BatchSize,
"BatchTimeout":orderer.BatchTimeout,
"KafkaBrokers":orderer.KafkaBrokers,

},
},
"Consortiums":&ConfigGroup{

Groups:map<String, *ConfigGroup> {
{{consortium_name}}:&ConfigGroup{

Groups:map<string, *ConfigGroup> {
{{org_name}}:&ConfigGroup{

Values:map<string, *ConfigValue>{
"MSP":msp.MSPConfig,

},
},

},
Values:map<string, *ConfigValue> {

"ChannelCreationPolicy":common.Policy,
}

},
},

},
},

(continues on next page)

9.4. Channel Configuration (configtx) 361

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Values: map<string, *ConfigValue> {
"HashingAlgorithm":common.HashingAlgorithm,
"BlockHashingDataStructure":common.BlockDataHashingStructure,
"Consortium":common.Consortium,
"OrdererAddresses":common.OrdererAddresses,

},
}

9.4.4 Orderer system channel configuration

The ordering system channel needs to define ordering parameters, and consortiums for creating channels. There must
be exactly one ordering system channel for an ordering service, and it is the first channel to be created (or more
accurately bootstrapped). It is recommended never to define an Application section inside of the ordering system
channel genesis configuration, but may be done for testing. Note that any member with read access to the ordering
system channel may see all channel creations, so this channel’s access should be restricted.

The ordering parameters are defined as the following subset of config:

&ConfigGroup{
Groups: map<string, *ConfigGroup> {

"Orderer":&ConfigGroup{
Groups:map<String, *ConfigGroup> {

{{org_name}}:&ConfigGroup{
Values:map<string, *ConfigValue>{

"MSP":msp.MSPConfig,
},

},
},

Values:map<string, *ConfigValue> {
"ConsensusType":orderer.ConsensusType,
"BatchSize":orderer.BatchSize,
"BatchTimeout":orderer.BatchTimeout,
"KafkaBrokers":orderer.KafkaBrokers,

},
},

},

Each organization participating in ordering has a group element under the Orderer group. This group defines a
single parameter MSP which contains the cryptographic identity information for that organization. The Values of the
Orderer group determine how the ordering nodes function. They exist per channel, so orderer.BatchTimeout
for instance may be specified differently on one channel than another.

At startup, the orderer is faced with a filesystem which contains information for many channels. The orderer identifies
the system channel by identifying the channel with the consortiums group defined. The consortiums group has the
following structure.

&ConfigGroup{
Groups: map<string, *ConfigGroup> {

"Consortiums":&ConfigGroup{
Groups:map<String, *ConfigGroup> {

{{consortium_name}}:&ConfigGroup{
Groups:map<string, *ConfigGroup> {

{{org_name}}:&ConfigGroup{
Values:map<string, *ConfigValue>{

(continues on next page)

362 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"MSP":msp.MSPConfig,
},

},
},
Values:map<string, *ConfigValue> {

"ChannelCreationPolicy":common.Policy,
}

},
},

},
},

},

Note that each consortium defines a set of members, just like the organizational members for the ordering orgs. Each
consortium also defines a ChannelCreationPolicy. This is a policy which is applied to authorize channel
creation requests. Typically, this value will be set to an ImplicitMetaPolicy requiring that the new members of
the channel sign to authorize the channel creation. More details about channel creation follow later in this document.

9.4.5 Application channel configuration

Application configuration is for channels which are designed for application type transactions. It is defined as follows:

&ConfigGroup{
Groups: map<string, *ConfigGroup> {

"Application":&ConfigGroup{
Groups:map<String, *ConfigGroup> {

{{org_name}}:&ConfigGroup{
Values:map<string, *ConfigValue>{

"MSP":msp.MSPConfig,
"AnchorPeers":peer.AnchorPeers,

},
},

},
},

},
}

Just like with the Orderer section, each organization is encoded as a group. However, instead of only encoding
the MSP identity information, each org additionally encodes a list of AnchorPeers. This list allows the peers of
different organizations to contact each other for peer gossip networking.

The application channel encodes a copy of the orderer orgs and consensus options to allow for deterministic updating of
these parameters, so the same Orderer section from the orderer system channel configuration is included. However
from an application perspective this may be largely ignored.

9.4.6 Channel creation

When the orderer receives a CONFIG_UPDATE for a channel which does not exist, the orderer assumes that this must
be a channel creation request and performs the following.

1. The orderer identifies the consortium which the channel creation request is to be performed for. It does this by
looking at the Consortium value of the top level group.

2. The orderer verifies that the organizations included in the Application group are a subset of the organizations
included in the corresponding consortium and that the ApplicationGroup is set to version 1.

9.4. Channel Configuration (configtx) 363

hyperledger-fabricdocs Documentation, Release master

3. The orderer verifies that if the consortium has members, that the new channel also has application members
(creation consortiums and channels with no members is useful for testing only).

4. The orderer creates a template configuration by taking the Orderer group from the ordering system channel,
and creating an Application group with the newly specified members and specifying its mod_policy to
be the ChannelCreationPolicy as specified in the consortium config. Note that the policy is evaluated in
the context of the new configuration, so a policy requiring ALL members, would require signatures from all the
new channel members, not all the members of the consortium.

5. The orderer then applies the CONFIG_UPDATE as an update to this template configuration. Because the
CONFIG_UPDATE applies modifications to the Application group (its version is 1), the config code
validates these updates against the ChannelCreationPolicy. If the channel creation contains any other
modifications, such as to an individual org’s anchor peers, the corresponding mod policy for the element will be
invoked.

6. The new CONFIG transaction with the new channel config is wrapped and sent for ordering on the ordering
system channel. After ordering, the channel is created.

9.5 Endorsement policies

Every chaincode has an endorsement policy which specifies the set of peers on a channel that must execute chaincode
and endorse the execution results in order for the transaction to be considered valid. These endorsement policies define
the organizations (through their peers) who must “endorse” (i.e., approve of) the execution of a proposal.

Note: Recall that state, represented by key-value pairs, is separate from blockchain data. For more on this, check out
our Ledger documentation.

As part of the transaction validation step performed by the peers, each validating peer checks to make sure that the
transaction contains the appropriate number of endorsements and that they are from the expected sources (both of
these are specified in the endorsement policy). The endorsements are also checked to make sure they’re valid (i.e., that
they are valid signatures from valid certificates).

9.5.1 Multiple ways to require endorsement

By default, endorsement policies are specified in the chaincode definition, which is agreed to by channel members and
then committed to a channel (that is, one endorsement policy covers all of the state associated with a chaincode).

For private data collections, you can also specify an endorsement policy at the private data collection level, which
would override the chaincode level endorsement policy for any keys in the private data collection, thereby further
restricting which organizations can write to a private data collection.

Finally, there are cases where it may be necessary for a particular public channel state or private data collection state
(a particular key-value pair, in other words) to have a different endorsement policy. This state-based endorsement
allows the chaincode-level or collection-level endorsement policies to be overridden by a different policy for the
specified keys.

To illustrate the circumstances in which the various types of endorsement policies might be used, consider a channel
on which cars are being exchanged. The “creation” — also known as “issuance” – of a car as an asset that can be
traded (putting the key-value pair that represents it into the world state, in other words) would have to satisfy the
chaincode-level endorsement policy. To see how to set a chaincode-level endorsement policy, check out the section
below.

If the key representing the car requires a specific endorsement policy, it can be defined either when the car is created or
afterwards. There are a number of reasons why it might be necessary or preferable to set a state-specific endorsement

364 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

policy. The car might have historical importance or value that makes it necessary to have the endorsement of a licensed
appraiser. Also, the owner of the car (if they’re a member of the channel) might also want to ensure that their peer
signs off on a transaction. In both cases, an endorsement policy is required for a particular asset that is different
from the default endorsement policies for the other assets associated with that chaincode.

We’ll show you how to define a state-based endorsement policy in a subsequent section. But first, let’s see how we set
a chaincode-level endorsement policy.

9.5.2 Setting chaincode-level endorsement policies

Chaincode-level endorsement policies are agreed to by channel members when they approve a chaincode definition
for their organization. A sufficient number of channel members need to approve a chaincode definition to meet the
Channel/Application/LifecycleEndorsement policy, which by default is set to a majority of channel
members, before the definition can be committed to the channel. Once the definition has been committed, the chain-
code is ready to use. Any invoke of the chaincode that writes data to the ledger will need to be validated by enough
channel members to meet the endorsement policy.

You can specify an endorsement policy for a chaincode using the Fabric SDKs. For an example, visit the How to
install and start your chaincode in the Node.js SDK documentation. You can also create an endorsement policy
from your CLI when you approve and commit a chaincode definition with the Fabric peer binaries by using the
--signature-policy flag.

Note: Don’t worry about the policy syntax ('Org1.member', et all) right now. We’ll talk more about the syntax
in the next section.

For example:

peer lifecycle chaincode approveformyorg --channelID mychannel --signature-policy
→˓"AND('Org1.member', 'Org2.member')" --name mycc --version 1.0 --package-id mycc_
→˓1:3a8c52d70c36313cfebbaf09d8616e7a6318ababa01c7cbe40603c373bcfe173 --sequence 1 --
→˓tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem --waitForEvent

The above command approves the chaincode definition of mycc with the policy AND('Org1.member', 'Org2.
member') which would require that a member of both Org1 and Org2 sign the transaction. After a sufficient number
of channel members approve a chaincode definition for mycc, the definition and endorsement policy can be committed
to the channel using the command below:

peer lifecycle chaincode commit -o orderer.example.com:7050 --channelID mychannel --
→˓signature-policy "AND('Org1.member', 'Org2.member')" --name mycc --version 1.0 --
→˓sequence 1 --init-required --tls --cafile /opt/gopath/src/github.com/hyperledger/
→˓fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/
→˓msp/tlscacerts/tlsca.example.com-cert.pem --waitForEvent --peerAddresses peer0.org1.
→˓example.com:7051 --tlsRootCertFiles /opt/gopath/src/github.com/hyperledger/fabric/
→˓peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.
→˓crt --peerAddresses peer0.org2.example.com:9051 --tlsRootCertFiles /opt/gopath/src/
→˓github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/
→˓peer0.org2.example.com/tls/ca.crt

Notice that, if the identity classification is enabled (see Membership Service Providers (MSP)), one can use the PEER
role to restrict endorsement to only peers.

For example:

9.5. Endorsement policies 365

https://hyperledger.github.io/fabric-sdk-node/master/tutorial-chaincode-lifecycle.html
https://hyperledger.github.io/fabric-sdk-node/master/tutorial-chaincode-lifecycle.html

hyperledger-fabricdocs Documentation, Release master

peer lifecycle chaincode approveformyorg --channelID mychannel --signature-policy
→˓"AND('Org1.peer', 'Org2.peer')" --name mycc --version 1.0 --package-id mycc_
→˓1:3a8c52d70c36313cfebbaf09d8616e7a6318ababa01c7cbe40603c373bcfe173 --sequence 1 --
→˓tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem --waitForEvent

In addition to the specifying an endorsement policy from the CLI or SDK, a chaincode can also use policies in the
channel configuration as endorsement policies. You can use the --channel-config-policy flag to select a
channel policy with format used by the channel configuration and by ACLs.

For example:

peer lifecycle chaincode approveformyorg --channelID mychannel --channel-config-
→˓policy Channel/Application/Admins --name mycc --version 1.0 --package-id mycc_
→˓1:3a8c52d70c36313cfebbaf09d8616e7a6318ababa01c7cbe40603c373bcfe173 --sequence 1 --
→˓tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem --waitForEvent

If you do not specify a policy, the chaincode definition will use the Channel/Application/Endorsement
policy by default, which requires that a transaction be validated by a majority of channel members. This policy depends
on the membership of the channel, so it will be updated automatically when organizations are added or removed from a
channel. One advantage of using channel policies is that they can be written to be updated automatically with channel
membership.

If you specify an endorsement policy using the --signature-policy flag or the SDK, you will need to update
the policy when organizations join or leave the channel. A new organization added to the channel after the chaincode
has been defined will be able to query a chaincode (provided the query has appropriate authorization as defined by
channel policies and any application level checks enforced by the chaincode) but will not be able to execute or endorse
the chaincode. Only organizations listed in the endorsement policy syntax will be able sign transactions.

Endorsement policy syntax

As you can see above, policies are expressed in terms of principals (“principals” are identities matched to a role).
Principals are described as 'MSP.ROLE', where MSP represents the required MSP ID and ROLE represents one of
the four accepted roles: member, admin, client, and peer.

Here are a few examples of valid principals:

• 'Org0.admin': any administrator of the Org0 MSP

• 'Org1.member': any member of the Org1 MSP

• 'Org1.client': any client of the Org1 MSP

• 'Org1.peer': any peer of the Org1 MSP

The syntax of the language is:

EXPR(E[, E...])

Where EXPR is either AND, OR, or OutOf, and E is either a principal (with the syntax described above) or another
nested call to EXPR.

For example:

• AND('Org1.member', 'Org2.member', 'Org3.member') requests one signature from each
of the three principals.

366 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

• OR('Org1.member', 'Org2.member') requests one signature from either one of the two princi-
pals.

• OR('Org1.member', AND('Org2.member', 'Org3.member')) requests either one signa-
ture from a member of the Org1MSP or one signature from a member of the Org2MSP and one signature
from a member of the Org3 MSP.

• OutOf(1, 'Org1.member', 'Org2.member'), which resolves to the same thing as
OR('Org1.member', 'Org2.member').

• Similarly, OutOf(2, 'Org1.member', 'Org2.member') is equivalent to AND('Org1.
member', 'Org2.member'), and OutOf(2, 'Org1.member', 'Org2.member',
'Org3.member') is equivalent to OR(AND('Org1.member', 'Org2.member'),
AND('Org1.member', 'Org3.member'), AND('Org2.member', 'Org3.member')).

9.5.3 Setting collection-level endorsement policies

Similar to chaincode-level endorsement policies, when you approve and commit a chaincode definition, you can
also specify the chaincode’s private data collections and corresponding collection-level endorsement policies. If a
collection-level endorsement policy is set, transactions that write to a private data collection key will require that the
specified organization peers have endorsed the transaction.

You can use collection-level endorsement policies to restrict which organization peers can write to the private data
collection key namespace, for example to ensure that non-authorized organizations cannot write to a collection, and to
have confidence that any state in a private data collection has been endorsed by the required collection organization(s).

The collection-level endorsement policy may be less restrictive or more restrictive than the chaincode-level endorse-
ment policy and the collection’s private data distribution policy. For example a majority of organizations may be
required to endorse a chaincode transaction, but a specific organization may be required to endorse a transaction that
includes a key in a specific collection.

The syntax for collection-level endorsement policies exactly matches the syntax for chaincode-level endorsement poli-
cies — in the collection configuration you can specify an endorsementPolicywith either a signaturePolicy
or channelConfigPolicy. For more details see Private Data.

9.5.4 Setting key-level endorsement policies

Setting regular chaincode-level or collection-level endorsement policies is tied to the lifecycle of the corresponding
chaincode. They can only be set or modified when defining the chaincode on a channel.

In contrast, key-level endorsement policies can be set and modified in a more granular fashion from within a chaincode.
The modification is part of the read-write set of a regular transaction.

The shim API provides the following functions to set and retrieve an endorsement policy for/from a regular key.

Note: ep below stands for the “endorsement policy”, which can be expressed either by using the same syntax
described above or by using the convenience function described below. Either method will generate a binary version
of the endorsement policy that can be consumed by the basic shim API.

SetStateValidationParameter(key string, ep []byte) error
GetStateValidationParameter(key string) ([]byte, error)

For keys that are part of Private data in a collection the following functions apply:

9.5. Endorsement policies 367

hyperledger-fabricdocs Documentation, Release master

SetPrivateDataValidationParameter(collection, key string, ep []byte) error
GetPrivateDataValidationParameter(collection, key string) ([]byte, error)

To help set endorsement policies and marshal them into validation parameter byte arrays, the Go shim provides an
extension with convenience functions that allow the chaincode developer to deal with endorsement policies in terms
of the MSP identifiers of organizations, see KeyEndorsementPolicy:

type KeyEndorsementPolicy interface {
// Policy returns the endorsement policy as bytes
Policy() ([]byte, error)

// AddOrgs adds the specified orgs to the list of orgs that are required
// to endorse
AddOrgs(roleType RoleType, organizations ...string) error

// DelOrgs delete the specified channel orgs from the existing key-level
→˓endorsement

// policy for this KVS key. If any org is not present, an error will be returned.
DelOrgs(organizations ...string) error

// ListOrgs returns an array of channel orgs that are required to endorse changes
ListOrgs() ([]string)

}

For example, to set an endorsement policy for a key where two specific orgs are required to endorse the key change,
pass both org MSPIDs to AddOrgs(), and then call Policy() to construct the endorsement policy byte array that
can be passed to SetStateValidationParameter().

To add the shim extension to your chaincode as a dependency, see Managing external dependencies for chaincode
written in Go.

9.5.5 Validation

At commit time, setting a value of a key is no different from setting the endorsement policy of a key — both update
the state of the key and are validated based on the same rules.

Validation no validation parameter set validation parameter set
modify value check chaincode or collection ep check key-level ep
modify key-level ep check chaincode or collection ep check key-level ep

As we discussed above, if a key is modified and no key-level endorsement policy is present, the chaincode-level or
collection-level endorsement policy applies by default. This is also true when a key-level endorsement policy is set for
a key for the first time — the new key-level endorsement policy must first be endorsed according to the pre-existing
chaincode-level or collection-level endorsement policy.

If a key is modified and a key-level endorsement policy is present, the key-level endorsement policy overrides the
chaincode-level or collection-level endorsement policy. In practice, this means that the key-level endorsement pol-
icy can be either less restrictive or more restrictive than the chaincode-level or collection-level endorsement policies.
Because the chaincode-level or collection-level endorsement policy must be satisfied in order to set a key-level en-
dorsement policy for the first time, no trust assumptions have been violated.

If a key’s endorsement policy is removed (set to nil), the chaincode-level or collection-level endorsement policy be-
comes the default again.

If a transaction modifies multiple keys with different associated key-level endorsement policies, all of these policies
need to be satisfied in order for the transaction to be valid.

368 Chapter 9. Operations Guides

https://godoc.org/github.com/hyperledger/fabric-chaincode-go/pkg/statebased#KeyEndorsementPolicy

hyperledger-fabricdocs Documentation, Release master

9.6 Pluggable transaction endorsement and validation

9.6.1 Motivation

When a transaction is validated at time of commit, the peer performs various checks before applying the state changes
that come with the transaction itself:

• Validating the identities that signed the transaction.

• Verifying the signatures of the endorsers on the transaction.

• Ensuring the transaction satisfies the endorsement policies of the namespaces of the corresponding chaincodes.

There are use cases which demand custom transaction validation rules different from the default Fabric validation
rules, such as:

• UTXO (Unspent Transaction Output): When the validation takes into account whether the transaction doesn’t
double spend its inputs.

• Anonymous transactions: When the endorsement doesn’t contain the identity of the peer, but a signature and
a public key are shared that can’t be linked to the peer’s identity.

9.6.2 Pluggable endorsement and validation logic

Fabric allows for the implementation and deployment of custom endorsement and validation logic into the peer to
be associated with chaincode handling. This logic can be compiled into the peer or built with the peer and deployed
alongside it as a Go plugin.

Note: Go plugins have a number of practical restrictions that require them to be compiled and linked in the same
build environment as the peer. Differences in Go package versions, compiler versions, tags, and even GOPATH values
will result in runtime failures when loading or executing the plugin logic.

By default, A chaincode will use the built in endorsement and validation logic. However, users have the option of
selecting custom endorsement and validation plugins as part of the chaincode definition. An administrator can extend
the endorsement/validation logic available to the peer by customizing the peer’s local configuration.

9.6.3 Configuration

Each peer has a local configuration (core.yaml) that declares a mapping between the endorsement/validation logic
name and the implementation that is to be run.

The default logic are called ESCC (with the “E” standing for endorsement) and VSCC (validation), and they can be
found in the peer local configuration in the handlers section:

handlers:
endorsers:

escc:
name: DefaultEndorsement

validators:
vscc:

name: DefaultValidation

When the endorsement or validation implementation is compiled into the peer, the name property represents the
initialization function that is to be run in order to obtain the factory that creates instances of the endorsement/validation
logic.

9.6. Pluggable transaction endorsement and validation 369

https://golang.org/pkg/plugin/

hyperledger-fabricdocs Documentation, Release master

The function is an instance method of the HandlerLibrary construct under core/handlers/library/
library.go and in order for custom endorsement or validation logic to be added, this construct needs to be extended
with any additional methods.

If the custom code is built as a Go plugin, the library property must be provided and set to the location of the
shared library.

For example, if we have custom endorsement and validation logic which is implemented as a plugin, we would have
the following entries in the configuration in core.yaml:

handlers:
endorsers:

escc:
name: DefaultEndorsement

custom:
name: customEndorsement
library: /etc/hyperledger/fabric/plugins/customEndorsement.so

validators:
vscc:

name: DefaultValidation
custom:

name: customValidation
library: /etc/hyperledger/fabric/plugins/customValidation.so

And we’d have to place the .so plugin files in the peer’s local file system.

The name of the custom plugin needs to be referenced by the chaincode definition to be used by the chaincode. If you
are using the peer CLI to approve the chaincode definition, use the --escc and --vscc flag to select the name of
the custom endorsement or validation library. If you are using the Fabric SDK for Node.js, visit How to install and
start your chaincode. For more information, see Fabric chaincode lifecycle.

Note: Hereafter, custom endorsement or validation logic implementation is going to be referred to as “plugins”, even
if they are compiled into the peer.

9.6.4 Endorsement plugin implementation

To implement an endorsement plugin, one must implement the Plugin interface found in core/handlers/
endorsement/api/endorsement.go:

// Plugin endorses a proposal response
type Plugin interface {

// Endorse signs the given payload(ProposalResponsePayload bytes), and optionally
→˓mutates it.

// Returns:
// The Endorsement: A signature over the payload, and an identity that is used to

→˓verify the signature
// The payload that was given as input (could be modified within this function)
// Or error on failure
Endorse(payload []byte, sp *peer.SignedProposal) (*peer.Endorsement, []byte,

→˓error)

// Init injects dependencies into the instance of the Plugin
Init(dependencies ...Dependency) error

}

370 Chapter 9. Operations Guides

https://hyperledger.github.io/fabric-sdk-node/master/tutorial-chaincode-lifecycle.html
https://hyperledger.github.io/fabric-sdk-node/master/tutorial-chaincode-lifecycle.html

hyperledger-fabricdocs Documentation, Release master

An endorsement plugin instance of a given plugin type (identified either by the method name as an instance method
of the HandlerLibrary or by the plugin .so file path) is created for each channel by having the peer invoke the
New method in the PluginFactory interface which is also expected to be implemented by the plugin developer:

// PluginFactory creates a new instance of a Plugin
type PluginFactory interface {

New() Plugin
}

The Init method is expected to receive as input all the dependencies declared under core/handlers/
endorsement/api/, identified as embedding the Dependency interface.

After the creation of the Plugin instance, the Init method is invoked on it by the peer with the dependencies
passed as parameters.

Currently Fabric comes with the following dependencies for endorsement plugins:

• SigningIdentityFetcher: Returns an instance of SigningIdentity based on a given signed pro-
posal:

// SigningIdentity signs messages and serializes its public identity to bytes
type SigningIdentity interface {

// Serialize returns a byte representation of this identity which is used to
→˓verify

// messages signed by this SigningIdentity
Serialize() ([]byte, error)

// Sign signs the given payload and returns a signature
Sign([]byte) ([]byte, error)

}

• StateFetcher: Fetches a State object which interacts with the world state:

// State defines interaction with the world state
type State interface {

// GetPrivateDataMultipleKeys gets the values for the multiple private data items
→˓in a single call

GetPrivateDataMultipleKeys(namespace, collection string, keys []string) ([][]byte,
→˓ error)

// GetStateMultipleKeys gets the values for multiple keys in a single call
GetStateMultipleKeys(namespace string, keys []string) ([][]byte, error)

// GetTransientByTXID gets the values private data associated with the given txID
GetTransientByTXID(txID string) ([]*rwset.TxPvtReadWriteSet, error)

// Done releases resources occupied by the State
Done()

}

9.6.5 Validation plugin implementation

To implement a validation plugin, one must implement the Plugin interface found in core/handlers/
validation/api/validation.go:

// Plugin validates transactions
type Plugin interface {

(continues on next page)

9.6. Pluggable transaction endorsement and validation 371

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

// Validate returns nil if the action at the given position inside the transaction
// at the given position in the given block is valid, or an error if not.
Validate(block *common.Block, namespace string, txPosition int, actionPosition

→˓int, contextData ...ContextDatum) error

// Init injects dependencies into the instance of the Plugin
Init(dependencies ...Dependency) error

}

Each ContextDatum is additional runtime-derived metadata that is passed by the peer to the validation plugin.
Currently, the only ContextDatum that is passed is one that represents the endorsement policy of the chaincode:

// SerializedPolicy defines a serialized policy
type SerializedPolicy interface {

validation.ContextDatum

// Bytes returns the bytes of the SerializedPolicy
Bytes() []byte

}

A validation plugin instance of a given plugin type (identified either by the method name as an instance method of the
HandlerLibrary or by the plugin .so file path) is created for each channel by having the peer invoke the New
method in the PluginFactory interface which is also expected to be implemented by the plugin developer:

// PluginFactory creates a new instance of a Plugin
type PluginFactory interface {

New() Plugin
}

The Init method is expected to receive as input all the dependencies declared under core/handlers/
validation/api/, identified as embedding the Dependency interface.

After the creation of the Plugin instance, the Init method is invoked on it by the peer with the dependencies passed
as parameters.

Currently Fabric comes with the following dependencies for validation plugins:

• IdentityDeserializer: Converts byte representation of identities into Identity objects that can be
used to verify signatures signed by them, be validated themselves against their corresponding MSP, and see
whether they satisfy a given MSP Principal. The full specification can be found in core/handlers/
validation/api/identities/identities.go.

• PolicyEvaluator: Evaluates whether a given policy is satisfied:

// PolicyEvaluator evaluates policies
type PolicyEvaluator interface {

validation.Dependency

// Evaluate takes a set of SignedData and evaluates whether this set of
→˓signatures satisfies

// the policy with the given bytes
Evaluate(policyBytes []byte, signatureSet []*common.SignedData) error

}

• StateFetcher: Fetches a State object which interacts with the world state:

372 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

// State defines interaction with the world state
type State interface {

// GetStateMultipleKeys gets the values for multiple keys in a single call
GetStateMultipleKeys(namespace string, keys []string) ([][]byte, error)

// GetStateRangeScanIterator returns an iterator that contains all the key-values
→˓between given key ranges.

// startKey is included in the results and endKey is excluded. An empty startKey
→˓refers to the first available key

// and an empty endKey refers to the last available key. For scanning all the
→˓keys, both the startKey and the endKey

// can be supplied as empty strings. However, a full scan should be used
→˓judiciously for performance reasons.

// The returned ResultsIterator contains results of type *KV which is defined in
→˓fabric-protos/ledger/queryresult.

GetStateRangeScanIterator(namespace string, startKey string, endKey string)
→˓(ResultsIterator, error)

// GetStateMetadata returns the metadata for given namespace and key
GetStateMetadata(namespace, key string) (map[string][]byte, error)

// GetPrivateDataMetadata gets the metadata of a private data item identified by
→˓a tuple <namespace, collection, key>

GetPrivateDataMetadata(namespace, collection, key string) (map[string][]byte,
→˓error)

// Done releases resources occupied by the State
Done()

}

9.6.6 Important notes

• Validation plugin consistency across peers: In future releases, the Fabric channel infrastructure would guaran-
tee that the same validation logic is used for a given chaincode by all peers in the channel at any given blockchain
height in order to eliminate the chance of mis-configuration which would might lead to state divergence among
peers that accidentally run different implementations. However, for now it is the sole responsibility of the system
operators and administrators to ensure this doesn’t happen.

• Validation plugin error handling: Whenever a validation plugin can’t determine whether a given transaction
is valid or not, because of some transient execution problem like inability to access the database, it should
return an error of type ExecutionFailureError that is defined in core/handlers/validation/api/
validation.go. Any other error that is returned, is treated as an endorsement policy error and marks the
transaction as invalidated by the validation logic. However, if an ExecutionFailureError is returned, the
chain processing halts instead of marking the transaction as invalid. This is to prevent state divergence between
different peers.

• Error handling for private metadata retrieval: In case a plugin retrieves metadata for private data
by making use of the StateFetcher interface, it is important that errors are handled as follows:
CollConfigNotDefinedError and InvalidCollNameError, signalling that the specified collec-
tion does not exist, should be handled as deterministic errors and should not lead the plugin to return an
ExecutionFailureError.

• Importing Fabric code into the plugin: Importing code that belongs to Fabric other than protobufs as part
of the plugin is highly discouraged, and can lead to issues when the Fabric code changes between releases, or
can cause inoperability issues when running mixed peer versions. Ideally, the plugin code should only use the
dependencies given to it, and should import the bare minimum other than protobufs.

9.6. Pluggable transaction endorsement and validation 373

hyperledger-fabricdocs Documentation, Release master

9.7 Access Control Lists (ACL)

9.7.1 What is an Access Control List?

Note: This topic deals with access control and policies on a channel administration level. To learn about access
control within a chaincode, check out our chaincode for developers tutorial.

Fabric uses access control lists (ACLs) to manage access to resources by associating a Policy with a resource. Fabric
contains a number of default ACLs. In this document, we’ll talk about how they’re formatted and how the defaults can
be overridden.

But before we can do that, it’s necessary to understand a little about resources and policies.

Resources

Users interact with Fabric by targeting a user chaincode, or an events stream source, or system chaincode that are
called in the background. As such, these endpoints are considered “resources” on which access control should be
exercised.

Application developers need to be aware of these resources and the default policies associated with them. The complete
list of these resources are found in configtx.yaml. You can look at a sample configtx.yaml file here.

The resources named in configtx.yaml is an exhaustive list of all internal resources currently defined by Fab-
ric. The loose convention adopted there is <component>/<resource>. So cscc/GetConfigBlock is the
resource for the GetConfigBlock call in the CSCC component.

Policies

Policies are fundamental to the way Fabric works because they allow the identity (or set of identities) associated with
a request to be checked against the policy associated with the resource needed to fulfill the request. Endorsement
policies are used to determine whether a transaction has been appropriately endorsed. The policies defined in the
channel configuration are referenced as modification policies as well as for access control, and are defined in the
channel configuration itself.

Policies can be structured in one of two ways: as Signature policies or as an ImplicitMeta policy.

Signature policies

These policies identify specific users who must sign in order for a policy to be satisfied. For example:

Policies:
MyPolicy:
Type: Signature
Rule: "OR('Org1.peer', 'Org2.peer')"

This policy construct can be interpreted as: the policy named MyPolicy can only be satisfied by the signature of an
identity with role of “a peer from Org1” or “a peer from Org2”.

Signature policies support arbitrary combinations of AND, OR, and NOutOf, allowing the construction of extremely
powerful rules like: “An admin of org A and two other admins, or 11 of 20 org admins”.

374 Chapter 9. Operations Guides

./chaincode4ade.html#Chaincode_API
policies/policies.html
./chaincode4ade.html
./peer_event_services.html
http://github.com/hyperledger/fabric/blob/release-2.0/sampleconfig/configtx.yaml

hyperledger-fabricdocs Documentation, Release master

ImplicitMeta policies

ImplicitMeta policies aggregate the result of policies deeper in the configuration hierarchy that are ultimately
defined by Signature policies. They support default rules like “A majority of the organization admins”. These
policies use a different but still very simple syntax as compared to Signature policies: <ALL|ANY|MAJORITY>
<sub_policy>.

For example: ANY Readers or MAJORITY Admins.

Note that in the default policy configuration Admins have an operational role. Policies that specify that only Admins
— or some subset of Admins — have access to a resource will tend to be for sensitive or operational aspects of the
network (such as instantiating chaincode on a channel). Writers will tend to be able to propose ledger updates,
such as a transaction, but will not typically have administrative permissions. Readers have a passive role. They can
access information but do not have the permission to propose ledger updates nor do can they perform administrative
tasks. These default policies can be added to, edited, or supplemented, for example by the new peer and client
roles (if you have NodeOU support).

Here’s an example of an ImplicitMeta policy structure:

Policies:
AnotherPolicy:
Type: ImplicitMeta
Rule: "MAJORITY Admins"

Here, the policy AnotherPolicy can be satisfied by the MAJORITY of Admins, where Admins is eventually
being specified by lower level Signature policy.

Where is access control specified?

Access control defaults exist inside configtx.yaml, the file that configtxgen uses to build channel configura-
tions.

Access control can be updated in one of two ways, either by editing configtx.yaml itself, which will be used
when creating new channel configurations, or by updating access control in the channel configuration of an existing
channel.

9.7.2 How ACLs are formatted in configtx.yaml

ACLs are formatted as a key-value pair consisting of a resource function name followed by a string. To see what this
looks like, reference this sample configtx.yaml file.

Two excerpts from this sample:

ACL policy for invoking chaincodes on peer
peer/Propose: /Channel/Application/Writers

ACL policy for sending block events
event/Block: /Channel/Application/Readers

These ACLs define that access to peer/Propose and event/Block resources is restricted to identities satisfying
the policy defined at the canonical path /Channel/Application/Writers and /Channel/Application/
Readers, respectively.

9.7. Access Control Lists (ACL) 375

https://github.com/hyperledger/fabric/blob/release-2.0/sampleconfig/configtx.yaml

hyperledger-fabricdocs Documentation, Release master

Updating ACL defaults in configtx.yaml

In cases where it will be necessary to override ACL defaults when bootstrapping a network, or to change the ACLs
before a channel has been bootstrapped, the best practice will be to update configtx.yaml.

Let’s say you want to modify the peer/Propose ACL default — which specifies the policy for invoking chaincodes
on a peer – from /Channel/Application/Writers to a policy called MyPolicy.

This is done by adding a policy called MyPolicy (it could be called anything, but for this example we’ll call it
MyPolicy). The policy is defined in the Application.Policies section inside configtx.yaml and spec-
ifies a rule to be checked to grant or deny access to a user. For this example, we’ll be creating a Signature policy
identifying SampleOrg.admin.

Policies: &ApplicationDefaultPolicies
Readers:

Type: ImplicitMeta
Rule: "ANY Readers"

Writers:
Type: ImplicitMeta
Rule: "ANY Writers"

Admins:
Type: ImplicitMeta
Rule: "MAJORITY Admins"

MyPolicy:
Type: Signature
Rule: "OR('SampleOrg.admin')"

Then, edit the Application: ACLs section inside configtx.yaml to change peer/Propose from this:

peer/Propose: /Channel/Application/Writers

To this:

peer/Propose: /Channel/Application/MyPolicy

Once these fields have been changed in configtx.yaml, the configtxgen tool will use the policies and ACLs
defined when creating a channel creation transaction. When appropriately signed and submitted by one of the admins
of the consortium members, a new channel with the defined ACLs and policies is created.

Once MyPolicy has been bootstrapped into the channel configuration, it can also be referenced to override other
ACL defaults. For example:

SampleSingleMSPChannel:
Consortium: SampleConsortium
Application:

<<: *ApplicationDefaults
ACLs:

<<: *ACLsDefault
event/Block: /Channel/Application/MyPolicy

This would restrict the ability to subscribe to block events to SampleOrg.admin.

If channels have already been created that want to use this ACL, they’ll have to update their channel configurations
one at a time using the following flow:

Updating ACL defaults in the channel config

If channels have already been created that want to use MyPolicy to restrict access to peer/Propose — or if
they want to create ACLs they don’t want other channels to know about — they’ll have to update their channel

376 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

configurations one at a time through config update transactions.

Note: Channel configuration transactions are an involved process we won’t delve into here. If you want to read more
about them check out our document on channel configuration updates and our “Adding an Org to a Channel” tutorial.

After pulling, translating, and stripping the configuration block of its metadata, you would edit the configuration by
adding MyPolicy under Application: policies, where the Admins, Writers, and Readers policies
already live.

"MyPolicy": {
"mod_policy": "Admins",
"policy": {
"type": 1,
"value": {

"identities": [
{
"principal": {

"msp_identifier": "SampleOrg",
"role": "ADMIN"

},
"principal_classification": "ROLE"

}
],
"rule": {

"n_out_of": {
"n": 1,
"rules": [

{
"signed_by": 0

}
]

}
},
"version": 0

}
},
"version": "0"

},

Note in particular the msp_identifer and role here.

Then, in the ACLs section of the config, change the peer/Propose ACL from this:

"peer/Propose": {
"policy_ref": "/Channel/Application/Writers"

To this:

"peer/Propose": {
"policy_ref": "/Channel/Application/MyPolicy"

Note: If you do not have ACLs defined in your channel configuration, you will have to add the entire ACL structure.

Once the configuration has been updated, it will need to be submitted by the usual channel update process.

Satisfying an ACL that requires access to multiple resources

If a member makes a request that calls multiple system chaincodes, all of the ACLs for those system chaincodes must
be satisfied.

9.7. Access Control Lists (ACL) 377

./config_update.html
./channel_update_tutorial.html

hyperledger-fabricdocs Documentation, Release master

For example, peer/Propose refers to any proposal request on a channel. If the particular proposal requires access
to two system chaincodes that requires an identity satisfying Writers and one system chaincode that requires an
identity satisfying MyPolicy, then the member submitting the proposal must have an identity that evaluates to “true”
for both Writers and MyPolicy.

In the default configuration, Writers is a signature policy whose rule is SampleOrg.member. In other words,
“any member of my organization”. MyPolicy, listed above, has a rule of SampleOrg.admin, or “any admin
of my organization”. To satisfy these ACLs, the member would have to be both an administrator and a member
of SampleOrg. By default, all administrators are members (though not all administrators are members), but it is
possible to overwrite these policies to whatever you want them to be. As a result, it’s important to keep track of these
policies to ensure that the ACLs for peer proposals are not impossible to satisfy (unless that is the intention).

9.8 MSP Implementation with Identity Mixer

9.8.1 What is Idemix?

Idemix is a cryptographic protocol suite, which provides strong authentication as well as privacy-preserving features
such as anonymity, the ability to transact without revealing the identity of the transactor, and unlinkability, the ability
of a single identity to send multiple transactions without revealing that the transactions were sent by the same identity.

There are three actors involved in an Idemix flow: user, issuer, and verifier.

• An issuer certifies a set of user’s attributes are issued in the form of a digital certificate, hereafter called “cre-
dential”.

• The user later generates a “zero-knowledge proof” of possession of the credential and also selectively discloses
only the attributes the user chooses to reveal. The proof, because it is zero-knowledge, reveals no additional
information to the verifier, issuer, or anyone else.

378 Chapter 9. Operations Guides

https://en.wikipedia.org/wiki/Zero-knowledge_proof

hyperledger-fabricdocs Documentation, Release master

As an example, suppose “Alice” needs to prove to Bob (a store clerk) that she has a driver’s license issued to her by
the DMV.

In this scenario, Alice is the user, the DMV is the issuer, and Bob is the verifier. In order to prove to Bob that Alice
has a driver’s license, she could show it to him. However, Bob would then be able to see Alice’s name, address, exact
age, etc. — much more information than Bob needs to know.

Instead, Alice can use Idemix to generate a “zero-knowledge proof” for Bob, which only reveals that she has a valid
driver’s license and nothing else.

So from the proof:

• Bob does not learn any additional information about Alice other than the fact that she has a valid license
(anonymity).

• If Alice visits the store multiple times and generates a proof each time for Bob, Bob would not be able to tell
from the proof that it was the same person (unlinkability).

Idemix authentication technology provides the trust model and security guarantees that are similar to what is ensured
by standard X.509 certificates but with underlying cryptographic algorithms that efficiently provide advanced privacy
features including the ones described above. We’ll compare Idemix and X.509 technologies in detail in the technical
section below.

9.8.2 How to use Idemix

To understand how to use Idemix with Hyperledger Fabric, we need to see which Fabric components correspond to
the user, issuer, and verifier in Idemix.

• The Fabric Java SDK is the API for the user. In the future, other Fabric SDKs will also support Idemix.

• Fabric provides two possible Idemix issuers:

1. Fabric CA for production environments or development, and

2. the idemixgen tool for development environments.

• The verifier is an Idemix MSP in Fabric.

In order to use Idemix in Hyperledger Fabric, the following three basic steps are required:

9.8. MSP Implementation with Identity Mixer 379

hyperledger-fabricdocs Documentation, Release master

Compare the roles in this image to the ones above.

1. Consider the issuer.

Fabric CA (version 1.3 or later) has been enhanced to automatically function as an Idemix issuer.
When fabric-ca-server is started (or initialized via the fabric-ca-server init command),
the following two files are automatically created in the home directory of the fabric-ca-server:
IssuerPublicKey and IssuerRevocationPublicKey. These files are required in step 2.

For a development environment and if you are not using Fabric CA, you may use idemixgen to create these
files.

2. Consider the verifier.

You need to create an Idemix MSP using the IssuerPublicKey and IssuerRevocationPublicKey
from step 1.

For example, consider the following excerpt from configtx.yaml in the Hyperledger Java SDK sample:

- &Org1Idemix
defaultorg defines the organization which is used in the sampleconfig
of the fabric.git development environment
name: idemixMSP1

id to load the msp definition as
id: idemixMSPID1

msptype: idemix
mspdir: crypto-config/peerOrganizations/org3.example.com

The msptype is set to idemix and the contents of the mspdir directory (crypto-config/
peerOrganizations/org3.example.com/msp in this example) contains the IssuerPublicKey

380 Chapter 9. Operations Guides

https://github.com/hyperledger/fabric-sdk-java/blob/master/src/test/fixture/sdkintegration/e2e-2Orgs/v1.3/configtx.yaml

hyperledger-fabricdocs Documentation, Release master

and IssuerRevocationPublicKey files.

Note that in this example, Org1Idemix represents the Idemix MSP for Org1 (not shown), which would also
have an X509 MSP.

3. Consider the user. Recall that the Java SDK is the API for the user.

There is only a single additional API call required in order to use Idemix with the Java SDK: the
idemixEnroll method of the org.hyperledger.fabric_ca.sdk.HFCAClient class. For
example, assume hfcaClient is your HFCAClient object and x509Enrollment is your org.
hyperledger.fabric.sdk.Enrollment associated with your X509 certificate.

The following call will return an org.hyperledger.fabric.sdk.Enrollment object associated with
your Idemix credential.

IdemixEnrollment idemixEnrollment = hfcaClient.idemixEnroll(x509enrollment,
→˓"idemixMSPID1");

Note also that IdemixEnrollment implements the org.hyperledger.fabric.sdk.Enrollment
interface and can, therefore, be used in the same way that one uses the X509 enrollment object, except, of
course, that this automatically provides the privacy enhancing features of Idemix.

9.8.3 Idemix and chaincode

From a verifier perspective, there is one more actor to consider: chaincode. What can chaincode learn about the
transactor when an Idemix credential is used?

The cid (Client Identity) library (for Go only) has been extended to support the GetAttributeValue function
when an Idemix credential is used. However, as mentioned in the “Current limitations” section below, there are only
two attributes which are disclosed in the Idemix case: ou and role.

If Fabric CA is the credential issuer:

• the value of the ou attribute is the identity’s affiliation (e.g. “org1.department1”);

• the value of the role attribute will be either ‘member’ or ‘admin’. A value of ‘admin’ means that the identity
is an MSP administrator. By default, identities created by Fabric CA will return the ‘member’ role. In order to
create an ‘admin’ identity, register the identity with the role attribute and a value of 2.

For an example of setting an affiliation in the Java SDK see this sample.

For an example of using the CID library in go chaincode to retrieve attributes, see this go chaincode.

Idemix organizations cannot be used to endorse a chaincode or approve a chaincode definition. This needs to be
taken into account when you set the LifecycleEndorsement and Endorsement policies on your channels. For more
information, see the limitations section below.

9.8.4 Current limitations

The current version of Idemix does have a few limitations.

• Idemix organizations and endorsement policies

Idemix organizations cannot be used to endorse a chaincode transaction or approve a chaincode definition.
By default, the Channel/Application/LifecycleEndorsement and Channel/Application/
Endorsement policies will require signatures from a majority of organizations active on the channel. This
implies that a channel that contains a large number of Idemix organizations may not be able to reach the majority
needed to fulfill the default policy. For example, if a channel has two MSP Organizations and two Idemix
organizations, the channel policy will require that three out of four organizations approve a chaincode definition

9.8. MSP Implementation with Identity Mixer 381

https://godoc.org/github.com/hyperledger/fabric-chaincode-go/pkg/cid
https://github.com/hyperledger/fabric-sdk-java/blob/master/src/test/java/org/hyperledger/fabric/sdkintegration/End2endIdemixIT.java#L121
https://github.com/hyperledger/fabric-sdk-java/blob/master/src/test/fixture/sdkintegration/gocc/sampleIdemix/src/github.com/example_cc/example_cc.go#L88

hyperledger-fabricdocs Documentation, Release master

to commit that definition to the channel. Because Idemix organizations cannot approve a chaincode definition,
the policy will only be able to validate two out of four signatures.

If your channel contains a sufficient number of Idemix organizations to affect the endorsement policy, you can
use a signature policy to explicitly specify the required MSP organizations.

• Fixed set of attributes

It not yet possible to issue or use an Idemix credential with custom attributes. Custom attributes will be supported
in a future release.

The following four attributes are currently supported:

1. Organizational Unit attribute (“ou”):

– Usage: same as X.509

– Type: String

– Revealed: always

2. Role attribute (“role”):

– Usage: same as X.509

– Type: integer

– Revealed: always

3. Enrollment ID attribute

– Usage: uniquely identify a user — same in all enrollment credentials that belong to the same user (will be
used for auditing in the future releases)

– Type: BIG

– Revealed: never in the signature, only when generating an authentication token for Fabric CA

4. Revocation Handle attribute

– Usage: uniquely identify a credential (will be used for revocation in future releases)

– Type: integer

– Revealed: never

• Revocation is not yet supported

Although much of the revocation framework is in place as can be seen by the presence of a revocation
handle attribute mentioned above, revocation of an Idemix credential is not yet supported.

• Peers do not use Idemix for endorsement

Currently, Idemix MSP is used by the peers only for signature verification. Signing with Idemix is
only done via Client SDK. More roles (including a ‘peer’ role) will be supported by Idemix MSP.

9.8.5 Technical summary

Comparing Idemix credentials to X.509 certificates

The certificate/credential concept and the issuance process are very similar in Idemix and X.509 certs: a set of at-
tributes is digitally signed with a signature that cannot be forged and there is a secret key to which a credential is
cryptographically bound.

382 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

The main difference between a standard X.509 certificate and an Identity Mixer credential is the signature scheme
that is used to certify the attributes. The signatures underlying the Identity Mixer system allow for efficient proofs of
the possession of a signature and the corresponding attributes without revealing the signature and (selected) attribute
values themselves. We use zero-knowledge proofs to ensure that such “knowledge” or “information” is not revealed
while ensuring that the signature over some attributes is valid and the user is in possession of the corresponding
credential secret key.

Such proofs, like X.509 certificates, can be verified with the public key of the authority that originally signed the
credential and cannot be successfully forged. Only the user who knows the credential secret key can generate the
proofs about the credential and its attributes.

With regard to unlinkability, when an X.509 certificate is presented, all attributes have to be revealed to verify the
certificate signature. This implies that all certificate usages for signing transactions are linkable.

To avoid such linkability, fresh X.509 certificates need to be used every time, which results in complex key manage-
ment and communication and storage overhead. Furthermore, there are cases where it is important that not even the
CA issuing the certificates is able to link all the transactions to the user.

Idemix helps to avoid linkability with respect to both the CA and verifiers, since even the CA is not able to link proofs
to the original credential. Neither the issuer nor a verifier can tell whether two proofs were derived from the same
credential (or from two different ones).

More details on the concepts and features of the Identity Mixer technology are described in the paper Concepts and
Languages for Privacy-Preserving Attribute-Based Authentication.

Topology Information

Given the above limitations, it is recommended to have only one Idemix-based MSP per channel or, at the extreme,
per network. Indeed, for example, having multiple Idemix-based MSPs per channel would allow a party, reading the
ledger of that channel, to tell apart transactions signed by parties belonging to different Idemix-based MSPs. This is
because, each transaction leak the MSP-ID of the signer. In other words, Idemix currently provides only anonymity of
clients among the same organization (MSP).

In the future, Idemix could be extended to support anonymous hierarchies of Idemix-based Certification Authori-
ties whose certified credentials can be verified by using a unique public-key, therefore achieving anonymity across
organizations (MSPs). This would allow multiple Idemix-based MSPs to coexist in the same channel.

In principal, a channel can be configured to have a single Idemix-based MSP and multiple X.509-based MSPs. Of
course, the interaction between these MSP can potential leak information. An assessment of the leaked information
need to be done case by case.wq

Underlying cryptographic protocols

Idemix technology is built from a blind signature scheme that supports multiple messages and efficient zero-knowledge
proofs of signature possession. All of the cryptographic building blocks for Idemix were published at the top confer-
ences and journals and verified by the scientific community.

This particular Idemix implementation for Fabric uses a pairing-based signature scheme that was briefly proposed by
Camenisch and Lysyanskaya and described in detail by Au et al.. The ability to prove knowledge of a signature in a
zero-knowledge proof Camenisch et al. was used.

9.9 Identity Mixer MSP configuration generator (idemixgen)

This document describes the usage for the idemixgen utility, which can be used to create configuration files for the
identity mixer based MSP. Two commands are available, one for creating a fresh CA key pair, and one for creating an

9.9. Identity Mixer MSP configuration generator (idemixgen) 383

https://link.springer.com/chapter/10.1007%2F978-3-642-37282-7_4
https://link.springer.com/chapter/10.1007%2F978-3-642-37282-7_4
https://link.springer.com/chapter/10.1007/978-3-540-28628-8_4
https://link.springer.com/chapter/10.1007/11832072_8
https://eprint.iacr.org/2016/663.pdf

hyperledger-fabricdocs Documentation, Release master

MSP config using a previously generated CA key.

9.9.1 Directory Structure

The idemixgen tool will create directories with the following structure:

- /ca/
IssuerSecretKey
IssuerPublicKey
RevocationKey

- /msp/
IssuerPublicKey
RevocationPublicKey

- /user/
SignerConfig

The ca directory contains the issuer secret key (including the revocation key) and should only be present for a CA. The
msp directory contains the information required to set up an MSP verifying idemix signatures. The user directory
specifies a default signer.

9.9.2 CA Key Generation

CA (issuer) keys suitable for identity mixer can be created using command idemixgen ca-keygen. This will
create directories ca and msp in the working directory.

9.9.3 Adding a Default Signer

After generating the ca and msp directories with idemixgen ca-keygen, a default signer specified in the user
directory can be added to the config with idemixgen signerconfig.

$ idemixgen signerconfig -h
usage: idemixgen signerconfig [<flags>]

Generate a default signer for this Idemix MSP

Flags:
-h, --help Show context-sensitive help (also try --help-long and --

→˓help-man).
-u, --org-unit=ORG-UNIT The Organizational Unit of the default signer
-a, --admin Make the default signer admin
-e, --enrollment-id=ENROLLMENT-ID

The enrollment id of the default signer
-r, --revocation-handle=REVOCATION-HANDLE

The handle used to revoke this signer

For example, we can create a default signer that is a member of organizational unit “OrgUnit1”, with enrollment
identity “johndoe”, revocation handle “1234”, and that is an admin, with the following command:

idemixgen signerconfig -u OrgUnit1 --admin -e "johndoe" -r 1234

384 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

9.10 The Operations Service

The peer and the orderer host an HTTP server that offers a RESTful “operations” API. This API is unrelated to the
Fabric network services and is intended to be used by operators, not administrators or “users” of the network.

The API exposes the following capabilities:

• Log level management

• Health checks

• Prometheus target for operational metrics (when configured)

• Endpoint for retrieving version information

9.10.1 Configuring the Operations Service

The operations service requires two basic pieces of configuration:

• The address and port to listen on.

• The TLS certificates and keys to use for authentication and encryption. Note, these certificates should be gen-
erated by a separate and dedicated CA. Do not use a CA that has generated certificates for any organizations
in any channels.

Peer

For each peer, the operations server can be configured in the operations section of core.yaml:

operations:
host and port for the operations server
listenAddress: 127.0.0.1:9443

TLS configuration for the operations endpoint
tls:
TLS enabled
enabled: true

path to PEM encoded server certificate for the operations server
cert:

file: tls/server.crt

path to PEM encoded server key for the operations server
key:

file: tls/server.key

most operations service endpoints require client authentication when TLS
is enabled. clientAuthRequired requires client certificate authentication
at the TLS layer to access all resources.
clientAuthRequired: false

paths to PEM encoded ca certificates to trust for client authentication
clientRootCAs:

files: []

The listenAddress key defines the host and port that the operation server will listen on. If the server should listen
on all addresses, the host portion can be omitted.

9.10. The Operations Service 385

hyperledger-fabricdocs Documentation, Release master

The tls section is used to indicate whether or not TLS is enabled for the operations service, the location of the
service’s certificate and private key, and the locations of certificate authority root certificates that should be trusted for
client authentication. When enabled is true, most of the operations service endpoints require client authentication,
therefore clientRootCAs.files must be set. When clientAuthRequired is true, the TLS layer will
require clients to provide a certificate for authentication on every request. See Operations Security section below for
more details.

Orderer

For each orderer, the operations server can be configured in the Operations section of orderer.yaml:

Operations:
host and port for the operations server
ListenAddress: 127.0.0.1:8443

TLS configuration for the operations endpoint
TLS:
TLS enabled
Enabled: true

PrivateKey: PEM-encoded tls key for the operations endpoint
PrivateKey: tls/server.key

Certificate governs the file location of the server TLS certificate.
Certificate: tls/server.crt

Paths to PEM encoded ca certificates to trust for client authentication
ClientRootCAs: []

Most operations service endpoints require client authentication when TLS
is enabled. ClientAuthRequired requires client certificate authentication
at the TLS layer to access all resources.
ClientAuthRequired: false

The ListenAddress key defines the host and port that the operations server will listen on. If the server should
listen on all addresses, the host portion can be omitted.

The TLS section is used to indicate whether or not TLS is enabled for the operations service, the location of the
service’s certificate and private key, and the locations of certificate authority root certificates that should be trusted for
client authentication. When Enabled is true, most of the operations service endpoints require client authentication,
therefore RootCAs must be set. When ClientAuthRequired is true, the TLS layer will require clients to
provide a certificate for authentication on every request. See Operations Security section below for more details.

Operations Security

As the operations service is focused on operations and intentionally unrelated to the Fabric network, it does not use
the Membership Services Provider for access control. Instead, the operations service relies entirely on mutual TLS
with client certificate authentication.

When TLS is disabled, authorization is bypassed and any client that can connect to the operations endpoint will be
able to use the API.

When TLS is enabled, a valid client certificate must be provided in order to access all resources unless explicitly noted
otherwise below.

When clientAuthRequired is also enabled, the TLS layer will require a valid client certificate regardless of the resource
being accessed.

386 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

Log Level Management

The operations service provides a /logspec resource that operators can use to manage the active logging spec for a
peer or orderer. The resource is a conventional REST resource and supports GET and PUT requests.

When a GET /logspec request is received by the operations service, it will respond with a JSON payload that
contains the current logging specification:

{"spec":"info"}

When a PUT /logspec request is received by the operations service, it will read the body as a JSON payload. The
payload must consist of a single attribute named spec.

{"spec":"chaincode=debug:info"}

If the spec is activated successfully, the service will respond with a 204 "No Content" response. If an error
occurs, the service will respond with a 400 "Bad Request" and an error payload:

{"error":"error message"}

9.10.2 Health Checks

The operations service provides a /healthz resource that operators can use to help determine the liveness and health
of peers and orderers. The resource is a conventional REST resource that supports GET requests. The implementation
is intended to be compatible with the liveness probe model used by Kubernetes but can be used in other contexts.

When a GET /healthz request is received, the operations service will call all registered health checkers for the
process. When all of the health checkers return successfully, the operations service will respond with a 200 "OK"
and a JSON body:

{
"status": "OK",
"time": "2009-11-10T23:00:00Z"

}

If one or more of the health checkers returns an error, the operations service will respond with a 503 "Service
Unavailable" and a JSON body that includes information about which health checker failed:

{
"status": "Service Unavailable",
"time": "2009-11-10T23:00:00Z",
"failed_checks": [
{

"component": "docker",
"reason": "failed to connect to Docker daemon: invalid endpoint"

}
]

}

In the current version, the only health check that is registered is for Docker. Future versions will be enhanced to add
additional health checks.

When TLS is enabled, a valid client certificate is not required to use this service unless clientAuthRequired is
set to true.

9.10. The Operations Service 387

hyperledger-fabricdocs Documentation, Release master

9.10.3 Metrics

Some components of the Fabric peer and orderer expose metrics that can help provide insight into the behavior of the
system. Operators and administrators can use this information to better understand how the system is performing over
time.

Configuring Metrics

Fabric provides two ways to expose metrics: a pull model based on Prometheus and a push model based on StatsD.

Prometheus

A typical Prometheus deployment scrapes metrics by requesting them from an HTTP endpoint exposed by instru-
mented targets. As Prometheus is responsible for requesting the metrics, it is considered a pull system.

When configured, a Fabric peer or orderer will present a /metrics resource on the operations service.

Peer

A peer can be configured to expose a /metrics endpoint for Prometheus to scrape by setting the metrics provider to
prometheus in the metrics section of core.yaml.

metrics:
provider: prometheus

Orderer

An orderer can be configured to expose a /metrics endpoint for Prometheus to scrape by setting the metrics provider
to prometheus in the Metrics section of orderer.yaml.

Metrics:
Provider: prometheus

StatsD

StatsD is a simple statistics aggregation daemon. Metrics are sent to a statsd daemon where they are collected,
aggregated, and pushed to a backend for visualization and alerting. As this model requires instrumented processes to
send metrics data to StatsD, this is considered a push system.

Peer

A peer can be configured to send metrics to StatsD by setting the metrics provider to statsd in the metrics
section of core.yaml. The statsd subsection must also be configured with the address of the StatsD daemon,
the network type to use (tcp or udp), and how often to send the metrics. An optional prefix may be specified to
help differentiate the source of the metrics — for example, differentiating metrics coming from separate peers — that
would be prepended to all generated metrics.

388 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

metrics:
provider: statsd
statsd:
network: udp
address: 127.0.0.1:8125
writeInterval: 10s
prefix: peer-0

Orderer

An orderer can be configured to send metrics to StatsD by setting the metrics provider to statsd in the Metrics
section of orderer.yaml. The Statsd subsection must also be configured with the address of the StatsD daemon,
the network type to use (tcp or udp), and how often to send the metrics. An optional prefix may be specified to
help differentiate the source of the metrics.

Metrics:
Provider: statsd
Statsd:

Network: udp
Address: 127.0.0.1:8125
WriteInterval: 30s
Prefix: org-orderer

For a look at the different metrics that are generated, check out Metrics Reference.

9.10.4 Version

The orderer and peer both expose a /version endpoint. This endpoint serves a JSON document containing the
orderer or peer version and the commit SHA on which the release was created.

9.11 Metrics Reference

9.11.1 Orderer Metrics

Prometheus

The following orderer metrics are exported for consumption by Prometheus.

Name Type Description Labels
blockcutter_block_fill_duration histogram The time from first transaction enqueing to the block being cut in seconds. channel
broadcast_enqueue_duration histogram The time to enqueue

a transaction in sec-
onds.

channel
type
status

broadcast_processed_count counter The number of
transactions pro-
cessed.

channel
type
status

broadcast_validate_duration histogram The time to validate
a transaction in sec-
onds.

channel
type
status

Continued on next page

9.11. Metrics Reference 389

hyperledger-fabricdocs Documentation, Release master

Table 1 – continued from previous page
Name Type Description Labels
cluster_comm_egress_queue_capacity gauge Capacity of the

egress queue.
host
msg_type
channel

cluster_comm_egress_queue_length gauge Length of the egress
queue.

host
msg_type
channel

cluster_comm_egress_queue_workers gauge Count of egress queue workers. channel
cluster_comm_egress_stream_count gauge Count of streams to other nodes. channel
cluster_comm_egress_tls_connection_count gauge Count of TLS connections to other nodes.
cluster_comm_ingress_stream_count gauge Count of streams from other nodes.
cluster_comm_msg_dropped_count counter Count of messages

dropped.
host
channel

cluster_comm_msg_send_time histogram The time it takes to
send a message in
seconds.

host

channel
consensus_etcdraft_active_nodes gauge Number of active nodes in this channel. channel
consensus_etcdraft_cluster_size gauge Number of nodes in this channel. channel
consensus_etcdraft_committed_block_number gauge The block number of the latest block committed. channel
consensus_etcdraft_config_proposals_received counter The total number of proposals received for config type transactions. channel
consensus_etcdraft_data_persist_duration histogram The time taken for etcd/raft data to be persisted in storage (in seconds). channel
consensus_etcdraft_is_leader gauge The leadership status of the current node: 1 if it is the leader else 0. channel
consensus_etcdraft_leader_changes counter The number of leader changes since process start. channel
consensus_etcdraft_normal_proposals_received counter The total number of proposals received for normal type transactions. channel
consensus_etcdraft_proposal_failures counter The number of proposal failures. channel
consensus_etcdraft_snapshot_block_number gauge The block number of the latest snapshot. channel
consensus_kafka_batch_size gauge The mean batch size in bytes sent to topics. topic
consensus_kafka_compression_ratio gauge The mean compression ratio (as percentage) for topics. topic
consensus_kafka_incoming_byte_rate gauge Bytes/second read off brokers. broker_id
consensus_kafka_last_offset_persisted gauge The offset specified in the block metadata of the most recently committed block. channel
consensus_kafka_outgoing_byte_rate gauge Bytes/second written to brokers. broker_id
consensus_kafka_record_send_rate gauge The number of records per second sent to topics. topic
consensus_kafka_records_per_request gauge The mean number of records sent per request to topics. topic
consensus_kafka_request_latency gauge The mean request latency in ms to brokers. broker_id
consensus_kafka_request_rate gauge Requests/second sent to brokers. broker_id
consensus_kafka_request_size gauge The mean request size in bytes to brokers. broker_id
consensus_kafka_response_rate gauge Requests/second sent to brokers. broker_id
consensus_kafka_response_size gauge The mean response size in bytes from brokers. broker_id
deliver_blocks_sent counter The number of

blocks sent by the
deliver service.

channel
filtered
data_type

deliver_requests_completed counter The number of
deliver requests
that have been
completed.

channel
filtered
data_type
success

deliver_requests_received counter The number of de-
liver requests that
have been received.

channel
filtered
data_type

deliver_streams_closed counter The number of GRPC streams that have been closed for the deliver service.
deliver_streams_opened counter The number of GRPC streams that have been opened for the deliver service.
fabric_version gauge The active version of Fabric. version

Continued on next page

390 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

Table 1 – continued from previous page
Name Type Description Labels
grpc_comm_conn_closed counter gRPC connections closed. Open minus closed is the active number of connections.
grpc_comm_conn_opened counter gRPC connections opened. Open minus closed is the active number of connections.
grpc_server_stream_messages_received counter The number of

stream messages
received.

service

method
grpc_server_stream_messages_sent counter The number of

stream messages
sent.

service

method
grpc_server_stream_request_duration histogram The time to com-

plete a stream re-
quest.

service
method
code

grpc_server_stream_requests_completed counter The number of
stream requests
completed.

service
method
code

grpc_server_stream_requests_received counter The number of
stream requests
received.

service

method
grpc_server_unary_request_duration histogram The time to com-

plete a unary re-
quest.

service
method
code

grpc_server_unary_requests_completed counter The number of
unary requests
completed.

service
method
code

grpc_server_unary_requests_received counter The number of
unary requests
received.

service

method
ledger_blockchain_height gauge Height of the chain in blocks. channel
ledger_blockstorage_commit_time histogram Time taken in seconds for committing the block to storage. channel
logging_entries_checked counter Number of log entries checked against the active logging level level
logging_entries_written counter Number of log entries that are written level

StatsD

The following orderer metrics are emitted for consumption by StatsD. The %{variable_name} nomenclature
represents segments that vary based on context.

For example, %{channel} will be replaced with the name of the channel associated with the metric.

Bucket Type Description
blockcutter.block_fill_duration.%{channel} histogram The time from first transaction enqueing to the block being cut in seconds.
broadcast.enqueue_duration.%{channel}.%{type}.%{status} histogram The time to enqueue a transaction in seconds.
broadcast.processed_count.%{channel}.%{type}.%{status} counter The number of transactions processed.
broadcast.validate_duration.%{channel}.%{type}.%{status} histogram The time to validate a transaction in seconds.
cluster.comm.egress_queue_capacity.%{host}.%{msg_type}.%{channel} gauge Capacity of the egress queue.
cluster.comm.egress_queue_length.%{host}.%{msg_type}.%{channel} gauge Length of the egress queue.
cluster.comm.egress_queue_workers.%{channel} gauge Count of egress queue workers.
cluster.comm.egress_stream_count.%{channel} gauge Count of streams to other nodes.
cluster.comm.egress_tls_connection_count gauge Count of TLS connections to other nodes.
cluster.comm.ingress_stream_count gauge Count of streams from other nodes.

Continued on next page

9.11. Metrics Reference 391

hyperledger-fabricdocs Documentation, Release master

Table 2 – continued from previous page
Bucket Type Description
cluster.comm.msg_dropped_count.%{host}.%{channel} counter Count of messages dropped.
cluster.comm.msg_send_time.%{host}.%{channel} histogram The time it takes to send a message in seconds.
consensus.etcdraft.active_nodes.%{channel} gauge Number of active nodes in this channel.
consensus.etcdraft.cluster_size.%{channel} gauge Number of nodes in this channel.
consensus.etcdraft.committed_block_number.%{channel} gauge The block number of the latest block committed.
consensus.etcdraft.config_proposals_received.%{channel} counter The total number of proposals received for config type transactions.
consensus.etcdraft.data_persist_duration.%{channel} histogram The time taken for etcd/raft data to be persisted in storage (in seconds).
consensus.etcdraft.is_leader.%{channel} gauge The leadership status of the current node: 1 if it is the leader else 0.
consensus.etcdraft.leader_changes.%{channel} counter The number of leader changes since process start.
consensus.etcdraft.normal_proposals_received.%{channel} counter The total number of proposals received for normal type transactions.
consensus.etcdraft.proposal_failures.%{channel} counter The number of proposal failures.
consensus.etcdraft.snapshot_block_number.%{channel} gauge The block number of the latest snapshot.
consensus.kafka.batch_size.%{topic} gauge The mean batch size in bytes sent to topics.
consensus.kafka.compression_ratio.%{topic} gauge The mean compression ratio (as percentage) for topics.
consensus.kafka.incoming_byte_rate.%{broker_id} gauge Bytes/second read off brokers.
consensus.kafka.last_offset_persisted.%{channel} gauge The offset specified in the block metadata of the most recently committed block.
consensus.kafka.outgoing_byte_rate.%{broker_id} gauge Bytes/second written to brokers.
consensus.kafka.record_send_rate.%{topic} gauge The number of records per second sent to topics.
consensus.kafka.records_per_request.%{topic} gauge The mean number of records sent per request to topics.
consensus.kafka.request_latency.%{broker_id} gauge The mean request latency in ms to brokers.
consensus.kafka.request_rate.%{broker_id} gauge Requests/second sent to brokers.
consensus.kafka.request_size.%{broker_id} gauge The mean request size in bytes to brokers.
consensus.kafka.response_rate.%{broker_id} gauge Requests/second sent to brokers.
consensus.kafka.response_size.%{broker_id} gauge The mean response size in bytes from brokers.
deliver.blocks_sent.%{channel}.%{filtered}.%{data_type} counter The number of blocks sent by the deliver service.
deliver.requests_completed.%{channel}.%{filtered}.%{data_type}.%{success} counter The number of deliver requests that have been completed.
deliver.requests_received.%{channel}.%{filtered}.%{data_type} counter The number of deliver requests that have been received.
deliver.streams_closed counter The number of GRPC streams that have been closed for the deliver service.
deliver.streams_opened counter The number of GRPC streams that have been opened for the deliver service.
fabric_version.%{version} gauge The active version of Fabric.
grpc.comm.conn_closed counter gRPC connections closed. Open minus closed is the active number of connections.
grpc.comm.conn_opened counter gRPC connections opened. Open minus closed is the active number of connections.
grpc.server.stream_messages_received.%{service}.%{method} counter The number of stream messages received.
grpc.server.stream_messages_sent.%{service}.%{method} counter The number of stream messages sent.
grpc.server.stream_request_duration.%{service}.%{method}.%{code} histogram The time to complete a stream request.
grpc.server.stream_requests_completed.%{service}.%{method}.%{code} counter The number of stream requests completed.
grpc.server.stream_requests_received.%{service}.%{method} counter The number of stream requests received.
grpc.server.unary_request_duration.%{service}.%{method}.%{code} histogram The time to complete a unary request.
grpc.server.unary_requests_completed.%{service}.%{method}.%{code} counter The number of unary requests completed.
grpc.server.unary_requests_received.%{service}.%{method} counter The number of unary requests received.
ledger.blockchain_height.%{channel} gauge Height of the chain in blocks.
ledger.blockstorage_commit_time.%{channel} histogram Time taken in seconds for committing the block to storage.
logging.entries_checked.%{level} counter Number of log entries checked against the active logging level
logging.entries_written.%{level} counter Number of log entries that are written

9.11.2 Peer Metrics

392 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

Prometheus

The following peer metrics are exported for consumption by Prometheus.

Name Type Description Labels
chaincode_execute_timeouts counter The number of chaincode executions (Init or Invoke) that have timed out. chaincode
chaincode_launch_duration histogram The time to launch a

chaincode.
chaincode
success

chaincode_launch_failures counter The number of chaincode launches that have failed. chaincode
chaincode_launch_timeouts counter The number of chaincode launches that have timed out. chaincode
chaincode_shim_request_duration histogram The time to com-

plete chaincode
shim requests.

type
channel
chaincode
success

chaincode_shim_requests_completed counter The number of
chaincode shim
requests completed.

type
channel
chaincode
success

chaincode_shim_requests_received counter The number of
chaincode shim
requests received.

type
channel
chaincode

couchdb_processing_time histogram Time taken in sec-
onds for the func-
tion to complete re-
quest to CouchDB

database

function_name
result

deliver_blocks_sent counter The number of
blocks sent by the
deliver service.

channel
filtered
data_type

deliver_requests_completed counter The number of
deliver requests
that have been
completed.

channel
filtered
data_type
success

deliver_requests_received counter The number of de-
liver requests that
have been received.

channel
filtered
data_type

deliver_streams_closed counter The number of GRPC streams that have been closed for the deliver service.
deliver_streams_opened counter The number of GRPC streams that have been opened for the deliver service.
dockercontroller_chaincode_container_build_durationhistogram The time to build a

chaincode image in
seconds.

chaincode

success
endorser_chaincode_instantiation_failures counter The number of

chaincode instan-
tiations or upgrade
that have failed.

channel

chaincode

endorser_duplicate_transaction_failures counter The number of
failed proposals
due to duplicate
transaction ID.

channel

chaincode

endorser_endorsement_failures counter The number of
failed endorse-
ments.

channel
chaincode
chaincodeerror

Continued on next page

9.11. Metrics Reference 393

hyperledger-fabricdocs Documentation, Release master

Table 3 – continued from previous page
Name Type Description Labels
endorser_proposal_acl_failures counter The number of

proposals that failed
ACL checks.

channel

chaincode
endorser_proposal_duration histogram The time to com-

plete a proposal.
channel
chaincode
success

endorser_proposal_simulation_failures counter The number of
failed proposal
simulations

channel

chaincode
endorser_proposal_validation_failures counter The number of proposals that have failed initial validation.
endorser_proposals_received counter The number of proposals received.
endorser_successful_proposals counter The number of successful proposals.
fabric_version gauge The active version of Fabric. version
gossip_comm_messages_received counter Number of messages received
gossip_comm_messages_sent counter Number of messages sent
gossip_comm_overflow_count counter Number of outgoing queue buffer overflows
gossip_leader_election_leader gauge Peer is leader (1) or follower (0) channel
gossip_membership_total_peers_known gauge Total known peers channel
gossip_payload_buffer_size gauge Size of the payload buffer channel
gossip_privdata_commit_block_duration histogram Time it takes to commit private data and the corresponding block (in seconds) channel
gossip_privdata_fetch_duration histogram Time it takes to fetch missing private data from peers (in seconds) channel
gossip_privdata_list_missing_duration histogram Time it takes to list the missing private data (in seconds) channel
gossip_privdata_pull_duration histogram Time it takes to pull a missing private data element (in seconds) channel
gossip_privdata_purge_duration histogram Time it takes to purge private data (in seconds) channel
gossip_privdata_reconciliation_duration histogram Time it takes for reconciliation to complete (in seconds) channel
gossip_privdata_retrieve_duration histogram Time it takes to retrieve missing private data elements from the ledger (in seconds) channel
gossip_privdata_send_duration histogram Time it takes to send a missing private data element (in seconds) channel
gossip_privdata_validation_duration histogram Time it takes to validate a block (in seconds) channel
gossip_state_commit_duration histogram Time it takes to commit a block in seconds channel
gossip_state_height gauge Current ledger height channel
grpc_comm_conn_closed counter gRPC connections closed. Open minus closed is the active number of connections.
grpc_comm_conn_opened counter gRPC connections opened. Open minus closed is the active number of connections.
grpc_server_stream_messages_received counter The number of

stream messages
received.

service

method
grpc_server_stream_messages_sent counter The number of

stream messages
sent.

service

method
grpc_server_stream_request_duration histogram The time to com-

plete a stream re-
quest.

service
method
code

grpc_server_stream_requests_completed counter The number of
stream requests
completed.

service
method
code

grpc_server_stream_requests_received counter The number of
stream requests
received.

service

method
grpc_server_unary_request_duration histogram The time to com-

plete a unary re-
quest.

service
method
code

Continued on next page

394 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

Table 3 – continued from previous page
Name Type Description Labels
grpc_server_unary_requests_completed counter The number of

unary requests
completed.

service
method
code

grpc_server_unary_requests_received counter The number of
unary requests
received.

service

method
ledger_block_processing_time histogram Time taken in seconds for ledger block processing. channel
ledger_blockchain_height gauge Height of the chain in blocks. channel
ledger_blockstorage_and_pvtdata_commit_time histogram Time taken in seconds for committing the block and private data to storage. channel
ledger_blockstorage_commit_time histogram Time taken in seconds for committing the block to storage. channel
ledger_statedb_commit_time histogram Time taken in seconds for committing block changes to state db. channel
ledger_transaction_count counter Number of transac-

tions processed.
channel
transaction_type
chaincode
validation_code

logging_entries_checked counter Number of log entries checked against the active logging level level
logging_entries_written counter Number of log entries that are written level

StatsD

The following peer metrics are emitted for consumption by StatsD. The %{variable_name} nomenclature repre-
sents segments that vary based on context.

For example, %{channel} will be replaced with the name of the channel associated with the metric.

Bucket Type Description
chaincode.execute_timeouts.%{chaincode} counter The number of chaincode executions (Init or Invoke) that have timed out.
chaincode.launch_duration.%{chaincode}.%{success} histogram The time to launch a chaincode.
chaincode.launch_failures.%{chaincode} counter The number of chaincode launches that have failed.
chaincode.launch_timeouts.%{chaincode} counter The number of chaincode launches that have timed out.
chaincode.shim_request_duration.%{type}.%{channel}.%{chaincode}.%{success} histogram The time to complete chaincode shim requests.
chaincode.shim_requests_completed.%{type}.%{channel}.%{chaincode}.%{success} counter The number of chaincode shim requests completed.
chaincode.shim_requests_received.%{type}.%{channel}.%{chaincode} counter The number of chaincode shim requests received.
couchdb.processing_time.%{database}.%{function_name}.%{result} histogram Time taken in seconds for the function to complete request to CouchDB
deliver.blocks_sent.%{channel}.%{filtered}.%{data_type} counter The number of blocks sent by the deliver service.
deliver.requests_completed.%{channel}.%{filtered}.%{data_type}.%{success} counter The number of deliver requests that have been completed.
deliver.requests_received.%{channel}.%{filtered}.%{data_type} counter The number of deliver requests that have been received.
deliver.streams_closed counter The number of GRPC streams that have been closed for the deliver service.
deliver.streams_opened counter The number of GRPC streams that have been opened for the deliver service.
dockercontroller.chaincode_container_build_duration.%{chaincode}.%{success} histogram The time to build a chaincode image in seconds.
endorser.chaincode_instantiation_failures.%{channel}.%{chaincode} counter The number of chaincode instantiations or upgrade that have failed.
endorser.duplicate_transaction_failures.%{channel}.%{chaincode} counter The number of failed proposals due to duplicate transaction ID.
endorser.endorsement_failures.%{channel}.%{chaincode}.%{chaincodeerror} counter The number of failed endorsements.
endorser.proposal_acl_failures.%{channel}.%{chaincode} counter The number of proposals that failed ACL checks.
endorser.proposal_duration.%{channel}.%{chaincode}.%{success} histogram The time to complete a proposal.
endorser.proposal_simulation_failures.%{channel}.%{chaincode} counter The number of failed proposal simulations
endorser.proposal_validation_failures counter The number of proposals that have failed initial validation.
endorser.proposals_received counter The number of proposals received.
endorser.successful_proposals counter The number of successful proposals.

Continued on next page

9.11. Metrics Reference 395

hyperledger-fabricdocs Documentation, Release master

Table 4 – continued from previous page
Bucket Type Description
fabric_version.%{version} gauge The active version of Fabric.
gossip.comm.messages_received counter Number of messages received
gossip.comm.messages_sent counter Number of messages sent
gossip.comm.overflow_count counter Number of outgoing queue buffer overflows
gossip.leader_election.leader.%{channel} gauge Peer is leader (1) or follower (0)
gossip.membership.total_peers_known.%{channel} gauge Total known peers
gossip.payload_buffer.size.%{channel} gauge Size of the payload buffer
gossip.privdata.commit_block_duration.%{channel} histogram Time it takes to commit private data and the corresponding block (in seconds)
gossip.privdata.fetch_duration.%{channel} histogram Time it takes to fetch missing private data from peers (in seconds)
gossip.privdata.list_missing_duration.%{channel} histogram Time it takes to list the missing private data (in seconds)
gossip.privdata.pull_duration.%{channel} histogram Time it takes to pull a missing private data element (in seconds)
gossip.privdata.purge_duration.%{channel} histogram Time it takes to purge private data (in seconds)
gossip.privdata.reconciliation_duration.%{channel} histogram Time it takes for reconciliation to complete (in seconds)
gossip.privdata.retrieve_duration.%{channel} histogram Time it takes to retrieve missing private data elements from the ledger (in seconds)
gossip.privdata.send_duration.%{channel} histogram Time it takes to send a missing private data element (in seconds)
gossip.privdata.validation_duration.%{channel} histogram Time it takes to validate a block (in seconds)
gossip.state.commit_duration.%{channel} histogram Time it takes to commit a block in seconds
gossip.state.height.%{channel} gauge Current ledger height
grpc.comm.conn_closed counter gRPC connections closed. Open minus closed is the active number of connections.
grpc.comm.conn_opened counter gRPC connections opened. Open minus closed is the active number of connections.
grpc.server.stream_messages_received.%{service}.%{method} counter The number of stream messages received.
grpc.server.stream_messages_sent.%{service}.%{method} counter The number of stream messages sent.
grpc.server.stream_request_duration.%{service}.%{method}.%{code} histogram The time to complete a stream request.
grpc.server.stream_requests_completed.%{service}.%{method}.%{code} counter The number of stream requests completed.
grpc.server.stream_requests_received.%{service}.%{method} counter The number of stream requests received.
grpc.server.unary_request_duration.%{service}.%{method}.%{code} histogram The time to complete a unary request.
grpc.server.unary_requests_completed.%{service}.%{method}.%{code} counter The number of unary requests completed.
grpc.server.unary_requests_received.%{service}.%{method} counter The number of unary requests received.
ledger.block_processing_time.%{channel} histogram Time taken in seconds for ledger block processing.
ledger.blockchain_height.%{channel} gauge Height of the chain in blocks.
ledger.blockstorage_and_pvtdata_commit_time.%{channel} histogram Time taken in seconds for committing the block and private data to storage.
ledger.blockstorage_commit_time.%{channel} histogram Time taken in seconds for committing the block to storage.
ledger.statedb_commit_time.%{channel} histogram Time taken in seconds for committing block changes to state db.
ledger.transaction_count.%{channel}.%{transaction_type}.%{chaincode}.%{validation_code} counter Number of transactions processed.
logging.entries_checked.%{level} counter Number of log entries checked against the active logging level
logging.entries_written.%{level} counter Number of log entries that are written

9.12 External Builders and Launchers

Prior to Hyperledger Fabric 2.0, the process used to build and launch chaincode was part of the peer implementation
and could not be easily customized. All chaincode installed on the peer would be “built” using language specific logic
hard coded in the peer. This build process would generate a Docker container image that would be launched to execute
chaincode that connected as a client to the peer.

This approach limited chaincode implementations to a handful of languages, required Docker to be part of the deploy-
ment environment, and prevented running chaincode as a long running server process.

Starting with Fabric 2.0, External Builders and Launchers address these limitations by enabling operators to extend
the peer with programs that can build, launch, and discover chaincode. To leverage this capability you will need to
create your own buildpack and then modify the peer core.yaml to include a new externalBuilder configuration

396 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

element which lets the peer know an external builder is available. The following sections describe the details of this
process.

Note that if no configured external builder claims a chaincode package, the peer will attempt to process the package
as if it were created with the standard Fabric packaging tools such as the peer CLI or node SDK.

Note: This is an advanced feature that will likely require custom packaging of the peer image. For example, the
following samples use go and bash, which are not included in the current official fabric-peer image.

9.12.1 External builder model

Hyperledger Fabric External Builders and Launchers are loosely based on Heroku Buildpacks. A buildpack imple-
mentation is simply a collection of programs or scripts that transform application artifacts into something that can
run. The buildpack model has been adapted for chaincode packages and extended to support chaincode execution and
discovery.

External builder and launcher API

An external builder and launcher consists of four programs or scripts:

• bin/detect: Determine whether or not this buildpack should be used to build the chaincode package and
launch it.

• bin/build: Transform the chaincode package into executable chaincode.

• bin/release (optional): Provide metadata to the peer about the chaincode.

• bin/run (optional): Run the chaincode.

bin/detect

The bin/detect script is responsible for determining whether or not a buildpack should be used to build a chaincode
package and launch it. The peer invokes detect with two arguments:

bin/detect CHAINCODE_SOURCE_DIR CHAINCODE_METADATA_DIR

When detect is invoked, CHAINCODE_SOURCE_DIR contains the chaincode source and
CHAINCODE_METADATA_DIR contains the metadata.json file from the chaincode package installed to
the peer. The CHAINCODE_SOURCE_DIR and CHAINCODE_METADATA_DIR should be treated as read only
inputs. If the buildpack should be applied to the chaincode source package, detect must return an exit code of 0;
any other exit code will indicate that the buildpack should not be applied.

The following is an example of a simple detect script for go chaincode:

#!/bin/bash

CHAINCODE_METADATA_DIR="$2"

use jq to extract the chaincode type from metadata.json and exit with
success if the chaincode type is golang
if ["$(jq -r .type "$CHAINCODE_METADATA_DIR/metadata.json" | tr '[:upper:]'
→˓'[:lower:]')" = "golang"]; then

exit 0
fi

exit 1

9.12. External Builders and Launchers 397

https://devcenter.heroku.com/articles/buildpack-api

hyperledger-fabricdocs Documentation, Release master

bin/build

The bin/build script is responsible for building, compiling, or transforming the contents of a chaincode package
into artifacts that can be used by release and run. The peer invokes build with three arguments:

bin/build CHAINCODE_SOURCE_DIR CHAINCODE_METADATA_DIR BUILD_OUTPUT_DIR

When build is invoked, CHAINCODE_SOURCE_DIR contains the chaincode source and
CHAINCODE_METADATA_DIR contains the metadata.json file from the chaincode package installed to
the peer. BUILD_OUTPUT_DIR is the directory where build must place artifacts needed by release and run.
The build script should treat the input directories CHAINCODE_SOURCE_DIR and CHAINCODE_METADATA_DIR
as read only, but the BUILD_OUTPUT_DIR is writeable.

When build completes with an exit code of 0, the contents of BUILD_OUTPUT_DIRwill be copied to the persistent
storage maintained by the peer; any other exit code will be considered a failure.

The following is an example of a simple build script for go chaincode:

#!/bin/bash

CHAINCODE_SOURCE_DIR="$1"
CHAINCODE_METADATA_DIR="$2"
BUILD_OUTPUT_DIR="$3"

extract package path from metadata.json
GO_PACKAGE_PATH="$(jq -r .path "$CHAINCODE_METADATA_DIR/metadata.json")"
if [-f "$CHAINCODE_SOURCE_DIR/src/go.mod"]; then

cd "$CHAINCODE_SOURCE_DIR/src"
go build -v -mod=readonly -o "$BUILD_OUTPUT_DIR/chaincode" "$GO_PACKAGE_PATH"

else
GO111MODULE=off go build -v -o "$BUILD_OUTPUT_DIR/chaincode" "$GO_PACKAGE_PATH"

fi

save statedb index metadata to provide at release
if [-d "$CHAINCODE_SOURCE_DIR/META-INF"]; then

cp -a "$CHAINCODE_SOURCE_DIR/META-INF" "$BUILD_OUTPUT_DIR/"
fi

bin/release

The bin/release script is responsible for providing chaincode metadata to the peer. bin/release is optional.
If it is not provided, this step is skipped. The peer invokes release with two arguments:

bin/release BUILD_OUTPUT_DIR RELEASE_OUTPUT_DIR

When release is invoked, BUILD_OUTPUT_DIR contains the artifacts populated by the build program and
should be treated as read only input. RELEASE_OUTPUT_DIR is the directory where release must place artifacts
to be consumed by the peer.

When release completes, the peer will consume two types of metadata from RELEASE_OUTPUT_DIR:

• state database index definitions for CouchDB

• external chaincode server connection information (chaincode/server/connection.json)

If CouchDB index definitions are required for the chaincode, release is responsible for placing the indexes into
the statedb/couchdb/indexes directory under RELEASE_OUTPUT_DIR. The indexes must have a .json
extension. See the CouchDB indexes documentation for details.

398 Chapter 9. Operations Guides

couchdb_as_state_database.html#couchdb-indexes

hyperledger-fabricdocs Documentation, Release master

In cases where a chaincode server implementation is used, release is responsible for populating chaincode/
server/connection.jsonwith the address of the chaincode server and any TLS assets required to communicate
with the chaincode. When server connection information is provided to the peer, run will not be called. See the
Chaincode Server documentation for details.

The following is an example of a simple release script for go chaincode:

#!/bin/bash

BUILD_OUTPUT_DIR="$1"
RELEASE_OUTPUT_DIR="$2"

copy indexes from META-INF/* to the output directory
if [-d "$BUILD_OUTPUT_DIR/META-INF"] ; then

cp -a "$BUILD_OUTPUT_DIR/META-INF/"* "$RELEASE_OUTPUT_DIR/"
fi

bin/run

The bin/run script is responsible for running chaincode. The peer invokes run with two arguments:

bin/run BUILD_OUTPUT_DIR RUN_METADATA_DIR

When run is called, BUILD_OUTPUT_DIR contains the artifacts populated by the build program and
RUN_METADATA_DIR is populated with a file called chaincode.json that contains the information nec-
essary for chaincode to connect and register with the peer. Note that the bin/run script should treat
these BUILD_OUTPUT_DIR and RUN_METADATA_DIR directories as read only input. The keys included in
chaincode.json are:

• chaincode_id: The unique ID associated with the chaincode package.

• peer_address: The address in host:port format of the ChaincodeSupport gRPC server endpoint
hosted by the peer.

• client_cert: The PEM encoded TLS client certificate generated by the peer that must be used when the
chaincode establishes its connection to the peer.

• client_key: The PEM encoded client key generated by the peer that must be used when the chaincode
establishes its connection to the peer.

• root_cert: The PEM encoded TLS root certificate for the ChaincodeSupport gRPC server endpoint
hosted by the peer.

• mspid: The local mspid of the peer.

When run terminates, the peer considers the chaincode terminated. If another request arrives for the chaincode, the
peer will attempt to start another instance of the chaincode by invoking run again. The contents of chaincode.
json must not be cached across invocations.

The following is an example of a simple run script for go chaincode:

#!/bin/bash

BUILD_OUTPUT_DIR="$1"
RUN_METADATA_DIR="$2"

setup the environment expected by the go chaincode shim
export CORE_CHAINCODE_ID_NAME="$(jq -r .chaincode_id "$RUN_METADATA_DIR/chaincode.json
→˓")"

(continues on next page)

9.12. External Builders and Launchers 399

https://jira.hyperledger.org/browse/FAB-14086

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

export CORE_PEER_TLS_ENABLED="true"
export CORE_TLS_CLIENT_CERT_FILE="$RUN_METADATA_DIR/client.crt"
export CORE_TLS_CLIENT_KEY_FILE="$RUN_METADATA_DIR/client.key"
export CORE_PEER_TLS_ROOTCERT_FILE="$RUN_METADATA_DIR/root.crt"
export CORE_PEER_LOCALMSPID="$(jq -r .mspid "$RUN_METADATA_DIR/chaincode.json")"

populate the key and certificate material used by the go chaincode shim
jq -r .client_cert "$RUN_METADATA_DIR/chaincode.json" > "$CORE_TLS_CLIENT_CERT_FILE"
jq -r .client_key "$RUN_METADATA_DIR/chaincode.json" > "$CORE_TLS_CLIENT_KEY_FILE"
jq -r .root_cert "$RUN_METADATA_DIR/chaincode.json" > "$CORE_PEER_TLS_ROOTCERT_FILE"
if [-z "$(jq -r .client_cert "$RUN_METADATA_DIR/chaincode.json")"]; then

export CORE_PEER_TLS_ENABLED="false"
fi

exec the chaincode to replace the script with the chaincode process
exec "$BUILD_OUTPUT_DIR/chaincode" -peer.address="$(jq -r .peer_address "$ARTIFACTS/
→˓chaincode.json")"

9.12.2 Configuring external builders and launchers

Configuring the peer to use external builders involves adding an externalBuilder element under the chaincode config-
uration block in the core.yaml that defines external builders. Each external builder definition must include a name
(used for logging) and the path to parent of the bin directory containing the builder scripts.

An optional list of environment variable names to propagate from the peer when invoking the external builder scripts
can also be provided.

The following example defines two external builders:

chaincode:
externalBuilders:
- name: my-golang-builder
path: /builders/golang
propagateEnvironment:
- GOPROXY
- GONOPROXY
- GOSUMDB
- GONOSUMDB

- name: noop-builder
path: /builders/binary

In this example, the implementation of “my-golang-builder” is contained within the /builders/golang direc-
tory and its build scripts are located in /builders/golang/bin. When the peer invokes any of the build
scripts associated with “my-golang-builder”, it will propagate only the values of the environment variables in the
propagateEnvironment.

Note: The following environment variables are always propagated to external builders:

• LD_LIBRARY_PATH

• LIBPATH

• PATH

• TMPDIR

When an externalBuilder configuration is present, the peer will iterate over the list of builders in the order
provided, invoking bin/detect until one completes successfully. If no builder completes detect successfully,

400 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

the peer will fallback to using the legacy Docker build process implemented within the peer. This means that external
builders are completely optional.

In the example above, the peer will attempt to use “my-golang-builder”, followed by “noop-builder”, and finally the
peer internal build process.

9.12.3 Chaincode packages

As part of the new lifecycle introduced with Fabric 2.0, the chaincode package format changed from serialized protocol
buffer messages to a gzip compressed POSIX tape archive. Chaincode packages created with peer lifecycle
chaincode package use this new format.

Lifecycle chaincode package contents

A lifecycle chaincode package contains two files. The first file, code.tar.gz is a gzip compressed POSIX tape
archive. This file includes the source artifacts for the chaincode. Packages created by the peer CLI will place the
chaincode implementation source under the src directory and chaincode metadata (like CouchDB indexes) under the
META-INF directory.

The second file, metadata.json is a JSON document with three keys:

• type: the chaincode type (e.g. GOLANG, JAVA, NODE)

• path: for go chaincode, the GOPATH or GOMOD relative path to the main chaincode package; undefined for
other types

• label: the chaincode label that is used to generate the package-id by which the package is identified within
the new chaincode lifecycle process.

Note that the type and path fields are only utilized by docker platform builds.

Chaincode packages and external builders

When a chaincode package is installed to a peer, the contents of code.tar.gz and metadata.json are not
processed prior to calling external builders, except for the label field that is used by the new lifecycle process to
compute the package id. This affords users a great deal of flexibility in how they package source and metadata that
will be processed by external builders and launchers.

For example, a custom chaincode package could be constructed that contains a pre-compiled, implementation of
chaincode in code.tar.gz with a metadata.json that allows a binary buildpack to detect the custom package,
validate the hash of the binary, and run the program as chaincode.

Another example would be a chaincode package that only contains state database index definitions and the data neces-
sary for an external launcher to connect to a running chaincode server. In this case, the build process would simply
extract the metadata from the process and release would present it to the peer.

The only requirements are that code.tar.gz can only contain regular file and directory entries, and that the entries
cannot contain paths that would result in files being written outside of the logical root of the chaincode package.

9.13 Chaincode as an external service

Fabric v2.0 supports chaincode deployment and execution outside of Fabric that enables users to manage a chaincode
runtime independently of the peer. This facilitates deployment of chaincode on Fabric cloud deployments such as
Kubernetes. Instead of building and launching the chaincode on every peer, chaincode can now run as a service

9.13. Chaincode as an external service 401

hyperledger-fabricdocs Documentation, Release master

whose lifecycle is managed outside of Fabric. This capability leverages the Fabric v2.0 external builder and launcher
functionality which enables operators to extend a peer with programs to build, launch, and discover chaincode. Before
reading this topic you should become familiar with the External Builder and Launcher content.

Prior to the availability of the external builders, the chaincode package content was required to be a set of source
code files for a particular language which could be built and launched as a chaincode binary. The new external build
and launcher functionality now allows users to optionally customize the build process. With respect to running the
chaincode as an external service, the build process allows you to specify the endpoint information of the server where
the chaincode is running. Hence the package simply consists of the externally running chaincode server endpoint
information and TLS artifacts for secure connection. TLS is optional but highly recommended for all environments
except a simple test environment.

The rest of this topic describes how to configure chaincode as an external service:

• Packaging chaincode

• Configuring a peer to process external chaincode

• External builder and launcher sample scripts

• Writing chaincode to run as an external service

• Deploying the chaincode

• Running the chaincode as an external service

Note: This is an advanced feature that will likely require custom packaging of the peer image. For example, the
following samples use jq and bash, which are not included in the current official fabric-peer image.

9.13.1 Packaging chaincode

With the Fabric v2.0 chaincode lifecycle, chaincode is packaged and installed in a .tar.gz format. The following
myccpackage.tgz archive demonstrates the required structure:

$ tar xvfz myccpackage.tgz
metadata.json
code.tar.gz

The chaincode package should be used to provide two pieces of information to the external builder and launcher
process

• identify if the chaincode is an external service. The bin/detect section describes an approach using the
metadata.json file

• provide chaincode endpoint information in a connection.json file placed in the release directory. The
bin/run section describes the connection.json file

There is plenty of flexibility to gathering the above information. The sample scripts in the External builder and
launcher sample scripts illustrate a simple approach to providing the information. As an example of flexibility, con-
sider packaging couchdb index files (see Add the index to your chaincode folder). Sample scripts below describe an
approach to packaging the files into code.tar.gz.

tar cfz code.tar.gz connection.json metadata
tar cfz $1-pkg.tgz metadata.json code.tar.gz

9.13.2 Configuring a peer to process external chaincode

In this section we go over the configuration needed

402 Chapter 9. Operations Guides

./cc_launcher.html
./cc_launcher.html#chaincode-packages
couchdb_tutorial.html#add-the-index-to-your-chaincode-folder

hyperledger-fabricdocs Documentation, Release master

• to detect if the chaincode package identifies an external chaincode service

• to create the connection.json file in the release directory

Modify the peer core.yaml to include the externalBuilder

Assume the scripts are on the peer in the bin directory as follows

<fully qualified path on the peer's env>
bin

build
detect
release

Modify the chaincode stanza of the peer core.yaml file to include the externalBuilders configuration
element:

externalBuilders:
- name: myexternal

path: <fully qualified path on the peer's env>

External builder and launcher sample scripts

To help understand what each script needs to contain to work with the chaincode as an external service, this section
contains samples of bin/detect bin/build, bin/release, and bin/run scripts.

Note: These samples use the jq command to parse json. You can run jq --version to check if you have it
installed. Otherwise, install jq or suitably modify the scripts.

bin/detect

The bin/detect script is responsible for determining whether or not a buildpack should be used to build a
chaincode package and launch it. For chaincode as an external service, the sample script looks for a type property
set to external in the metadata.json file:

{"path":"","type":"external","label":"mycc"}

The peer invokes detect with two arguments:

bin/detect CHAINCODE_SOURCE_DIR CHAINCODE_METADATA_DIR

A sample bin/detect script could contain:

#!/bin/bash

set -euo pipefail

METADIR=$2
#check if the "type" field is set to "external"
if ["$(jq -r .type "$METADIR/metadata.json")" == "external"]; then

exit 0
fi

exit 1

9.13. Chaincode as an external service 403

hyperledger-fabricdocs Documentation, Release master

bin/build

For chaincode as an external service, the sample build script assumes the chaincode package’s code.tar.gz file
contains connection.json which it simply copies to the BUILD_OUTPUT_DIR. The peer invokes the build
script with three arguments:

bin/build CHAINCODE_SOURCE_DIR CHAINCODE_METADATA_DIR BUILD_OUTPUT_DIR

A sample bin/build script could contain:

#!/bin/bash

set -euo pipefail

SOURCE=$1
OUTPUT=$3

#external chaincodes expect connection.json file in the chaincode package
if [! -f "$SOURCE/connection.json"]; then

>&2 echo "$SOURCE/connection.json not found"
exit 1

fi

#simply copy the endpoint information to specified output location
cp $SOURCE/connection.json $OUTPUT/connection.json

if [-d "$SOURCE/metadata"]; then
cp -a $SOURCE/metadata $OUTPUT/metadata

fi

exit 0

bin/release

For chaincode as an external service, the bin/release script is responsible for providing the connection.
json to the peer by placing it in the RELEASE_OUTPUT_DIR. The connection.json file has the following
JSON structure

• address - chaincode server endpoint accessible from peer. Must be specified in “:” format.

• dial_timeout - interval to wait for connection to complete. Specified as a string qualified with time units (e.g,
“10s”, “500ms”, “1m”). Default is “3s” if not specified.

• tls_required - true or false. If false, “client_auth_required”, “client_key”, “client_cert”, and “root_cert” are not
required. Default is “true”.

• client_auth_required - if true, “client_key” and “client_cert” are required. Default is false. It is ignored if
tls_required is false.

• client_key - PEM encoded string of the client private key.

• client_cert - PEM encoded string of the client certificate.

• root_cert - PEM encoded string of the server (peer) root certificate.

For example:

404 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

{
"address": "your.chaincode.host.com:9999",
"dial_timeout": "10s",
"tls_required": "true",
"client_auth_required": "true",
"client_key": "-----BEGIN EC PRIVATE KEY----- ... -----END EC PRIVATE KEY-----",
"client_cert": "-----BEGIN CERTIFICATE----- ... -----END CERTIFICATE-----",
"root_cert": "-----BEGIN CERTIFICATE---- ... -----END CERTIFICATE-----"

}

As noted in the bin/build section, this sample assumes the chaincode package directly contains the
connection.json file which the build script copies to the BUILD_OUTPUT_DIR. The peer invokes the release
script with two arguments:

bin/release BUILD_OUTPUT_DIR RELEASE_OUTPUT_DIR

A sample bin/release script could contain:

#!/bin/bash

set -euo pipefail

BLD="$1"
RELEASE="$2"

if [-d "$BLD/metadata"]; then
cp -a "$BLD/metadata/"* "$RELEASE/"

fi

#external chaincodes expect artifacts to be placed under "$RELEASE"/chaincode/server
if [-f $BLD/connection.json]; then

mkdir -p "$RELEASE"/chaincode/server
cp $BLD/connection.json "$RELEASE"/chaincode/server

#if tls_required is true, copy TLS files (using above example, the fully qualified
→˓path for these fils would be "$RELEASE"/chaincode/server/tls)

exit 0
fi

exit 1

9.13.3 Writing chaincode to run as an external service

Currently, the chaincode as an external service model is only supported by GO chaincode shim. In Fabric v2.0, the GO
shim API adds a ChaincodeServer type that developers should use to create a chaincode server. The Invoke
and Query APIs are unaffected. Developers should write to the shim.ChaincodeServer API, then build the
chaincode and run it in the external environment of choice. Here is a simple sample chaincode program to illustrate
the pattern:

package main

import (
"fmt"

(continues on next page)

9.13. Chaincode as an external service 405

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"github.com/hyperledger/fabric-chaincode-go/shim"
pb "github.com/hyperledger/fabric-protos-go/peer"

)

// SimpleChaincode example simple Chaincode implementation
type SimpleChaincode struct {
}

func (s *SimpleChaincode) Init(stub shim.ChaincodeStubInterface) pb.Response {
// init code

}

func (s *SimpleChaincode) Invoke(stub shim.ChaincodeStubInterface) pb.Response {
// invoke code

}

//NOTE - parameters such as ccid and endpoint information are hard coded here for
→˓illustration. This can be passed in in a variety of standard ways
func main() {

//The ccid is assigned to the chaincode on install (using the “peer lifecycle
→˓chaincode install <package>” command) for instance

ccid := "mycc:fcbf8724572d42e859a7dd9a7cd8e2efb84058292017df6e3d89178b64e6c831
→˓"

server := &shim.ChaincodeServer{
CCID: ccid,
Address: "myhost:9999"
CC: new(SimpleChaincode),
TLSProps: shim.TLSProperties{

Disabled: true,
},

}
err := server.Start()
if err != nil {

fmt.Printf("Error starting Simple chaincode: %s", err)
}

}

The key to running the chaincode as an external service is the use of shim.ChaincodeServer. This uses the new
shim API shim.ChaincodeServer with the chaincode service properties described below:

• CCID (string)- CCID should match chaincode’s package name on peer. This is the CCID associated with
the installed chaincode as returned by the peer lifecycle chaincode install <package> CLI
command. This can be obtained post-install using the “peer lifecycle chaincode queryinstalled” command.

• Address (string) - Address is the listen address of the chaincode server

• CC (Chaincode) - CC is the chaincode that handles Init and Invoke

• TLSProps (TLSProperties) - TLSProps is the TLS properties passed to chaincode server

• KaOpts (keepalive.ServerParameters) - KaOpts keepalive options, sensible defaults provided if nil

Then build the chaincode as suitable to your GO environment.

406 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

9.13.4 Deploying the chaincode

When the GO chaincode is ready for deployment, you can package the chaincode as explained in the Packaging
chaincode section and deploy the chaincode as explained in the Fabric chaincode lifecycle concept topic.

9.13.5 Running the chaincode as an external service

Create the chaincode as specified in the Writing chaincode to run as an external service section. Run the built exe-
cutable in your environment of choice, such as Kubernetes or directly as a process on the peer machine.

Using this chaincode as an external service model, installing the chaincode on each peer is no longer required. With
the chaincode endpoint deployed to the peer instead and the chaincode running, you can continue the normal process
of committing the chaincode definition to the channel and invoking the chaincode.

9.14 Error handling

9.14.1 General Overview

Hyperledger Fabric code should use the vendored package github.com/pkg/errors in place of the standard error type
provided by Go. This package allows easy generation and display of stack traces with error messages.

9.14.2 Usage Instructions

github.com/pkg/errors should be used in place of all calls to fmt.Errorf() or errors.New(). Using this
package will generate a call stack that will be appended to the error message.

Using this package is simple and will only require easy tweaks to your code.

First, you’ll need to import github.com/pkg/errors.

Next, update all errors that are generated by your code to use one of the error creation functions (errors.New(), er-
rors.Errorf(), errors.WithMessage(), errors.Wrap(), errors.Wrapf().

Note: See https://godoc.org/github.com/pkg/errors for complete documentation of the available error creation func-
tion. Also, refer to the General guidelines section below for more specific guidelines for using the package for Fabric
code.

Finally, change the formatting directive for any logger or fmt.Printf() calls from %s to %+v to print the call stack along
with the error message.

9.14.3 General guidelines for error handling in Hyperledger Fabric

• If you are servicing a user request, you should log the error and return it.

• If the error comes from an external source, such as a Go library or vendored package, wrap the error using
errors.Wrap() to generate a call stack for the error.

• If the error comes from another Fabric function, add further context, if desired, to the error message using
errors.WithMessage() while leaving the call stack unaffected.

• A panic should not be allowed to propagate to other packages.

9.14. Error handling 407

./chaincode_lifecycle.html
https://godoc.org/github.com/pkg/errors

hyperledger-fabricdocs Documentation, Release master

9.14.4 Example program

The following example program provides a clear demonstration of using the package:

package main

import (
"fmt"

"github.com/pkg/errors"
)

func wrapWithStack() error {
err := createError()
// do this when error comes from external source (go lib or vendor)
return errors.Wrap(err, "wrapping an error with stack")

}
func wrapWithoutStack() error {

err := createError()
// do this when error comes from internal Fabric since it already has stack trace
return errors.WithMessage(err, "wrapping an error without stack")

}
func createError() error {

return errors.New("original error")
}

func main() {
err := createError()
fmt.Printf("print error without stack: %s\n\n", err)
fmt.Printf("print error with stack: %+v\n\n", err)
err = wrapWithoutStack()
fmt.Printf("%+v\n\n", err)
err = wrapWithStack()
fmt.Printf("%+v\n\n", err)

}

9.15 Logging Control

9.15.1 Overview

Logging in the peer and orderer is provided by the common/flogging package. This package supports

• Logging control based on the severity of the message

• Logging control based on the software logger generating the message

• Different pretty-printing options based on the severity of the message

All logs are currently directed to stderr. Global and logger-level control of logging by severity is provided for both
users and developers. There are currently no formalized rules for the types of information provided at each severity
level. When submitting bug reports, developers may want to see full logs down to the DEBUG level.

In pretty-printed logs the logging level is indicated both by color and by a four-character code, e.g, “ERRO” for
ERROR, “DEBU” for DEBUG, etc. In the logging context a logger is an arbitrary name (string) given by developers
to groups of related messages. In the pretty-printed example below, the loggers ledgermgmt, kvledger, and
peer are generating logs.

408 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

2018-11-01 15:32:38.268 UTC [ledgermgmt] initialize -> INFO 002 Initializing ledger
→˓mgmt
2018-11-01 15:32:38.268 UTC [kvledger] NewProvider -> INFO 003 Initializing ledger
→˓provider
2018-11-01 15:32:38.342 UTC [kvledger] NewProvider -> INFO 004 ledger provider
→˓Initialized
2018-11-01 15:32:38.357 UTC [ledgermgmt] initialize -> INFO 005 ledger mgmt
→˓initialized
2018-11-01 15:32:38.357 UTC [peer] func1 -> INFO 006 Auto-detected peer address: 172.
→˓24.0.3:7051
2018-11-01 15:32:38.357 UTC [peer] func1 -> INFO 007 Returning peer0.org1.example.
→˓com:7051

An arbitrary number of loggers can be created at runtime, therefore there is no “master list” of loggers, and logging
control constructs can not check whether logging loggers actually do or will exist.

9.15.2 Logging specification

The logging levels of the peer and orderer commands are controlled by a logging specification, which is set via
the FABRIC_LOGGING_SPEC environment variable.

The full logging level specification is of the form

[<logger>[,<logger>...]=]<level>[:[<logger>[,<logger>...]=]<level>...]

Logging severity levels are specified using case-insensitive strings chosen from

FATAL | PANIC | ERROR | WARNING | INFO | DEBUG

A logging level by itself is taken as the overall default. Otherwise, overrides for individual or groups of loggers can be
specified using the

<logger>[,<logger>...]=<level>

syntax. Examples of specifications:

info - Set default to INFO
warning:msp,gossip=warning:chaincode=info - Default WARNING; Override for msp,
→˓gossip, and chaincode
chaincode=info:msp,gossip=warning:warning - Same as above

9.15.3 Logging format

The logging format of the peer and orderer commands is controlled via the FABRIC_LOGGING_FORMAT envi-
ronment variable. This can be set to a format string, such as the default

"%{color}%{time:2006-01-02 15:04:05.000 MST} [%{module}] %{shortfunc} -> %{level:.4s}
→˓%{id:03x}%{color:reset} %{message}"

to print the logs in a human-readable console format. It can be also set to json to output logs in JSON format.

9.15.4 Chaincode

Chaincode logging is the responsibility of the chaincode developer.

9.15. Logging Control 409

hyperledger-fabricdocs Documentation, Release master

As independently executed programs, user-provided chaincodes may technically also produce output on stdout/stderr.
While naturally useful for “devmode”, these channels are normally disabled on a production network to mitigate abuse
from broken or malicious code. However, it is possible to enable this output even for peer-managed containers (e.g.
“netmode”) on a per-peer basis via the CORE_VM_DOCKER_ATTACHSTDOUT=true configuration option.

Once enabled, each chaincode will receive its own logging channel keyed by its container-id. Any output written to
either stdout or stderr will be integrated with the peer’s log on a per-line basis. It is not recommended to enable this
for production.

Stdout and stderr not forwarded to the peer container can be viewed from the chaincode container using standard
commands for your container platform.

docker logs <chaincode_container_id>
kubectl logs -n <namespace> <pod_name>
oc logs -n <namespace> <pod_name>

9.16 Securing Communication With Transport Layer Security (TLS)

Fabric supports for secure communication between nodes using TLS. TLS communication can use both one-way
(server only) and two-way (server and client) authentication.

9.16.1 Configuring TLS for peers nodes

A peer node is both a TLS server and a TLS client. It is the former when another peer node, application, or the CLI
makes a connection to it and the latter when it makes a connection to another peer node or orderer.

To enable TLS on a peer node set the following peer configuration properties:

• peer.tls.enabled = true

• peer.tls.cert.file = fully qualified path of the file that contains the TLS server certificate

• peer.tls.key.file = fully qualified path of the file that contains the TLS server private key

• peer.tls.rootcert.file = fully qualified path of the file that contains the certificate chain of the cer-
tificate authority(CA) that issued TLS server certificate

By default, TLS client authentication is turned off when TLS is enabled on a peer node. This means that the peer node
will not verify the certificate of a client (another peer node, application, or the CLI) during a TLS handshake. To enable
TLS client authentication on a peer node, set the peer configuration property peer.tls.clientAuthRequired
to true and set the peer.tls.clientRootCAs.files property to the CA chain file(s) that contain(s) the CA
certificate chain(s) that issued TLS certificates for your organization’s clients.

By default, a peer node will use the same certificate and private key pair when acting as a TLS server and client.
To use a different certificate and private key pair for the client side, set the peer.tls.clientCert.file and
peer.tls.clientKey.file configuration properties to the fully qualified path of the client certificate and key
file, respectively.

TLS with client authentication can also be enabled by setting the following environment variables:

• CORE_PEER_TLS_ENABLED = true

• CORE_PEER_TLS_CERT_FILE = fully qualified path of the server certificate

• CORE_PEER_TLS_KEY_FILE = fully qualified path of the server private key

• CORE_PEER_TLS_ROOTCERT_FILE = fully qualified path of the CA chain file

• CORE_PEER_TLS_CLIENTAUTHREQUIRED = true

410 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

• CORE_PEER_TLS_CLIENTROOTCAS_FILES = fully qualified path of the CA chain file

• CORE_PEER_TLS_CLIENTCERT_FILE = fully qualified path of the client certificate

• CORE_PEER_TLS_CLIENTKEY_FILE = fully qualified path of the client key

When client authentication is enabled on a peer node, a client is required to send its certificate during a TLS handshake.
If the client does not send its certificate, the handshake will fail and the peer will close the connection.

When a peer joins a channel, root CA certificate chains of the channel members are read from the config block of the
channel and are added to the TLS client and server root CAs data structure. So, peer to peer communication, peer to
orderer communication should work seamlessly.

9.16.2 Configuring TLS for orderer nodes

To enable TLS on an orderer node, set the following orderer configuration properties:

• General.TLS.Enabled = true

• General.TLS.PrivateKey = fully qualified path of the file that contains the server private key

• General.TLS.Certificate = fully qualified path of the file that contains the server certificate

• General.TLS.RootCAs = fully qualified path of the file that contains the certificate chain of the CA that
issued TLS server certificate

By default, TLS client authentication is turned off on orderer, as is the case with peer. To enable TLS client authenti-
cation, set the following config properties:

• General.TLS.ClientAuthRequired = true

• General.TLS.ClientRootCAs = fully qualified path of the file that contains the certificate chain of the
CA that issued the TLS server certificate

TLS with client authentication can also be enabled by setting the following environment variables:

• ORDERER_GENERAL_TLS_ENABLED = true

• ORDERER_GENERAL_TLS_PRIVATEKEY = fully qualified path of the file that contains the server private key

• ORDERER_GENERAL_TLS_CERTIFICATE = fully qualified path of the file that contains the server certificate

• ORDERER_GENERAL_TLS_ROOTCAS = fully qualified path of the file that contains the certificate chain of
the CA that issued TLS server certificate

• ORDERER_GENERAL_TLS_CLIENTAUTHREQUIRED = true

• ORDERER_GENERAL_TLS_CLIENTROOTCAS = fully qualified path of the file that contains the certificate
chain of the CA that issued TLS server certificate

9.16.3 Configuring TLS for the peer CLI

The following environment variables must be set when running peer CLI commands against a TLS enabled peer node:

• CORE_PEER_TLS_ENABLED = true

• CORE_PEER_TLS_ROOTCERT_FILE = fully qualified path of the file that contains cert chain of the CA that
issued the TLS server cert

If TLS client authentication is also enabled on the remote server, the following variables must to be set in addition to
those above:

• CORE_PEER_TLS_CLIENTAUTHREQUIRED = true

9.16. Securing Communication With Transport Layer Security (TLS) 411

hyperledger-fabricdocs Documentation, Release master

• CORE_PEER_TLS_CLIENTCERT_FILE = fully qualified path of the client certificate

• CORE_PEER_TLS_CLIENTKEY_FILE = fully qualified path of the client private key

When running a command that connects to orderer service, like peer channel <create|update|fetch> or peer chaincode
<invoke>, following command line arguments must also be specified if TLS is enabled on the orderer:

• –tls

• –cafile <fully qualified path of the file that contains cert chain of the orderer CA>

If TLS client authentication is enabled on the orderer, the following arguments must be specified as well:

• –clientauth

• –keyfile <fully qualified path of the file that contains the client private key>

• –certfile <fully qualified path of the file that contains the client certificate>

9.16.4 Debugging TLS issues

Before debugging TLS issues, it is advisable to enable GRPC debug on both the TLS client and the server side to get
additional information. To enable GRPC debug, set the environment variable FABRIC_LOGGING_SPEC to include
grpc=debug. For example, to set the default logging level to INFO and the GRPC logging level to DEBUG, set the
logging specification to grpc=debug:info.

If you see the error message remote error: tls: bad certificate on the client side, it usually means
that the TLS server has enabled client authentication and the server either did not receive the correct client certificate
or it received a client certificate that it does not trust. Make sure the client is sending its certificate and that it has been
signed by one of the CA certificates trusted by the peer or orderer node.

If you see the error message remote error: tls: bad certificate in your chaincode logs, ensure that
your chaincode has been built using the chaincode shim provided with Fabric v1.1 or newer.

9.17 Configuring and operating a Raft ordering service

Audience: Raft ordering node admins

9.17.1 Conceptual overview

For a high level overview of the concept of ordering and how the supported ordering service implementations (includ-
ing Raft) work at a high level, check out our conceptual documentation on the Ordering Service.

To learn about the process of setting up an ordering node — including the creation of a local MSP and the creation of
a genesis block — check out our documentation on Setting up an ordering node.

9.17.2 Configuration

While every Raft node must be added to the system channel, a node does not need to be added to every application
channel. Additionally, you can remove and add a node from a channel dynamically without affecting the other nodes,
a process described in the Reconfiguration section below.

Raft nodes identify each other using TLS pinning, so in order to impersonate a Raft node, an attacker needs to obtain
the private key of its TLS certificate. As a result, it is not possible to run a Raft node without a valid TLS configuration.

A Raft cluster is configured in two planes:

412 Chapter 9. Operations Guides

./orderer/ordering_service.html
orderer_deploy.html

hyperledger-fabricdocs Documentation, Release master

• Local configuration: Governs node specific aspects, such as TLS communication, replication behavior, and file
storage.

• Channel configuration: Defines the membership of the Raft cluster for the corresponding channel, as well as
protocol specific parameters such as heartbeat frequency, leader timeouts, and more.

Recall, each channel has its own instance of a Raft protocol running. Thus, a Raft node must be referenced in the
configuration of each channel it belongs to by adding its server and client TLS certificates (in PEM format) to the
channel config. This ensures that when other nodes receive a message from it, they can securely confirm the identity
of the node that sent the message.

The following section from configtx.yaml shows three Raft nodes (also called “consenters”) in the channel:

Consenters:
- Host: raft0.example.com
Port: 7050
ClientTLSCert: path/to/ClientTLSCert0
ServerTLSCert: path/to/ServerTLSCert0

- Host: raft1.example.com
Port: 7050
ClientTLSCert: path/to/ClientTLSCert1
ServerTLSCert: path/to/ServerTLSCert1

- Host: raft2.example.com
Port: 7050
ClientTLSCert: path/to/ClientTLSCert2
ServerTLSCert: path/to/ServerTLSCert2

Note: an orderer will be listed as a consenter in the system channel as well as any application channels they’re joined
to.

When the channel config block is created, the configtxgen tool reads the paths to the TLS certificates, and replaces
the paths with the corresponding bytes of the certificates.

Local configuration

The orderer.yaml has two configuration sections that are relevant for Raft orderers:

Cluster, which determines the TLS communication configuration. And consensus, which determines where Write
Ahead Logs and Snapshots are stored.

Cluster parameters:

By default, the Raft service is running on the same gRPC server as the client facing server (which is used to send
transactions or pull blocks), but it can be configured to have a separate gRPC server with a separate port.

This is useful for cases where you want TLS certificates issued by the organizational CAs, but used only by the cluster
nodes to communicate among each other, and TLS certificates issued by a public TLS CA for the client facing API.

• ClientCertificate, ClientPrivateKey: The file path of the client TLS certificate and corresponding
private key.

• ListenPort: The port the cluster listens on. If blank, the port is the same port as the orderer general port
(general.listenPort)

• ListenAddress: The address the cluster service is listening on.

• ServerCertificate, ServerPrivateKey: The TLS server certificate key pair which is used when the
cluster service is running on a separate gRPC server (different port).

• SendBufferSize: Regulates the number of messages in the egress buffer.

9.17. Configuring and operating a Raft ordering service 413

hyperledger-fabricdocs Documentation, Release master

Note: ListenPort, ListenAddress, ServerCertificate, ServerPrivateKey must be either set to-
gether or unset together. If they are unset, they are inherited from the general TLS section, in example general.
tls.{privateKey, certificate}.

There are also hidden configuration parameters for general.cluster which can be used to further fine tune the
cluster communication or replication mechanisms:

• DialTimeout, RPCTimeout: Specify the timeouts of creating connections and establishing streams.

• ReplicationBufferSize: the maximum number of bytes that can be allocated for each in-memory buffer
used for block replication from other cluster nodes. Each channel has its own memory buffer. Defaults to
20971520 which is 20MB.

• PullTimeout: the maximum duration the ordering node will wait for a block to be received before it aborts.
Defaults to five seconds.

• ReplicationRetryTimeout: The maximum duration the ordering node will wait between two consecu-
tive attempts. Defaults to five seconds.

• ReplicationBackgroundRefreshInterval: the time between two consecutive attempts to replicate
existing channels that this node was added to, or channels that this node failed to replicate in the past. Defaults
to five minutes.

• TLSHandshakeTimeShift: If the TLS certificates of the ordering nodes expire and are not replaced in
time (see TLS certificate rotation below), communication between them cannot be established, and it will be
impossible to send new transactions to the ordering service. To recover from such a scenario, it is possible to
make TLS handshakes between ordering nodes consider the time to be shifted backwards a given amount that
is configured to TLSHandshakeTimeShift. In order to be as uninvasive as possible, this configuration op-
tion only effects ordering nodes that use a separate gRPC server for their intra-cluster communication. If your
cluster is communicating via the same gRPC server that is used to service clients and peers, you need to first re-
configure your orderer by additionally setting general.cluster.ListenPort, general.cluster.
ListenAddress, ServerCertificate and ServerPrivateKey, and then restarting the orderer in
order for the new configuration to take effect.

Consensus parameters:

• WALDir: the location at which Write Ahead Logs for etcd/raft are stored. Each channel will have its own
subdirectory named after the channel ID.

• SnapDir: specifies the location at which snapshots for etcd/raft are stored. Each channel will have its
own subdirectory named after the channel ID.

There is also a hidden configuration parameter that can be set by adding it to the consensus section in the orderer.
yaml:

• EvictionSuspicion: The cumulative period of time of channel eviction suspicion that triggers the node to
pull blocks from other nodes and see if it has been evicted from the channel in order to confirm its suspicion.
If the suspicion is confirmed (the inspected block doesn’t contain the node’s TLS certificate), the node halts its
operation for that channel. A node suspects its channel eviction when it doesn’t know about any elected leader
nor can be elected as leader in the channel. Defaults to 10 minutes.

Channel configuration

Apart from the (already discussed) consenters, the Raft channel configuration has an Options section which relates
to protocol specific knobs. It is currently not possible to change these values dynamically while a node is running. The
node have to be reconfigured and restarted.

The only exceptions is SnapshotIntervalSize, which can be adjusted at runtime.

414 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

Note: It is recommended to avoid changing the following values, as a misconfiguration might lead to a state where
a leader cannot be elected at all (i.e, if the TickInterval and ElectionTick are extremely low). Situations
where a leader cannot be elected are impossible to resolve, as leaders are required to make changes. Because of such
dangers, we suggest not tuning these parameters for most use cases.

• TickInterval: The time interval between two Node.Tick invocations.

• ElectionTick: The number of Node.Tick invocations that must pass between elections. That is, if a
follower does not receive any message from the leader of current term before ElectionTick has elapsed, it
will become candidate and start an election.

• ElectionTick must be greater than HeartbeatTick.

• HeartbeatTick: The number of Node.Tick invocations that must pass between heartbeats. That is, a
leader sends heartbeat messages to maintain its leadership every HeartbeatTick ticks.

• MaxInflightBlocks: Limits the max number of in-flight append blocks during optimistic replication phase.

• SnapshotIntervalSize: Defines number of bytes per which a snapshot is taken.

9.17.3 Reconfiguration

The Raft orderer supports dynamic (meaning, while the channel is being serviced) addition and removal of nodes as
long as only one node is added or removed at a time. Note that your cluster must be operational and able to achieve
consensus before you attempt to reconfigure it. For instance, if you have three nodes, and two nodes fail, you will not
be able to reconfigure your cluster to remove those nodes. Similarly, if you have one failed node in a channel with
three nodes, you should not attempt to rotate a certificate, as this would induce a second fault. As a rule, you should
never attempt any configuration changes to the Raft consenters, such as adding or removing a consenter, or rotating a
consenter’s certificate unless all consenters are online and healthy.

If you do decide to change these parameters, it is recommended to only attempt such a change during a maintenance
cycle. Problems are most likely to occur when a configuration is attempted in clusters with only a few nodes while a
node is down. For example, if you have three nodes in your consenter set and one of them is down, it means you have
two out of three nodes alive. If you extend the cluster to four nodes while in this state, you will have only two out of
four nodes alive, which is not a quorum. The fourth node won’t be able to onboard because nodes can only onboard
to functioning clusters (unless the total size of the cluster is one or two).

So by extending a cluster of three nodes to four nodes (while only two are alive) you are effectively stuck until the
original offline node is resurrected.

Adding a new node to a Raft cluster is done by:

1. Adding the TLS certificates of the new node to the channel through a channel configuration update transaction.
Note: the new node must be added to the system channel before being added to one or more application channels.

2. Fetching the latest config block of the system channel from an orderer node that’s part of the system channel.

3. Ensuring that the node that will be added is part of the system channel by checking that the config block
that was fetched includes the certificate of (soon to be) added node.

4. Starting the new Raft node with the path to the config block in the General.BootstrapFile configura-
tion parameter.

5. Waiting for the Raft node to replicate the blocks from existing nodes for all channels its certificates have been
added to. After this step has been completed, the node begins servicing the channel.

6. Adding the endpoint of the newly added Raft node to the channel configuration of all channels.

It is possible to add a node that is already running (and participates in some channels already) to a channel while the
node itself is running. To do this, simply add the node’s certificate to the channel config of the channel. The node will
autonomously detect its addition to the new channel (the default value here is five minutes, but if you want the node to

9.17. Configuring and operating a Raft ordering service 415

hyperledger-fabricdocs Documentation, Release master

detect the new channel more quickly, reboot the node) and will pull the channel blocks from an orderer in the channel,
and then start the Raft instance for that chain.

After it has successfully done so, the channel configuration can be updated to include the endpoint of the new Raft
orderer.

Removing a node from a Raft cluster is done by:

1. Removing its endpoint from the channel config for all channels, including the system channel controlled by the
orderer admins.

2. Removing its entry (identified by its certificates) from the channel configuration for all channels. Again, this
includes the system channel.

3. Shut down the node.

Removing a node from a specific channel, but keeping it servicing other channels is done by:

1. Removing its endpoint from the channel config for the channel.

2. Removing its entry (identified by its certificates) from the channel configuration.

3. The second phase causes:

• The remaining orderer nodes in the channel to cease communicating with the removed orderer node in the
context of the removed channel. They might still be communicating on other channels.

• The node that is removed from the channel would autonomously detect its removal either immediately
or after EvictionSuspicion time has passed (10 minutes by default) and will shut down its Raft
instance.

TLS certificate rotation for an orderer node

All TLS certificates have an expiration date that is determined by the issuer. These expiration dates can range from 10
years from the date of issuance to as little as a few months, so check with your issuer. Before the expiration date, you
will need to rotate these certificates on the node itself and every channel the node is joined to, including the system
channel.

For each channel the node participates in:

1. Update the channel configuration with the new certificates.

2. Replace its certificates in the file system of the node.

3. Restart the node.

Because a node can only have a single TLS certificate key pair, the node will be unable to service channels its new
certificates have not been added to during the update process, degrading the capacity of fault tolerance. Because of
this, once the certificate rotation process has been started, it should be completed as quickly as possible.

If for some reason the rotation of the TLS certificates has started but cannot complete in all channels, it is advised to
rotate TLS certificates back to what they were and attempt the rotation later.

Certificate expiration related authentication

Whenever a client with an identity that has an expiration date (such as an identity based on an x509 certificate) sends
a transaction to the orderer, the orderer checks whether its identity has expired, and if so, rejects the transaction
submission.

However, it is possible to configure the orderer to ignore expiration of identities via enabling the General.
Authentication.NoExpirationChecks configuration option in the orderer.yaml.

416 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

This should be done only under extreme circumstances, where the certificates of the administrators have expired, and
due to this it is not possible to send configuration updates to replace the administrator certificates with renewed ones,
because the config transactions signed by the existing administrators are now rejected because they have expired. After
updating the channel it is recommended to change back to the default configuration which enforces expiration checks
on identities.

9.17.4 Metrics

For a description of the Operations Service and how to set it up, check out our documentation on the Operations
Service.

For a list at the metrics that are gathered by the Operations Service, check out our reference material on metrics.

While the metrics you prioritize will have a lot to do with your particular use case and configuration, there are two
metrics in particular you might want to monitor:

• consensus_etcdraft_is_leader: identifies which node in the cluster is currently leader. If no nodes
have this set, you have lost quorum.

• consensus_etcdraft_data_persist_duration: indicates how long write operations to the Raft
cluster’s persistent write ahead log take. For protocol safety, messages must be persisted durably, calling fsync
where appropriate, before they can be shared with the consenter set. If this value begins to climb, this node may
not be able to participate in consensus (which could lead to a service interruption for this node and possibly the
network).

9.17.5 Troubleshooting

• The more stress you put on your nodes, the more you might have to change certain parameters. As with any
system, computer or mechanical, stress can lead to a drag in performance. As we noted in the conceptual
documentation, leader elections in Raft are triggered when follower nodes do not receive either a “heartbeat”
messages or an “append” message that carries data from the leader for a certain amount of time. Because Raft
nodes share the same communication layer across channels (this does not mean they share data — they do not!),
if a Raft node is part of the consenter set in many channels, you might want to lengthen the amount of time it
takes to trigger an election to avoid inadvertent leader elections.

9.18 Migrating from Kafka to Raft

Note: this document presumes a high degree of expertise with channel configuration update transactions. As
the process for migration involves several channel configuration update transactions, do not attempt to migrate
from Kafka to Raft without first familiarizing yourself with the Add an Organization to a Channel tutorial,
which describes the channel update process in detail.

For users who want to transition channels from using Kafka-based ordering services to Raft-based ordering services,
nodes at v1.4.2 or higher allow this to be accomplished through a series of configuration update transactions on each
channel in the network.

This tutorial will describe this process at a high level, calling out specific details where necessary, rather than show
each command in detail.

9.18.1 Assumptions and considerations

Before attempting migration, take the following into account:

9.18. Migrating from Kafka to Raft 417

operations_service.html
operations_service.html
metrics_reference.html
channel_update_tutorial.html
./orderer/ordering_service.html#Raft

hyperledger-fabricdocs Documentation, Release master

1. This process is solely for migration from Kafka to Raft. Migrating between any other orderer consensus types
is not currently supported.

2. Migration is one way. Once the ordering service is migrated to Raft, and starts committing transactions, it is not
possible to go back to Kafka.

3. Because the ordering nodes must go down and be brought back up, downtime must be allowed during the
migration.

4. Recovering from a botched migration is possible only if a backup is taken at the point in migration prescribed
later in this document. If you do not take a backup, and migration fails, you will not be able to recover your
previous state.

5. All channels must be migrated during the same maintenance window. It is not possible to migrate only some
channels before resuming operations.

6. At the end of the migration process, every channel will have the same consenter set of Raft nodes. This is the
same consenter set that will exist in the ordering system channel. This makes it possible to diagnose a successful
migration.

7. Migration is done in place, utilizing the existing ledgers for the deployed ordering nodes. Addition or removal
of orderers should be performed after the migration.

9.18.2 High level migration flow

Migration is carried out in five phases.

1. The system is placed into a maintenance mode where application transactions are rejected and only ordering
service admins can make changes to the channel configuration.

2. The system is stopped, and a backup is taken in case an error occurs during migration.

3. The system is started, and each channel has its consensus type and metadata modified.

4. The system is restarted and is now operating on Raft consensus; each channel is checked to confirm that it has
successfully achieved a quorum.

5. The system is moved out of maintenance mode and normal function resumes.

9.18.3 Preparing to migrate

There are several steps you should take before attempting to migrate.

• Design the Raft deployment, deciding which ordering service nodes are going to remain as Raft consenters. You
should deploy at least three ordering nodes in your cluster, but note that deploying a consenter set of at least
five nodes will maintain high availability should a node goes down, whereas a three node configuration will lose
high availability once a single node goes down for any reason (for example, as during a maintenance cycle).

• Prepare the material for building the Raft Metadata configuration. Note: all the channels should receive
the same Raft Metadata configuration. Refer to the Raft configuration guide for more information on these
fields. Note: you may find it easiest to bootstrap a new ordering network with the Raft consensus protocol, then
copy and modify the consensus metadata section from its config. In any case, you will need (for each ordering
node):

– hostname

– port

– server certificate

– client certificate

418 Chapter 9. Operations Guides

raft_configuration.html

hyperledger-fabricdocs Documentation, Release master

• Compile a list of all channels (system and application) in the system. Make sure you have the correct credentials
to sign the configuration updates. For example, the relevant ordering service admin identities.

• Ensure all ordering service nodes are running the same version of Fabric, and that this version is v1.4.2 or
greater.

• Ensure all peers are running at least v1.4.2 of Fabric. Make sure all channels are configured with the channel
capability that enables migration.

– Orderer capability V1_4_2 (or above).

– Channel capability V1_4_2 (or above).

Entry to maintenance mode

Prior to setting the ordering service into maintenance mode, it is recommended that the peers and clients of the network
be stopped. Leaving peers or clients up and running is safe, however, because the ordering service will reject all of
their requests, their logs will fill with benign but misleading failures.

Follow the process in the Add an Organization to a Channel tutorial to pull, translate, and scope the configuration of
each channel, starting with the system channel. The only field you should change during this step is in the channel
configuration at /Channel/Orderer/ConsensusType. In a JSON representation of the channel configuration,
this would be .channel_group.groups.Orderer.values.ConsensusType.

The ConsensusType is represented by three values: Type, Metadata, and State, where:

• Type is either kafka or etcdraft (Raft). This value can only be changed while in maintenance mode.

• Metadata will be empty if the Type is kafka, but must carry valid Raft metadata if the ConsensusType is
etcdraft. More on this below.

• State is either STATE_NORMAL, when the channel is processing transactions, or STATE_MAINTENANCE,
during the migration process.

In the first step of the channel configuration update, only change the State from STATE_NORMAL to
STATE_MAINTENANCE. Do not change the Type or the Metadata field yet. Note that the Type should currently
be kafka.

While in maintenance mode, normal transactions, config updates unrelated to migration, and Deliver requests from
the peers used to retrieve new blocks are rejected. This is done in order to prevent the need to both backup, and if
necessary restore, peers during migration, as they only receive updates once migration has successfully completed. In
other words, we want to keep the ordering service backup point, which is the next step, ahead of the peer’s ledger, in
order to be able to perform rollback if needed. However, ordering node admins can issue Deliver requests (which
they need to be able to do in order to continue the migration process).

Verify that each ordering service node has entered maintenance mode on each of the channels. This can be done by
fetching the last config block and making sure that the Type, Metadata, State on each channel is kafka, empty
(recall that there is no metadata for Kafka), and STATE_MAINTENANCE, respectively.

If the channels have been updated successfully, the ordering service is now ready for backup.

Backup files and shut down servers

Shut down all ordering nodes, Kafka servers, and Zookeeper servers. It is important to shutdown the ordering service
nodes first. Then, after allowing the Kafka service to flush its logs to disk (this typically takes about 30 seconds, but
might take longer depending on your system), the Kafka servers should be shut down. Shutting down the Kafka
brokers at the same time as the orderers can result in the filesystem state of the orderers being more recent than the
Kafka brokers which could prevent your network from starting.

9.18. Migrating from Kafka to Raft 419

channel_update_tutorial.html

hyperledger-fabricdocs Documentation, Release master

Create a backup of the file system of these servers. Then restart the Kafka service and then the ordering service nodes.

Switch to Raft in maintenance mode

The next step in the migration process is another channel configuration update for each channel. In this configuration
update, switch the Type to etcdraft (for Raft) while keeping the State in STATE_MAINTENANCE, and fill
in the Metadata configuration. It is highly recommended that the Metadata configuration be identical on all
channels. If you want to establish different consenter sets with different nodes, you will be able to reconfigure the
Metadata configuration after the system is restarted into etcdraft mode. Supplying an identical metadata object,
and hence, an identical consenter set, means that when the nodes are restarted, if the system channel forms a quorum
and can exit maintenance mode, other channels will likely be able do the same. Supplying different consenter sets to
each channel can cause one channel to succeed in forming a cluster while another channel will fail.

Then, validate that each ordering service node has committed the ConsensusType change configuration update by
pulling and inspecting the configuration of each channel.

Note: For each channel, the transaction that changes the ConsensusType must be the last configuration transaction
before restarting the nodes (in the next step). If some other configuration transaction happens after this step, the nodes
will most likely crash on restart, or result in undefined behavior.

Restart and validate leader

Note: exit of maintenance mode must be done after restart.

After the ConsensusType update has been completed on each channel, stop all ordering service nodes, stop all
Kafka brokers and Zookeepers, and then restart only the ordering service nodes. They should restart as Raft nodes,
form a cluster per channel, and elect a leader on each channel.

Note: Since the Raft-based ordering service uses client and server TLS certificates for authentication between orderer
nodes, additional configurations are required before you start them again, see Section: Local Configuration for more
details.

After restart process finished, make sure to validate that a leader has been elected on each channel by inspecting the
node logs (you can see what to look for below). This will confirm that the process has been completed successfully.

When a leader is elected, the log will show, for each channel:

"Raft leader changed: 0 -> node-number channel=channel-name
node=node-number "

For example:

2019-05-26 10:07:44.075 UTC [orderer.consensus.etcdraft] serveRequest ->
INFO 047 Raft leader changed: 0 -> 1 channel=testchannel1 node=2

In this example node 2 reports that a leader was elected (the leader is node 1) by the cluster of channel
testchannel1.

Switch out of maintenance mode

Perform another channel configuration update on each channel (sending the config update to the same ordering node
you have been sending configuration updates to until now), switching the State from STATE_MAINTENANCE to
STATE_NORMAL. Start with the system channel, as usual. If it succeeds on the ordering system channel, migration is
likely to succeed on all channels. To verify, fetch the last config block of the system channel from the ordering node,
verifying that the State is now STATE_NORMAL. For completeness, verify this on each ordering node.

420 Chapter 9. Operations Guides

./raft_configuration.md#local-configuration

hyperledger-fabricdocs Documentation, Release master

When this process is completed, the ordering service is now ready to accept all transactions on all channels. If you
stopped your peers and application as recommended, you may now restart them.

9.18.4 Abort and rollback

If a problem emerges during the migration process before exiting maintenance mode, simply perform the rollback
procedure below.

1. Shut down the ordering nodes and the Kafka service (servers and Zookeeper ensemble).

2. Rollback the file system of these servers to the backup taken at maintenance mode before changing the
ConsensusType.

3. Restart said servers, the ordering nodes will bootstrap to Kafka in maintenance mode.

4. Send a configuration update exiting maintenance mode to continue using Kafka as your consensus mechanism,
or resume the instructions after the point of backup and fix the error which prevented a Raft quorum from
forming and retry migration with corrected Raft configuration Metadata.

There are a few states which might indicate migration has failed:

1. Some nodes crash or shutdown.

2. There is no record of a successful leader election per channel in the logs.

3. The attempt to flip to STATE_NORMAL mode on the system channel fails.

9.19 Bringing up a Kafka-based Ordering Service

9.19.1 Caveat emptor

This document assumes that the reader knows how to set up a Kafka cluster and a ZooKeeper ensemble, and keep
them secure for general usage by preventing unauthorized access. The sole purpose of this guide is to identify the
steps you need to take so as to have a set of Hyperledger Fabric ordering service nodes (OSNs) use your Kafka cluster
and provide an ordering service to your blockchain network.

For information about the role orderers play in a network and in a transaction flow, checkout our The Ordering Service
documentation.

For information on how to set up an ordering node, check out our Setting up an ordering node documentation.

For information about configuring Raft ordering services, check out Configuring and operating a Raft ordering service.

9.19.2 Big picture

Each channel maps to a separate single-partition topic in Kafka. When an OSN receives transactions via the
Broadcast RPC, it checks to make sure that the broadcasting client has permissions to write on the channel, then
relays (i.e. produces) those transactions to the appropriate partition in Kafka. This partition is also consumed by the
OSN which groups the received transactions into blocks locally, persists them in its local ledger, and serves them to
receiving clients via the Deliver RPC. For low-level details, refer to the document that describes how we came to
this design. Figure 8 is a schematic representation of the process described above.

9.19. Bringing up a Kafka-based Ordering Service 421

https://docs.google.com/document/d/19JihmW-8blTzN99lAubOfseLUZqdrB6sBR0HsRgCAnY/edit
https://docs.google.com/document/d/19JihmW-8blTzN99lAubOfseLUZqdrB6sBR0HsRgCAnY/edit

hyperledger-fabricdocs Documentation, Release master

9.19.3 Steps

Let K and Z be the number of nodes in the Kafka cluster and the ZooKeeper ensemble respectively:

1. At a minimum, K should be set to 4. (As we will explain in Step 4 below, this is the minimum number of
nodes necessary in order to exhibit crash fault tolerance, i.e. with 4 brokers, you can have 1 broker go down, all
channels will continue to be writeable and readable, and new channels can be created.)

2. Z will either be 3, 5, or 7. It has to be an odd number to avoid split-brain scenarios, and larger than 1 in order to
avoid single point of failures. Anything beyond 7 ZooKeeper servers is considered overkill.

Then proceed as follows:

3. Orderers: Encode the Kafka-related information in the network’s genesis block. If you are using
configtxgen, edit configtx.yaml. Alternatively, pick a preset profile for the system channel’s gene-
sis block— so that:

• Orderer.OrdererType is set to kafka.

• Orderer.Kafka.Brokers contains the address of at least two of the Kafka brokers in your cluster in
IP:port notation. The list does not need to be exhaustive. (These are your bootstrap brokers.)

4. Orderers: Set the maximum block size. Each block will have at most Orderer.AbsoluteMaxBytes
bytes (not including headers), a value that you can set in configtx.yaml. Let the value you pick here be A
and make note of it —– it will affect how you configure your Kafka brokers in Step 6.

5. Orderers: Create the genesis block. Use configtxgen. The settings you picked in Steps 3 and 4 above are
system-wide settings, i.e. they apply across the network for all the OSNs. Make note of the genesis block’s
location.

6. Kafka cluster: Configure your Kafka brokers appropriately. Ensure that every Kafka broker has these keys
configured:

• unclean.leader.election.enable = false — Data consistency is key in a blockchain envi-
ronment. We cannot have a channel leader chosen outside of the in-sync replica set, or we run the risk of
overwriting the offsets that the previous leader produced, and —as a result— rewrite the blockchain that
the orderers produce.

• min.insync.replicas = M — Where you pick a value M such that 1 < M < N (see default.
replication.factor below). Data is considered committed when it is written to at least M replicas
(which are then considered in-sync and belong to the in-sync replica set, or ISR). In any other case, the
write operation returns an error. Then:

– If up to N-M replicas —out of the N that the channel data is written to become unavailable, operations
proceed normally.

– If more replicas become unavailable, Kafka cannot maintain an ISR set of M, so it stops accepting
writes. Reads work without issues. The channel becomes writeable again when M replicas get in-sync.

• default.replication.factor = N — Where you pick a value N such that N < K. A replication
factor of N means that each channel will have its data replicated to N brokers. These are the candidates
for the ISR set of a channel. As we noted in the min.insync.replicas section above, not all
of these brokers have to be available all the time. N should be set strictly smaller to K because channel
creations cannot go forward if less than N brokers are up. So if you set N = K, a single broker going down
means that no new channels can be created on the blockchain network — the crash fault tolerance of the
ordering service is non-existent.

Based on what we’ve described above, the minimum allowed values for M and N are 2 and 3 respectively.
This configuration allows for the creation of new channels to go forward, and for all channels to continue
to be writeable.

422 Chapter 9. Operations Guides

hyperledger-fabricdocs Documentation, Release master

• message.max.bytes and replica.fetch.max.bytes should be set to a value larger than A, the
value you picked in Orderer.AbsoluteMaxBytes in Step 4 above. Add some buffer to account for
headers —– 1 MiB is more than enough. The following condition applies:

Orderer.AbsoluteMaxBytes < replica.fetch.max.bytes <= message.max.bytes

(For completeness, we note that message.max.bytes should be strictly smaller to socket.
request.max.bytes which is set by default to 100 MiB. If you wish to have blocks larger than 100
MiB you will need to edit the hard-coded value in brokerConfig.Producer.MaxMessageBytes
in fabric/orderer/kafka/config.go and rebuild the binary from source. This is not advisable.)

• log.retention.ms = -1. Until the ordering service adds support for pruning of the Kafka logs,
you should disable time-based retention and prevent segments from expiring. (Size-based retention — see
log.retention.bytes — is disabled by default in Kafka at the time of this writing, so there’s no
need to set it explicitly.)

7. Orderers: Point each OSN to the genesis block. Edit General.BootstrapFile in orderer.yaml so
that it points to the genesis block created in Step 5 above. While at it, ensure all other keys in that YAML file
are set appropriately.

8. Orderers: Adjust polling intervals and timeouts. (Optional step.)

• The Kafka.Retry section in the orderer.yaml file allows you to adjust the frequency of the meta-
data/producer/consumer requests, as well as the socket timeouts. (These are all settings you would expect
to see in a Kafka producer or consumer.)

• Additionally, when a new channel is created, or when an existing channel is reloaded (in case of a just-
restarted orderer), the orderer interacts with the Kafka cluster in the following ways:

– It creates a Kafka producer (writer) for the Kafka partition that corresponds to the channel. . It uses
that producer to post a no-op CONNECT message to that partition. . It creates a Kafka consumer
(reader) for that partition.

– If any of these steps fail, you can adjust the frequency with which they are repeated. Specifically
they will be re-attempted every Kafka.Retry.ShortInterval for a total of Kafka.Retry.
ShortTotal, and then every Kafka.Retry.LongInterval for a total of Kafka.Retry.
LongTotal until they succeed. Note that the orderer will be unable to write to or read from a
channel until all of the steps above have been completed successfully.

9. Set up the OSNs and Kafka cluster so that they communicate over SSL. (Optional step, but highly rec-
ommended.) Refer to the Confluent guide for the Kafka cluster side of the equation, and set the keys under
Kafka.TLS in orderer.yaml on every OSN accordingly.

10. Bring up the nodes in the following order: ZooKeeper ensemble, Kafka cluster, ordering service nodes.

9.19.4 Additional considerations

1. Preferred message size. In Step 4 above (see Steps section) you can also set the preferred size of blocks
by setting the Orderer.Batchsize.PreferredMaxBytes key. Kafka offers higher throughput when
dealing with relatively small messages; aim for a value no bigger than 1 MiB.

2. Using environment variables to override settings. When using the sample Kafka and Zookeeper Docker im-
ages provided with Fabric (see images/kafka and images/zookeeper respectively), you can override
a Kafka broker or a ZooKeeper server’s settings by using environment variables. Replace the dots of the con-
figuration key with underscores. For example, KAFKA_UNCLEAN_LEADER_ELECTION_ENABLE=false
will allow you to override the default value of unclean.leader.election.enable. The same ap-
plies to the OSNs for their local configuration, i.e. what can be set in orderer.yaml. For example

9.19. Bringing up a Kafka-based Ordering Service 423

https://docs.confluent.io/2.0.0/kafka/ssl.html

hyperledger-fabricdocs Documentation, Release master

ORDERER_KAFKA_RETRY_SHORTINTERVAL=1s allows you to override the default value for Orderer.
Kafka.Retry.ShortInterval.

9.19.5 Kafka Protocol Version Compatibility

Fabric uses the sarama client library and vendors a version of it that supports Kafka 0.10 to 1.0, yet is still known to
work with older versions.

Using the Kafka.Version key in orderer.yaml, you can configure which version of the Kafka protocol is
used to communicate with the Kafka cluster’s brokers. Kafka brokers are backward compatible with older protocol
versions. Because of a Kafka broker’s backward compatibility with older protocol versions, upgrading your Kafka
brokers to a new version does not require an update of the Kafka.Version key value, but the Kafka cluster might
suffer a performance penalty while using an older protocol version.

9.19.6 Debugging

Set environment variable FABRIC_LOGGING_SPEC to DEBUG and set Kafka.Verbose to true in orderer.
yaml .

424 Chapter 9. Operations Guides

https://github.com/Shopify/sarama
https://kafka.apache.org/documentation/#upgrade_11_message_format

CHAPTER 10

Upgrading to the latest release

If you’re familiar with previous releases of Hyperledger Fabric, you’re aware that upgrading the nodes and channels
to the latest version of Fabric is, at a high level, a four step process.

1. Backup the ledger and MSPs.

2. Upgrade the orderer binaries in a rolling fashion to the latest Fabric version.

3. Upgrade the peer binaries in a rolling fashion to the latest Fabric version.

4. Update the orderer system channel and any application channels to the latest capability levels, where available.
Note that some releases will have capabilities in all groups while other releases may have few or even no new
capabilities at all.

For more information about capabilities, check out Channel capabilities.

For a look at how these upgrade processes are accomplished, please consult these tutorials:

1. Considerations for getting to v2.x. This topic discusses the important considerations for getting to the latest
release from the previous release as well as from the most recent long term support (LTS) release.

2. Upgrading your components. Components should be upgraded to the latest version before updating any capa-
bilities.

3. Updating the capability level of a channel. Completed after updating the versions of all nodes.

4. Enabling the new chaincode lifecycle. Necessary to add organization specific endorsement policies central to
the new chaincode lifecycle for Fabric v2.x.

As the upgrading of nodes and increasing the capability levels of channels is by now considered a standard Fabric
process, we will not show the specific commands for upgrading to the newest release. Similarly, there is no script in
the fabric-samples repo that will upgrade a sample network from the previous release to this one, as there has
been for previous releases.

Note: It is a best practice to upgrade your SDK to the latest version as a part of a general upgrade of your network.
While the SDK will always be compatible with equivalent releases of Fabric and lower, it might be necessary to

425

hyperledger-fabricdocs Documentation, Release master

upgrade to the latest SDK to leverage the latest Fabric features. Consult the documentation of the Fabric SDK you are
using for information about how to upgrade.

10.1 Considerations for getting to v2.x

In this topic we’ll cover recommendations for upgrading to the newest release from the previous release as well as
from the most recent long term support (LTS) release.

10.1.1 Upgrading from 2.1 to 2.2

The 2.1 and 2.2 releases of Fabric are stabilization releases, featuring bug fixes and other forms of code hardening. As
such there are no particular considerations needed for upgrade, and no new capability levels requiring particular image
versions or channel configuration updates.

10.1.2 Upgrading to 2.2 from the 1.4.x long term support release

Before attempting to upgrade from v1.4.x to v2.2, make sure to consider the following:

Chaincode lifecycle

The new chaincode lifecycle that debuted in v2.0 allows multiple organizations to agree on how a chaincode will be
operated before it can be used on a channel. For more information about the new chaincode lifecycle, check out Fabric
chaincode lifecycle concept topic.

It is a best practice to upgrade all of the peers on a channel before enabling the Channel and Application
capabilities that enable the new chaincode lifecycle (the Channel capability is not strictly required, but it makes
sense to update it at this time). Note that any peers that are not at v2.x will crash after enabling either capability,
while any ordering nodes that are not at v2.x will crash after the Channel capability has been enabled. This crashing
behavior is intentional, as the peer or orderer cannot safely participate in the channel if it does not support the required
capabilities.

After the Application capability has been updated to V2_0 on a channel, you must use the v2.x lifecycle proce-
dures to package, install, approve, and commit new chaincodes on the channel. As a result, make sure to be prepared
for the new lifecycle before updating the capability.

The new lifecycle defaults to using the endorsement policy configured in the channel config (e.g., a MAJORITY of
orgs). Therefore this endorsement policy should be added to the channel configuration when enabling capabilities on
the channel.

For information about how to edit the relevant channel configurations to enable the new lifecycle by adding an en-
dorsement policy for each organization, check out Enabling the new chaincode lifecycle.

Chaincode shim changes (Go chaincode only)

The recommended approach is to vendor the shim in your v1.4 Go chaincode before making upgrades to the peers and
channels. If you do this, you do not need to make any additional changes to your chaincode.

If you did not vendor the shim in your v1.4 chaincode, the old v1.4 chaincode images will still technically work after
upgrade, but you are in a risky state. If the chaincode image gets deleted from your environment for whatever reason,
the next invoke on v2.x peer will try to rebuild the chaincode image and you’ll get an error that the shim cannot be
found.

426 Chapter 10. Upgrading to the latest release

./chaincode_lifecycle.html
./chaincode_lifecycle.html
./enable_cc_lifecycle.html

hyperledger-fabricdocs Documentation, Release master

At this point, you have two options:

1. If the entire channel is ready to upgrade chaincode, you can upgrade the chaincode on all peers and on the
channel (using either the old or new lifecycle depending on the Application capability level you have
enabled). The best practice at this point would be to vendor the new Go chaincode shim using modules.

2. If the entire channel is not yet ready to upgrade the chaincode, you can use peer environment variables to specify
the v1.4 chaincode environment ccenv be used to rebuild the chaincode images. This v1.4 ccenv should still
work with a v2.x peer.

Chaincode logger (Go chaincode only)

Support for user chaincodes to utilize the chaincode shim’s logger via NewLogger() has been removed. Chaincodes
that used the shim’s NewLogger() must now shift to their own preferred logging mechanism.

For more information, check out Logging control.

Peer databases upgrade

For information about how to upgrade peers, check out our documentation on upgrading components. During the
process for upgrading your peers, you will need to perform one additional step to upgrade the peer databases. The
databases of all peers (which include not just the state database but the history database and other internal databases for
the peer) must be rebuilt using the v2.x data format as part of the upgrade to v2.x. To trigger the rebuild, the databases
must be dropped before the peer is started. The instructions below utilize the peer node upgrade-dbs command
to drop the local databases managed by the peer and prepare them for upgrade, so that they can be rebuilt the first time
the v2.x peer starts. If you are using CouchDB as the state database, the peer has support to automatically drop this
database as of v2.2. To leverage the support, you must configure the peer with CouchDB as the state database and start
CouchDB before running the upgrade-dbs command. In v2.0 and v2.1, the peer does not automatically drop the
CouchDB state database; therefore you must drop it yourself.

Follow the commands to upgrade a peer until the docker run command to launch the new peer container (you can
skip the step where you set an IMAGE_TAG, since the upgrade-dbs command is for the v2.x release of Fabric
only, but you will need to set the PEER_CONTAINER and LEDGERS_BACKUP environment variables). Instead of
the docker run command to launch the peer, run this command instead to drop and prepare the local databases
managed by the peer (substitute 2.1 for 2.0 in these commands if you are upgrading to that binary version from the
1.4.x LTS):

docker run --rm -v /opt/backup/$PEER_CONTAINER/:/var/hyperledger/production/ \
-v /opt/msp/:/etc/hyperledger/fabric/msp/ \
--env-file ./env<name of node>.list \
--name $PEER_CONTAINER \
hyperledger/fabric-peer:2.0 peer node upgrade-dbs

In v2.0 and v2.1, if you are using CouchDB as the state database, also drop the CouchDB database. This can be done
by removing the CouchDB /data volume directory.

Then issue this command to start the peer using the 2.0 tag:

docker run -d -v /opt/backup/$PEER_CONTAINER/:/var/hyperledger/production/ \
-v /opt/msp/:/etc/hyperledger/fabric/msp/ \
--env-file ./env<name of node>.list \
--name $PEER_CONTAINER \
hyperledger/fabric-peer:2.0 peer node start

The peer will rebuild the databases using the v2.x data format the first time it starts. Because rebuilding the databases
can be a lengthy process (several hours, depending on the size of your databases), monitor the peer logs to check the

10.1. Considerations for getting to v2.x 427

./logging-control.html#chaincode
./upgrading_your_components.html
./upgrading_your_components.html#upgrade-the-peers

hyperledger-fabricdocs Documentation, Release master

status of the rebuild. Every 1000th block you will see a message like [lockbasedtxmgr] CommitLostBlock
-> INFO 041 Recommitting block [1000] to state database indicating the rebuild is ongoing.

If the database is not dropped as part of the upgrade process, the peer start will return an error message stating that
its databases are in the old format and must be dropped using the peer node upgrade-dbs command above (or
dropped manually if using CouchDB state database). The node will then need to be restarted again.

Capabilities

The 2.0 release featured three new capabilities.

• Application V2_0: enables the new chaincode lifecycle as described in Fabric chaincode lifecycle concept
topic.

• Channel V2_0: this capability has no changes, but is used for consistency with the application and orderer
capability levels.

• Orderer V2_0: controls UseChannelCreationPolicyAsAdmins, changing the way that channel cre-
ation transactions are validated. When combined with the -baseProfile option of configtxgen, values which
were previously inherited from the orderer system channel may now be overridden.

As with any update of the capability levels, make sure to upgrade your peer binaries before updating the
Application and Channel capabilities, and make sure to upgrade your orderer binaries before updating the
Orderer and Channel capabilities.

For information about how to set new capabilities, check out Updating the capability level of a channel.

Define ordering node endpoint per org (recommend)

Starting with version v1.4.2, it was recommended to define orderer endpoints in both the system channel and in all
application channels at the organization level by adding a new OrdererEndpoints stanza within the channel
configuration of an organization, replacing the global OrdererAddresses section of channel configuration. If at
least one organization has an ordering service endpoint defined at an organizational level, all orderers and peers will
ignore the channel level endpoints when connecting to ordering nodes.

Utilizing organization level orderer endpoints is required when using service discovery with ordering nodes provided
by multiple organizations. This allows clients to provide the correct organization TLS certificates.

If your channel configuration does not yet include OrdererEndpoints per org, you will need to perform a channel
configuration update to add them to the config. First, create a JSON file that includes the new configuration stanza.

In this example, we will create a stanza for a single org called OrdererOrg. Note that if you have multiple
ordering service organizations, they will all have to be updated to include endpoints. Let’s call our JSON file
orglevelEndpoints.json.

{
"OrdererOrgEndpoint": {

"Endpoints": {
"mod_policy": "Admins",
"value": {

"addresses": [
"127.0.0.1:30000"

]
}

}
}

}

428 Chapter 10. Upgrading to the latest release

./chaincode_lifecycle.html
./updating_capabilities.html

hyperledger-fabricdocs Documentation, Release master

Then, export the following environment variables:

• CH_NAME: the name of the channel being updated. Note that all system channels and application channels
should contain organization endpoints for ordering nodes.

• CORE_PEER_LOCALMSPID: the MSP ID of the organization proposing the channel update. This will be the
MSP of one of the orderer organizations.

• CORE_PEER_MSPCONFIGPATH: the absolute path to the MSP representing your organization.

• TLS_ROOT_CA: the absolute path to the root CA certificate of the organization proposing the system channel
update.

• ORDERER_CONTAINER: the name of an ordering node container. When targeting the ordering service, you can
target any particular node in the ordering service. Your requests will be forwarded to the leader automatically.

• ORGNAME: The name of the organization you are currently updating. For example, OrdererOrg.

Once you have set the environment variables, navigate to Step 1: Pull and translate the config.

Then, add the lifecycle organization policy (as listed in orglevelEndpoints.json) to a file called
modified_config.json using this command:

jq -s ".[0] * {\"channel_group\":{\"groups\":{\"Orderer\": {\"groups\": {\"$ORGNAME\
→˓": {\"values\": .[1].${ORGNAME}Endpoint}}}}}}" config.json ./orglevelEndpoints.json
→˓> modified_config.json

Then, follow the steps at Step 3: Re-encode and submit the config.

If every ordering service organization performs their own channel edit, they can edit the configuration without needing
further signatures (by default, the only signature needed to edit parameters within an organization is an admin of that
organization). If a different organization proposes the update, then the organization being edited will need to sign the
channel update request.

10.2 Upgrading your components

Audience: network administrators, node administrators

For information about special considerations for the latest release of Fabric, check out Upgrading to the latest release
of Fabric.

This topic will only cover the process for upgrading components. For information about how to edit a channel to
change the capability level of your channels, check out Updating a channel capability.

Note: when we use the term “upgrade” in Hyperledger Fabric, we’re referring to changing the version of a component
(for example, going from one version of a binary to the next version). The term “update,” on the other hand, refers not
to versions but to configuration changes, such as updating a channel configuration or a deployment script. As there is
no data migration, technically speaking, in Fabric, we will not use the term “migration” or “migrate” here.

10.2.1 Overview

At a high level, upgrading the binary level of your nodes is a two step process:

1. Backup the ledger and MSPs.

2. Upgrade binaries to the latest version.

10.2. Upgrading your components 429

./config_update.html#step-1-pull-and-translate-the-config
./config_update.html#step-3-re-encode-and-submit-the-config
./upgrade_to_newest_version.html
./upgrade_to_newest_version.html
./updating_capabilities.html

hyperledger-fabricdocs Documentation, Release master

If you own both ordering nodes and peers, it is a best practice to upgrade the ordering nodes first. If a peer falls behind
or is temporarily unable to process certain transactions, it can always catch up. If enough ordering nodes go down, by
comparison, a network can effectively cease to function.

This topic presumes that these steps will be performed using Docker CLI commands. If you are utilizing a different
deployment method (Rancher, Kubernetes, OpenShift, etc) consult their documentation on how to use their CLI.

For native deployments, note that you will also need to update the YAML configuration file for the nodes (for example,
the orderer.yaml file) with the one from the release artifacts.

To do this, backup the orderer.yaml or core.yaml file (for the peer) and replace it with the orderer.yaml
or core.yaml file from the release artifacts. Then port any modified variables from the backed up orderer.yaml
or core.yaml to the new one. Using a utility like diff may be helpful. Note that updating the YAML file from the
release rather than updating your old YAML file is the recommended way to update your node YAML files, as it
reduces the likelihood of making errors.

This tutorial assumes a Docker deployment where the YAML files will be baked into the images and environment
variables will be used to overwrite the defaults in the configuration files.

10.2.2 Environment variables for the binaries

When you deploy a peer or an ordering node, you had to set a number of environment variables relevant to its config-
uration. A best practice is to create a file for these environment variables, give it a name relevant to the node being
deployed, and save it somewhere on your local file system. That way you can be sure that when upgrading the peer or
ordering node you are using the same variables you set when creating it.

Here’s a list of some of the peer environment variables (with sample values — as you can see from the addresses,
these environment variables are for a network deployed locally) that can be set that be listed in the file. Note that you
may or may not need to set all of these environment variables:

CORE_PEER_TLS_ENABLED=true
CORE_PEER_GOSSIP_USELEADERELECTION=true
CORE_PEER_GOSSIP_ORGLEADER=false
CORE_PEER_PROFILE_ENABLED=true
CORE_PEER_TLS_CERT_FILE=/etc/hyperledger/fabric/tls/server.crt
CORE_PEER_TLS_KEY_FILE=/etc/hyperledger/fabric/tls/server.key
CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/fabric/tls/ca.crt
CORE_PEER_ID=peer0.org1.example.com
CORE_PEER_ADDRESS=peer0.org1.example.com:7051
CORE_PEER_LISTENADDRESS=0.0.0.0:7051
CORE_PEER_CHAINCODEADDRESS=peer0.org1.example.com:7052
CORE_PEER_CHAINCODELISTENADDRESS=0.0.0.0:7052
CORE_PEER_GOSSIP_BOOTSTRAP=peer0.org1.example.com:7051
CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0.org1.example.com:7051
CORE_PEER_LOCALMSPID=Org1MSP

Here are some ordering node variables (again, these are sample values) that might be listed in the environment
variable file for a node. Again, you may or may not need to set all of these environment variables:

ORDERER_GENERAL_LISTENADDRESS=0.0.0.0
ORDERER_GENERAL_GENESISMETHOD=file
ORDERER_GENERAL_GENESISFILE=/var/hyperledger/orderer/orderer.genesis.block
ORDERER_GENERAL_LOCALMSPID=OrdererMSP
ORDERER_GENERAL_LOCALMSPDIR=/var/hyperledger/orderer/msp
ORDERER_GENERAL_TLS_ENABLED=true
ORDERER_GENERAL_TLS_PRIVATEKEY=/var/hyperledger/orderer/tls/server.key
ORDERER_GENERAL_TLS_CERTIFICATE=/var/hyperledger/orderer/tls/server.crt

(continues on next page)

430 Chapter 10. Upgrading to the latest release

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

ORDERER_GENERAL_TLS_ROOTCAS=[/var/hyperledger/orderer/tls/ca.crt]
ORDERER_GENERAL_CLUSTER_CLIENTCERTIFICATE=/var/hyperledger/orderer/tls/server.crt
ORDERER_GENERAL_CLUSTER_CLIENTPRIVATEKEY=/var/hyperledger/orderer/tls/server.key
ORDERER_GENERAL_CLUSTER_ROOTCAS=[/var/hyperledger/orderer/tls/ca.crt]

However you choose to set your environment variables, note that they will have to be set for each node you want to
upgrade.

10.2.3 Ledger backup and restore

While we will demonstrate the process for backing up ledger data in this tutorial, it is not strictly required to backup
the ledger data of a peer or an ordering node (assuming the node is part of a larger group of nodes in an ordering
service). This is because, even in the worst case of catastrophic failure of a peer (such as a disk failure), the peer can
be brought up with no ledger at all. You can then have the peer re-join the desired channels and as a result, the peer
will automatically create a ledger for each of the channels and will start receiving the blocks via regular block transfer
mechanism from either the ordering service or the other peers in the channel. As the peer processes blocks, it will also
build up its state database.

However, backing up ledger data enables the restoration of a peer without the time and computational costs associated
with bootstrapping from the genesis block and reprocessing all transactions, a process that can take hours (depending
on the size of the ledger). In addition, ledger data backups may help to expedite the addition of a new peer, which can
be achieved by backing up the ledger data from one peer and starting the new peer with the backed up ledger data.

This tutorial presumes that the file path to the ledger data has not been changed from the default value of /var/
hyperledger/production/ (for peers) or /var/hyperledger/production/orderer (for ordering
nodes). If this location has been changed for your nodes, enter the path to the data on your ledgers in the commands
below.

Note that there will be data for both the ledger and chaincodes at this file location. While it is a best practice to
backup both, it is possible to skip the stateLeveldb, historyLeveldb, chains/index folders at /var/
hyperledger/production/ledgersData. While skipping these folders reduces the storage needed for the
backup, the peer recovery from the backed up data may take more time as these ledger artifacts will be re-constructed
when the peer starts.

If using CouchDB as state database, there will be no stateLeveldb directory, as the state database data would be
stored within CouchDB instead. But similarly, if peer starts up and finds CouchDB databases are missing or at lower
block height (based on using an older CouchDB backup), the state database will be automatically re-constructed to
catch up to current block height. Therefore, if you backup peer ledger data and CouchDB data separately, ensure that
the CouchDB backup is always older than the peer backup.

10.2.4 Upgrade ordering nodes

Orderer containers should be upgraded in a rolling fashion (one at a time). At a high level, the ordering node upgrade
process goes as follows:

1. Stop the ordering node.

2. Back up the ordering node’s ledger and MSP.

3. Remove the ordering node container.

4. Launch a new ordering node container using the relevant image tag.

Repeat this process for each node in your ordering service until the entire ordering service has been upgraded.

10.2. Upgrading your components 431

hyperledger-fabricdocs Documentation, Release master

Set command environment variables

Export the following environment variables before attempting to upgrade your ordering nodes.

• ORDERER_CONTAINER: the name of your ordering node container. Note that you will need to export this
variable for each node when upgrading it.

• LEDGERS_BACKUP: the place in your local filesystem where you want to store the ledger being backed up. As
you will see below, each node being backed up will have its own subfolder containing its ledger. You will need
to create this folder.

• IMAGE_TAG: the Fabric version you are upgrading to. For example, 2.0.

Note that you will have to set an image tag to ensure that the node you are starting using the correct images. The
process you use to set the tag will depend on your deployment method.

Upgrade containers

Let’s begin the upgrade process by bringing down the orderer:

docker stop $ORDERER_CONTAINER

Once the orderer is down, you’ll want to backup its ledger and MSP:

docker cp $ORDERER_CONTAINER:/var/hyperledger/production/orderer/ ./$LEDGERS_BACKUP/
→˓$ORDERER_CONTAINER

Then remove the ordering node container itself (since we will be giving our new container the same name as our old
one):

docker rm -f $ORDERER_CONTAINER

Then you can launch the new ordering node container by issuing:

docker run -d -v /opt/backup/$ORDERER_CONTAINER/:/var/hyperledger/production/orderer/
→˓\

-v /opt/msp/:/etc/hyperledger/fabric/msp/ \
--env-file ./env<name of node>.list \
--name $ORDERER_CONTAINER \
hyperledger/fabric-orderer:$IMAGE_TAG orderer

Once all of the ordering nodes have come up, you can move on to upgrading your peers.

10.2.5 Upgrade the peers

Peers should, like the ordering nodes, be upgraded in a rolling fashion (one at a time). As mentioned during the
ordering node upgrade, ordering nodes and peers may be upgraded in parallel, but for the purposes of this tutorial
we’ve separated the processes out. At a high level, we will perform the following steps:

1. Stop the peer.

2. Back up the peer’s ledger and MSP.

3. Remove chaincode containers and images.

4. Remove the peer container.

5. Launch a new peer container using the relevant image tag.

432 Chapter 10. Upgrading to the latest release

hyperledger-fabricdocs Documentation, Release master

Set command environment variables

Export the following environment variables before attempting to upgrade your peers.

• PEER_CONTAINER: the name of your peer container. Note that you will need to set this variable for each node.

• LEDGERS_BACKUP: the place in your local filesystem where you want to store the ledger being backed up. As
you will see below, each node being backed up will have its own subfolder containing its ledger. You will need
to create this folder.

• IMAGE_TAG: the Fabric version you are upgrading to. For example, 2.0.

Note that you will have to set an image tag to ensure that the node you are starting is using the correct images. The
process you use to set the tag will depend on your deployment method.

Repeat this process for each of your peers until every node has been upgraded.

Upgrade containers

Let’s bring down the first peer with the following command:

docker stop $PEER_CONTAINER

We can then backup the peer’s ledger and MSP:

docker cp $PEER_CONTAINER:/var/hyperledger/production ./$LEDGERS_BACKUP/$PEER_
→˓CONTAINER

With the peer stopped and the ledger backed up, remove the peer chaincode containers:

CC_CONTAINERS=$(docker ps | grep dev-$PEER_CONTAINER | awk '{print $1}')
if [-n "$CC_CONTAINERS"] ; then docker rm -f $CC_CONTAINERS ; fi

And the peer chaincode images:

CC_IMAGES=$(docker images | grep dev-$PEER | awk '{print $1}')
if [-n "$CC_IMAGES"] ; then docker rmi -f $CC_IMAGES ; fi

Then remove the peer container itself (since we will be giving our new container the same name as our old one):

docker rm -f $PEER_CONTAINER

Then you can launch the new peer container by issuing:

docker run -d -v /opt/backup/$PEER_CONTAINER/:/var/hyperledger/production/ \
-v /opt/msp/:/etc/hyperledger/fabric/msp/ \
--env-file ./env<name of node>.list \
--name $PEER_CONTAINER \
hyperledger/fabric-peer:$IMAGE_TAG peer node start

You do not need to relaunch the chaincode container. When the peer gets a request for a chaincode, (invoke or query),
it first checks if it has a copy of that chaincode running. If so, it uses it. Otherwise, as in this case, the peer launches
the chaincode (rebuilding the image if required).

Verify peer upgrade completion

It’s a best practice to ensure the upgrade has been completed properly with a chaincode invoke. Note that it should be
possible to verify that a single peer has been successfully updated by querying one of the ledgers hosted on the peer.

10.2. Upgrading your components 433

hyperledger-fabricdocs Documentation, Release master

If you want to verify that multiple peers have been upgraded, and are updating your chaincode as part of the upgrade
process, you should wait until peers from enough organizations to satisfy the endorsement policy have been upgraded.

Before you attempt this, you may want to upgrade peers from enough organizations to satisfy your endorsement policy.
However, this is only mandatory if you are updating your chaincode as part of the upgrade process. If you are not
updating your chaincode as part of the upgrade process, it is possible to get endorsements from peers running at
different Fabric versions.

10.2.6 Upgrade your CAs

To learn how to upgrade your Fabric CA server, click over to the CA documentation.

10.2.7 Upgrade Node SDK clients

Upgrade Fabric and Fabric CA before upgrading Node SDK clients. Fabric and Fabric CA are tested for backwards
compatibility with older SDK clients. While newer SDK clients often work with older Fabric and Fabric CA releases,
they may expose features that are not yet available in the older Fabric and Fabric CA releases, and are not tested for
full compatibility.

Use NPM to upgrade any Node.js client by executing these commands in the root directory of your application:

npm install fabric-client@latest

npm install fabric-ca-client@latest

These commands install the new version of both the Fabric client and Fabric-CA client and write the new versions to
package.json.

10.2.8 Upgrading CouchDB

If you are using CouchDB as state database, you should upgrade the peer’s CouchDB at the same time the peer is
being upgraded.

To upgrade CouchDB:

1. Stop CouchDB.

2. Backup CouchDB data directory.

3. Install the latest CouchDB binaries or update deployment scripts to use a new Docker image.

4. Restart CouchDB.

10.2.9 Upgrade Node chaincode shim

To move to the new version of the Node chaincode shim a developer would need to:

1. Change the level of fabric-shim in their chaincode package.json from their old level to the new one.

2. Repackage this new chaincode package and install it on all the endorsing peers in the channel.

3. Perform an upgrade to this new chaincode. To see how to do this, check out Peer chaincode commands.

434 Chapter 10. Upgrading to the latest release

http://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html#upgrading-the-server
./commands/peerchaincode.html

hyperledger-fabricdocs Documentation, Release master

10.2.10 Upgrade Chaincodes with vendored shim

For information about upgrading the Go chaincode shim specific to the v2.0 release, check out Chaincode shim
changes.

A number of third party tools exist that will allow you to vendor a chaincode shim. If you used one of these tools, use
the same one to update your vendored chaincode shim and re-package your chaincode.

If your chaincode vendors the shim, after updating the shim version, you must install it to all peers which already have
the chaincode. Install it with the same name, but a newer version. Then you should execute a chaincode upgrade on
each channel where this chaincode has been deployed to move to the new version.

10.3 Updating the capability level of a channel

Audience: network administrators, node administrators

If you’re not familiar with capabilities, check out Capabilities before proceeding, paying particular attention to the fact
that peers and orderers that belong to the channel must be upgraded before enabling capabilities.

For information about any new capability levels in the latest release of Fabric, check out Upgrading your components.

Note: when we use the term “upgrade” in Hyperledger Fabric, we’re referring to changing the version of a component
(for example, going from one version of a binary to the next version). The term “update,” on the other hand, refers not
to versions but to configuration changes, such as updating a channel configuration or a deployment script. As there is
no data migration, technically speaking, in Fabric, we will not use the term “migration” or “migrate” here.

10.3.1 Prerequisites and considerations

If you haven’t already done so, ensure you have all of the dependencies on your machine as described in Prerequisites.
This will ensure that you have the latest versions of the tools required to make a channel configuration update.

Although Fabric binaries can and should be upgraded in a rolling fashion, it is important to finish upgrading binaries
before enabling capabilities. Any binaries which are not upgraded to at least the level of the relevant capabilities will
crash to indicate a misconfiguration which could otherwise result in a ledger fork.

Once a capability has been enabled, it becomes part of the permanent record for that channel. This means that even
after disabling the capability, old binaries will not be able to participate in the channel because they cannot process
beyond the block which enabled the capability to get to the block which disables it. As a result, once a capability has
been enabled, disabling it is neither recommended nor supported.

For this reason, think of enabling channel capabilities as a point of no return. Please experiment with the new capabil-
ities in a test setting and be confident before proceeding to enable them in production.

10.3.2 Overview

In this tutorial, we will show the process for updating capabilities in all of the parts of the configuration of both the
ordering system channel and any application channels.

Whether you will need to update every part of the configuration for all of your channels will depend on the contents
of the latest release as well as your own use case. For more information, check out Upgrading to the latest version of
Fabric. Note that it may be necessary to update to the newest capability levels before using the features in the latest
release, and it is considered a best practice to always be at the latest binary versions and capability levels.

Because updating the capability level of a channel involves the configuration update transaction process, we will be
relying on our Updating a channel configuration topic for many of the commands.

10.3. Updating the capability level of a channel 435

./upgrade_to_newest_version.html#chaincode-shim-changes
./upgrade_to_newest_version.html#chaincode-shim-changes
./capabilities_concept.html
./upgrade_to_newest_version.html#Capabilities
./prereqs.html
./upgrade_to_newest_version.html
./upgrade_to_newest_version.html
./config_update.html

hyperledger-fabricdocs Documentation, Release master

As with any channel configuration update, updating capabilities is, at a high level, a three step process (for each
channel):

1. Get the latest channel config

2. Create a modified channel config

3. Create a config update transaction

We will enable these capabilities in the following order:

1. Orderer system channel

• Orderer group

• Channel group

1. Application channels

• Orderer group

• Channel group

• Application group

While it is possible to edit multiple parts of the configuration of a channel at the same time, in this tutorial we will
show how this process is done incrementally. In other words, we will not bundle a change to the Orderer group and
the Channel group of the system channel into one configuration change. This is because not every release will have
both a new Orderer group capability and a Channel group capability.

Note that in production networks, it will not be possible or desirable for one user to be able to update all of these chan-
nels (and parts of configurations) unilaterally. The orderer system channel, for example, is administered exclusively
by ordering organization admins (though it is possible to add peer organizations as ordering service organizations).
Similarly, updating either the Orderer or Channel groups of a channel configuration requires the signature of an
ordering service organization in addition to peer organizations. Distributed systems require collaborative management.

Create a capabilities config file

Note that this tutorial presumes that a file called capabilities.json has been created and includes the capability
updates you want to make to the various sections of the config. It also uses jq to apply the edits to the modified config
file.

Note that you are not obligated to create a file like capabilities.json or to use a tool like jq. The modified
config can also be edited manually (after it has been pulled, translated, and scoped). Check out this sample channel
configuration for reference.

However, the process described here (using a JSON file and a tool like jq) does have the advantage of being script-
able, making it suitable for proposing configuration updates to a large number of channels. This is why it is the
recommended way to update channels.

In this example, the capabilities.json file looks like this (note: if you are updating your channel as part of
Upgrading to the latest version of Fabric you will need to set the capabilities to the levels appropriate to that release):

{
"channel": {

"mod_policy": "Admins",
"value": {

"capabilities": {
"V2_0": {}

}
},

(continues on next page)

436 Chapter 10. Upgrading to the latest release

./config_update.html#sample-channel-configuration
./config_update.html#sample-channel-configuration
./upgrade_to_newest_version.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"version": "0"
},
"orderer": {

"mod_policy": "Admins",
"value": {

"capabilities": {
"V2_0": {}

}
},

"version": "0"
},
"application": {

"mod_policy": "Admins",
"value": {

"capabilities": {
"V2_0": {}

}
},

"version": "0"
}

}

Note that by default peer organizations are not admins of the orderer system channel and will therefore be unable
to propose configuration updates to it. An orderer organization admin would have to create a file like this (without
the application group capability, which does not exist in the system channel) to propose updating the system
channel configuration. Note that because application channel copy the system channel configuration by default, unless
a different channel profile is created which specifies capability levels, the Channel and Orderer group capabilities
for the application channel will be the same as those in the network’s system channel.

10.3.3 Orderer system channel capabilities

Because application channels copy the configuration of the orderer system channel by default, it is considered a best
practice to update the capabilities of the system channel before any application channels. This mirrors the process of
updating ordering nodes to the newest version before peers, as described in Upgrading your components.

Note that the orderer system channel is administered by ordering service organizations. By default this will be a single
organization (the organization that created the initial nodes in the ordering service), but more organizations can be
added here (for example, if multiple organizations have contributed nodes to the ordering service).

Make sure all of the ordering nodes in your ordering service have been upgraded to the required binary level before
updating the Orderer and Channel capability. If an ordering node is not at the required level, it will be unable
to process the config block with the capability and will crash. Similarly, note that if a new channel is created on
this ordering service, all of the peers that will be joined to it must be at least to the node level corresponding to the
Channel and Application capabilities, otherwise they will also crash when attempting to process the config
block. For more information, check out Capabilities.

Set environment variables

You will need to export the following variables:

• CH_NAME: the name of the system channel being updated.

• CORE_PEER_LOCALMSPID: the MSP ID of the organization proposing the channel update. This will be the
MSP of one of the orderer organizations.

10.3. Updating the capability level of a channel 437

./upgrading_your_components.html
./capabilities_concept.html

hyperledger-fabricdocs Documentation, Release master

• TLS_ROOT_CA: the absolute path to the TLS cert of your ordering node(s).

• CORE_PEER_MSPCONFIGPATH: the absolute path to the MSP representing your organization.

• ORDERER_CONTAINER: the name of an ordering node container. When targeting the ordering service, you can
target any particular node in the ordering service. Your requests will be forwarded to the leader automatically.

Orderer group

For the commands on how to pull, translate, and scope the channel config, navigate to Step 1: Pull and translate the
config. Once you have a modified_config.json, add the capabilities to the Orderer group of the config (as
listed in capabilities.json) using this command:

jq -s '.[0] * {"channel_group":{"groups":{"Orderer": {"values": {"Capabilities": .[1].
→˓orderer}}}}}' config.json ./capabilities.json > modified_config.json

Then, follow the steps at Step 3: Re-encode and submit the config.

Note that because you are updating the system channel, the mod_policy for the system channel will only require
the signature of ordering service organization admins.

Channel group

Once again, navigate to Step 1: Pull and translate the config. Once you have a modified_config.json, add the
capabilities to the Channel group of the config (as listed in capabilities.json) using this command:

jq -s '.[0] * {"channel_group":{"values": {"Capabilities": .[1].channel}}}' config.
→˓json ./capabilities.json > modified_config.json

Then, follow the steps at Step 3: Re-encode and submit the config.

Note that because you are updating the system channel, the mod_policy for the system channel will only require
the signature of ordering service organization admins. In an application channel, as you’ll see, you would normally
need to satisfy both the MAJORITY Admins policy of both the Application group (consisting of the MSPs of
peer organizations) and the Orderer group (consisting of ordering service organizations), assuming you have not
changed the default values.

10.3.4 Enable capabilities on existing channels

Now that we have updating the capabilities on the orderer system channel, we need to updating the configuration of
any existing application channels you want to update.

As you will see, the configuration of application channels is very similar to that of the system channel. This is what
allows us to re-use capabilities.json and the same commands we used for updating the system channel (using
different environment variables which we will discuss below).

Make sure all of the ordering nodes in your ordering service and peers on the channel have been upgraded to
the required binary level before updating capabilities. If a peer or an ordering node is not at the required level,
it will be unable to process the config block with the capability and will crash. For more information, check out
Capabilities.

Set environment variables

You will need to export the following variables:

438 Chapter 10. Upgrading to the latest release

./config_update.html#step-1-pull-and-translate-the-config
./config_update.html#step-1-pull-and-translate-the-config
./config_update.html#step-3-re-encode-and-submit-the-config
./config_update.html#step-1-pull-and-translate-the-config
./config_update.html#step-3-re-encode-and-submit-the-config
./capabilities_concept.html

hyperledger-fabricdocs Documentation, Release master

• CH_NAME: the name of the application channel being updated. You will have to reset this variable for every
channel you update.

• CORE_PEER_LOCALMSPID: the MSP ID of the organization proposing the channel update. This will be the
MSP of your peer organization.

• TLS_ROOT_CA: the absolute path to the TLS cert of your peer organization.

• CORE_PEER_MSPCONFIGPATH: the absolute path to the MSP representing your organization.

• ORDERER_CONTAINER: the name of an ordering node container. When targeting the ordering service, you can
target any particular node in the ordering service. Your requests will be forwarded to the leader automatically.

Orderer group

Navigate to Step 1: Pull and translate the config. Once you have a modified_config.json, add the capabilities
to the Orderer group of the config (as listed in capabilities.json) using this command:

jq -s '.[0] * {"channel_group":{"groups":{"Orderer": {"values": {"Capabilities": .[1].
→˓orderer}}}}}' config.json ./capabilities.json > modified_config.json

Then, follow the steps at Step 3: Re-encode and submit the config.

Note the mod_policy for this capability defaults to the MAJORITY of the Admins of the Orderer group (in other
words, a majority of the admins of the ordering service). Peer organizations can propose an update to this capability,
but their signatures will not satisfy the relevant policy in this case.

Channel group

Navigate to Step 1: Pull and translate the config. Once you have a modified_config.json, add the capabilities
to the Channel group of the config (as listed in capabilities.json) using this command:

jq -s '.[0] * {"channel_group":{"values": {"Capabilities": .[1].channel}}}' config.
→˓json ./capabilities.json > modified_config.json

Then, follow the steps at Step 3: Re-encode and submit the config.

Note that the mod_policy for this capability defaults to requiring signatures from both the MAJORITY of Admins
in the Application and Orderer groups. In other words, both a majority of the peer organization admins and
ordering service organization admins must sign this request.

Application group

Navigate to Step 1: Pull and translate the config. Once you have a modified_config.json, add the capabilities
to the Application group of the config (as listed in capabilities.json) using this command:

jq -s '.[0] * {"channel_group":{"groups":{"Application": {"values": {"Capabilities": .
→˓[1].application}}}}}' config.json ./capabilities.json > modified_config.json

Then, follow the steps at Step 3: Re-encode and submit the config.

Note that the mod_policy for this capability defaults to requiring signatures from the MAJORITY of Admins in
the Application group. In other words, a majority of peer organizations will need to approve. Ordering service
admins have no say in this capability.

As a result, be very careful to not change this capability to a level that does not exist. Because ordering nodes
neither understand nor validate Application capabilities, they will approve a configuration to any level and send

10.3. Updating the capability level of a channel 439

./config_update.html#step-1-pull-and-translate-the-config
./config_update.html#step-3-re-encode-and-submit-the-config
./config_update.html#step-1-pull-and-translate-the-config
./config_update.html#step-3-re-encode-and-submit-the-config
./config_update.html#step-1-pull-and-translate-the-config
./config_update.html#step-3-re-encode-and-submit-the-config

hyperledger-fabricdocs Documentation, Release master

the new config block to the peers to be committed to their ledgers. However, the peers will be unable to process the
capability and will crash. And even it was possible to drive a corrected configuration change to a valid capability level,
the previous config block with the faulty capability would still exist on the ledger and cause peers to crash when trying
to process it.

This is one reason why a file like capabilities.json can be useful. It prevents a simple user error — for
example, setting the Application capability to V20 when the intent was to set it to V2_0 — that can cause a
channel to be unusable and unrecoverable.

10.3.5 Verify a transaction after capabilities have been enabled

It’s a best practice to ensure that capabilities have been enabled successfully with a chaincode invoke on all channels.
If any nodes that do not understand new capabilities have not been upgraded to a sufficient binary level, they will
crash. You will have to upgrade their binary level before they can be successfully restarted.

10.4 Enabling the new chaincode lifecycle

Users upgrading from v1.4.x to v2.x will have to edit their channel configurations to enable the new lifecycle features.
This process involves a series of channel configuration updates the relevant users will have to perform.

Note that the Channel and Application capabilities of your application channels will have to be updated to
V2_0 for the new chaincode lifecycle to work. Check out Considerations for getting to 2.0 for more information.

Updating a channel configuration is, at a high level, a three step process (for each channel):

1. Get the latest channel config

2. Create a modified channel config

3. Create a config update transaction

We will be performing these channel configuration updates by leveraging a file called enable_lifecycle.json,
which contains all of the updates we will be making in the channel configurations. Note that in a production setting it
is likely that multiple users would be making these channel update requests. However, for the sake of simplicity, we
are presenting all of the updates as how they would appear in a single file.

10.4.1 Create enable_lifecycle.json

Note that in addition to using enable_lifecycle.json, this tutorial also uses jq to apply the edits to the
modified config file. The modified config can also be edited manually (after it has been pulled, translated, and scoped).
Check out this sample channel configuration for reference.

However, the process described here (using a JSON file and a tool like jq) does have the advantage of being scriptable,
making it suitable for proposing configuration updates to a large number of channels, and is the recommended process
for editing a channel configuration.

Note that the enable_lifecycle.json uses sample values, for example org1Policies and the
Org1ExampleCom, which will be specific to your deployment):

{
"org1Policies": {

"Endorsement": {
"mod_policy": "Admins",
"policy": {

"type": 1,

(continues on next page)

440 Chapter 10. Upgrading to the latest release

./config_update.html
./capabilities_concept.html
./upgrade_to_newest_version.html#chaincode-lifecycle
./config_update.html#sample-channel-configuration

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"value": {
"identities": [

{
"principal": {

"msp_identifier": "Org1ExampleCom",
"role": "PEER"

},
"principal_classification": "ROLE"

}
],
"rule": {
"n_out_of": {

"n": 1,
"rules": [
{

"signed_by": 0
}

]
}

},
"version": 0

}
},
"version": "0"

}
},
"org2Policies": {

"Endorsement": {
"mod_policy": "Admins",
"policy": {

"type": 1,
"value": {
"identities": [

{
"principal": {

"msp_identifier": "Org2ExampleCom",
"role": "PEER"

},
"principal_classification": "ROLE"

}
],
"rule": {
"n_out_of": {

"n": 1,
"rules": [
{

"signed_by": 0
}

]
}

},
"version": 0

}
},
"version": "0"

}
},

(continues on next page)

10.4. Enabling the new chaincode lifecycle 441

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"appPolicies": {
"Endorsement": {

"mod_policy": "Admins",
"policy": {

"type": 3,
"value": {

"rule": "MAJORITY",
"sub_policy": "Endorsement"

}
},
"version": "0"

},
"LifecycleEndorsement": {

"mod_policy": "Admins",
"policy": {

"type": 3,
"value": {

"rule": "MAJORITY",
"sub_policy": "Endorsement"

}
},
"version": "0"

}
},
"acls": {

"_lifecycle/CheckCommitReadiness": {
"policy_ref": "/Channel/Application/Writers"

},
"_lifecycle/CommitChaincodeDefinition": {

"policy_ref": "/Channel/Application/Writers"
},
"_lifecycle/QueryChaincodeDefinition": {

"policy_ref": "/Channel/Application/Writers"
},
"_lifecycle/QueryChaincodeDefinitions": {

"policy_ref": "/Channel/Application/Writers"
}

}
}

Note: the “role” field of these new policies should say 'PEER' if NodeOUs are enabled for the org, and
'MEMBER' if they are not.

10.4.2 Edit the channel configurations

System channel updates

Because configuration changes to the system channel to enable the new lifecycle only involve parameters inside the
configuration of the peer organizations within the channel configuration, each peer organization being edited will have
to sign the relevant channel configuration update.

However, by default, the system channel can only be edited by system channel admins (typically these are admins
of the ordering service organizations and not peer organizations), which means that the configuration updates to the
peer organizations in the consortium will have to be proposed by a system channel admin and sent to the relevant peer
organization to be signed.

442 Chapter 10. Upgrading to the latest release

./msp.html#organizational-units

hyperledger-fabricdocs Documentation, Release master

You will need to export the following variables:

• CH_NAME: the name of the system channel being updated.

• CORE_PEER_LOCALMSPID: the MSP ID of the organization proposing the channel update. This will be the
MSP of one of the ordering service organizations.

• CORE_PEER_MSPCONFIGPATH: the absolute path to the MSP representing your organization.

• TLS_ROOT_CA: the absolute path to the root CA certificate of the organization proposing the system channel
update.

• ORDERER_CONTAINER: the name of an ordering node container. When targeting the ordering service, you can
target any particular node in the ordering service. Your requests will be forwarded to the leader automatically.

• ORGNAME: the name of the organization you are currently updating.

• CONSORTIUM_NAME: the name of the consortium being updated.

Once you have set the environment variables, navigate to Step 1: Pull and translate the config.

Then, add the lifecycle organization policy (as listed in enable_lifecycle.json) to a file called
modified_config.json using this command:

jq -s ".[0] * {\"channel_group\":{\"groups\":{\"Consortiums\":{\"groups\": {\"
→˓$CONSORTIUM_NAME\": {\"groups\": {\"$ORGNAME\": {\"policies\": .[1].${ORGNAME}
→˓Policies}}}}}}}}" config.json ./enable_lifecycle.json > modified_config.json

Then, follow the steps at Step 3: Re-encode and submit the config.

As stated above, these changes will have to be proposed by a system channel admin and sent to the relevant peer
organization for signature.

Application channel updates

Edit the peer organizations

We need to perform a similar set of edits to all of the organizations on all application channels.

Note that unlike the system channel, peer organizations are able to make configuration update requests to application
channels. If you are making a configuration change to your own organization, you will be able to make these changes
without needing the signature of other organizations. However, if you are attempting to make a change to a different
organization, that organization will have to approve the change.

You will need to export the following variables:

• CH_NAME: the name of the application channel being updated.

• ORGNAME: The name of the organization you are currently updating.

• TLS_ROOT_CA: the absolute path to the TLS cert of your ordering node.

• CORE_PEER_MSPCONFIGPATH: the absolute path to the MSP representing your organization.

• CORE_PEER_LOCALMSPID: the MSP ID of the organization proposing the channel update. This will be the
MSP of one of the peer organizations.

• ORDERER_CONTAINER: the name of an ordering node container. When targeting the ordering service, you can
target any particular node in the ordering service. Your requests will be forwarded to the leader automatically.

Once you have set the environment variables, navigate to Step 1: Pull and translate the config.

10.4. Enabling the new chaincode lifecycle 443

./config_update.html#step-1-pull-and-translate-the-config
./config_update.html#step-3-re-encode-and-submit-the-config
./config_update.html#step-1-pull-and-translate-the-config

hyperledger-fabricdocs Documentation, Release master

Then, add the lifecycle organization policy (as listed in enable_lifecycle.json) to a file called
modified_config.json using this command:

jq -s ".[0] * {\"channel_group\":{\"groups\":{\"Application\": {\"groups\": {\"
→˓$ORGNAME\": {\"policies\": .[1].${ORGNAME}Policies}}}}}}" config.json ./enable_
→˓lifecycle.json > modified_config.json

Then, follow the steps at Step 3: Re-encode and submit the config.

Edit the application channels

After all of the application channels have been updated to include V2_0 capabilities, endorsement policies for the new
chaincode lifecycle must be added to each channel.

You can set the same environment you set when updating the peer organizations. Note that in this case you will not be
updating the configuration of an org in the configuration, so the ORGNAME variable will not be used.

Once you have set the environment variables, navigate to Step 1: Pull and translate the config.

Then, add the lifecycle organization policy (as listed in enable_lifecycle.json) to a file called
modified_config.json using this command:

jq -s '.[0] * {"channel_group":{"groups":{"Application": {"policies": .[1].
→˓appPolicies}}}}' config.json ./enable_lifecycle.json > modified_config.json

Then, follow the steps at Step 3: Re-encode and submit the config.

For this channel update to be approved, the policy for modifying the Channel/Application section of the con-
figuration must be satisfied. By default, this is a MAJORITY of the peer organizations on the channel.

Edit channel ACLs (optional)

The following Access Control List (ACL) in enable_lifecycle.json are the default values for the new lifecy-
cle, though you have the option to change them depending on your use case.

"acls": {
"_lifecycle/CheckCommitReadiness": {
"policy_ref": "/Channel/Application/Writers"

},
"_lifecycle/CommitChaincodeDefinition": {
"policy_ref": "/Channel/Application/Writers"

},
"_lifecycle/QueryChaincodeDefinition": {
"policy_ref": "/Channel/Application/Readers"

},
"_lifecycle/QueryChaincodeDefinitions": {
"policy_ref": "/Channel/Application/Readers"

You can leave the same environment in place as when you previously edited application channels.

Once you have the environment variables set, navigate to Step 1: Pull and translate the config.

Then, add the ACLs (as listed in enable_lifecycle.json) and create a file called modified_config.json
using this command:

jq -s '.[0] * {"channel_group":{"groups":{"Application": {"values": {"ACLs": {"value
→˓": {"acls": .[1].acls}}}}}}}' config.json ./enable_lifecycle.json > modified_config.
→˓json (continues on next page)

444 Chapter 10. Upgrading to the latest release

./config_update.html#step-3-re-encode-and-submit-the-config
./upgrade_to_newest_version.html#capabilities
./config_update.html#step-1-pull-and-translate-the-config
./config_update.html#step-3-re-encode-and-submit-the-config
./access_control.html
./config_update.html#step-1-pull-and-translate-the-config

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Then, follow the steps at Step 3: Re-encode and submit the config.

For this channel update to be approved, the policy for modifying the Channel/Application section of the con-
figuration must be satisfied. By default, this is a MAJORITY of the peer organizations on the channel.

10.4.3 Enable new lifecycle in core.yaml

If you follow the recommended process for using a tool like diff to compare the new version of core.yaml
packaged with the binaries with your old one, you will not need to add _lifecycle: enable to the list of
enabled system chaincodes because the new core.yaml has added it under chaincode/system.

However, if you are updating your old node YAML file directly, you will have to add _lifecycle: enable to
the list of enabled system chaincodes.

For more information about upgrading nodes, check out Upgrading your components.

10.4. Enabling the new chaincode lifecycle 445

./config_update.html#step-3-re-encode-and-submit-the-config
./upgrading_your_components.html#overview
./upgrading_your_components.html

hyperledger-fabricdocs Documentation, Release master

446 Chapter 10. Upgrading to the latest release

CHAPTER 11

Commands Reference

11.1 peer

11.1.1 Description

The peer command has five different subcommands, each of which allows administrators to perform a specific set of
tasks related to a peer. For example, you can use the peer channel subcommand to join a peer to a channel, or the
peer chaincode command to deploy a smart contract chaincode to a peer.

11.1.2 Syntax

The peer command has five different subcommands within it:

peer chaincode [option] [flags]
peer channel [option] [flags]
peer node [option] [flags]
peer version [option] [flags]

Each subcommand has different options available, and these are described in their own dedicated topic. For brevity,
we often refer to a command (peer), a subcommand (channel), or subcommand option (fetch) simply as a
command.

If a subcommand is specified without an option, then it will return some high level help text as described in the
--help flag below.

11.1.3 Flags

Each peer subcommand has a specific set of flags associated with it, many of which are designated global because
they can be used in all subcommand options. These flags are described with the relevant peer subcommand.

The top level peer command has the following flag:

447

hyperledger-fabricdocs Documentation, Release master

• --help

Use --help to get brief help text for any peer command. The --help flag is very useful – it can be used to
get command help, subcommand help, and even option help.

For example

peer --help
peer channel --help
peer channel list --help

See individual peer subcommands for more detail.

11.1.4 Usage

Here is an example using the available flag on the peer command.

• Using the --help flag on the peer channel join command.

peer channel join --help

Joins the peer to a channel.

Usage:
peer channel join [flags]

Flags:
-b, --blockpath string Path to file containing genesis block
-h, --help help for join

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded

→˓X509 public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating

→˓with the orderer endpoint
--connTimeout duration Timeout for client to connect

→˓(default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

This shows brief help syntax for the peer channel join command.

11.2 peer chaincode

The peer chaincode command allows administrators to perform chaincode related operations on a peer, such as
installing, instantiating, invoking, packaging, querying, and upgrading chaincode.

448 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

11.2.1 Syntax

The peer chaincode command has the following subcommands:

• install

• instantiate

• invoke

• list

• package

• query

• signpackage

• upgrade

The different subcommand options (install, instantiate. . .) relate to the different chaincode operations that are relevant
to a peer. For example, use the peer chaincode install subcommand option to install a chaincode on a peer,
or the peer chaincode query subcommand option to query a chaincode for the current value on a peer’s ledger.

Each peer chaincode subcommand is described together with its options in its own section in this topic.

11.2.2 Flags

Each peer chaincode subcommand has both a set of flags specific to an individual subcommand, as well as a set
of global flags that relate to all peer chaincode subcommands. Not all subcommands would use these flags. For
instance, the query subcommand does not need the --orderer flag.

The individual flags are described with the relevant subcommand. The global flags are

• --cafile <string>

Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint

• --certfile <string>

Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer
endpoint

• --keyfile <string>

Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint

• -o or --orderer <string>

Ordering service endpoint specified as <hostname or IP address>:<port>

• --ordererTLSHostnameOverride <string>

The hostname override to use when validating the TLS connection to the orderer

• --tls

Use TLS when communicating with the orderer endpoint

• --transient <string>

Transient map of arguments in JSON encoding

11.2. peer chaincode 449

hyperledger-fabricdocs Documentation, Release master

11.2.3 peer chaincode install

Install a chaincode on a peer. This installs a chaincode deployment spec package (if
→˓provided) or packages the specified chaincode before subsequently installing it.

Usage:
peer chaincode install [flags]

Flags:
--connectionProfile string Connection profile that provides the necessary

→˓connection information for the network. Note: currently only supported for
→˓providing peer connection information
-c, --ctor string Constructor message for the chaincode in JSON

→˓format (default "{}")
-h, --help help for install
-l, --lang string Language the chaincode is written in (default

→˓"golang")
-n, --name string Name of the chaincode
-p, --path string Path to chaincode

--peerAddresses stringArray The addresses of the peers to connect to
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag
-v, --version string Version of the chaincode specified in install/

→˓instantiate/upgrade commands

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

--transient string Transient map of arguments in JSON
→˓encoding

11.2.4 peer chaincode instantiate

Deploy the specified chaincode to the network.

Usage:
peer chaincode instantiate [flags]

Flags:
-C, --channelID string The channel on which this command should be

→˓executed
--collections-config string The fully qualified path to the collection

→˓JSON file including the file name
(continues on next page)

450 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

--connectionProfile string Connection profile that provides the necessary
→˓connection information for the network. Note: currently only supported for
→˓providing peer connection information
-c, --ctor string Constructor message for the chaincode in JSON

→˓format (default "{}")
-E, --escc string The name of the endorsement system chaincode

→˓to be used for this chaincode
-h, --help help for instantiate
-l, --lang string Language the chaincode is written in (default

→˓"golang")
-n, --name string Name of the chaincode

--peerAddresses stringArray The addresses of the peers to connect to
-P, --policy string The endorsement policy associated to this

→˓chaincode
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag
-v, --version string Version of the chaincode specified in install/

→˓instantiate/upgrade commands
-V, --vscc string The name of the verification system chaincode

→˓to be used for this chaincode

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

--transient string Transient map of arguments in JSON
→˓encoding

11.2.5 peer chaincode invoke

Invoke the specified chaincode. It will try to commit the endorsed transaction to the
→˓network.

Usage:
peer chaincode invoke [flags]

Flags:
-C, --channelID string The channel on which this command should be

→˓executed
--connectionProfile string Connection profile that provides the necessary

→˓connection information for the network. Note: currently only supported for
→˓providing peer connection information
-c, --ctor string Constructor message for the chaincode in JSON

→˓format (default "{}") (continues on next page)

11.2. peer chaincode 451

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

-h, --help help for invoke
-I, --isInit Is this invocation for init (useful for

→˓supporting legacy chaincodes in the new lifecycle)
-n, --name string Name of the chaincode

--peerAddresses stringArray The addresses of the peers to connect to
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag

--waitForEvent Whether to wait for the event from each peer's
→˓deliver filtered service signifying that the 'invoke' transaction has been
→˓committed successfully

--waitForEventTimeout duration Time to wait for the event from each peer's
→˓deliver filtered service signifying that the 'invoke' transaction has been
→˓committed successfully (default 30s)

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

--transient string Transient map of arguments in JSON
→˓encoding

11.2.6 peer chaincode list

Get the instantiated chaincodes in the channel if specify channel, or get installed
→˓chaincodes on the peer

Usage:
peer chaincode list [flags]

Flags:
-C, --channelID string The channel on which this command should be

→˓executed
--connectionProfile string Connection profile that provides the necessary

→˓connection information for the network. Note: currently only supported for
→˓providing peer connection information
-h, --help help for list

--installed Get the installed chaincodes on a peer
--instantiated Get the instantiated chaincodes on a channel
--peerAddresses stringArray The addresses of the peers to connect to
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag

(continues on next page)

452 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

--transient string Transient map of arguments in JSON
→˓encoding

11.2.7 peer chaincode package

Package a chaincode and write the package to a file.

Usage:
peer chaincode package [outputfile] [flags]

Flags:
-s, --cc-package create CC deployment spec for owner endorsements

→˓instead of raw CC deployment spec
-c, --ctor string Constructor message for the chaincode in JSON

→˓format (default "{}")
-h, --help help for package
-i, --instantiate-policy string instantiation policy for the chaincode
-l, --lang string Language the chaincode is written in (default

→˓"golang")
-n, --name string Name of the chaincode
-p, --path string Path to chaincode
-S, --sign if creating CC deployment spec package for owner

→˓endorsements, also sign it with local MSP
-v, --version string Version of the chaincode specified in install/

→˓instantiate/upgrade commands

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint (continues on next page)

11.2. peer chaincode 453

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

--transient string Transient map of arguments in JSON
→˓encoding

11.2.8 peer chaincode query

Get endorsed result of chaincode function call and print it. It won't generate
→˓transaction.

Usage:
peer chaincode query [flags]

Flags:
-C, --channelID string The channel on which this command should be

→˓executed
--connectionProfile string Connection profile that provides the necessary

→˓connection information for the network. Note: currently only supported for
→˓providing peer connection information
-c, --ctor string Constructor message for the chaincode in JSON

→˓format (default "{}")
-h, --help help for query
-x, --hex If true, output the query value byte array in

→˓hexadecimal. Incompatible with --raw
-n, --name string Name of the chaincode

--peerAddresses stringArray The addresses of the peers to connect to
-r, --raw If true, output the query value as raw bytes,

→˓otherwise format as a printable string
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

--transient string Transient map of arguments in JSON
→˓encoding

11.2.9 peer chaincode signpackage

Sign the specified chaincode package

(continues on next page)

454 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Usage:
peer chaincode signpackage [flags]

Flags:
-h, --help help for signpackage

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

--transient string Transient map of arguments in JSON
→˓encoding

11.2.10 peer chaincode upgrade

Upgrade an existing chaincode with the specified one. The new chaincode will
→˓immediately replace the existing chaincode upon the transaction committed.

Usage:
peer chaincode upgrade [flags]

Flags:
-C, --channelID string The channel on which this command should be

→˓executed
--collections-config string The fully qualified path to the collection

→˓JSON file including the file name
--connectionProfile string Connection profile that provides the necessary

→˓connection information for the network. Note: currently only supported for
→˓providing peer connection information
-c, --ctor string Constructor message for the chaincode in JSON

→˓format (default "{}")
-E, --escc string The name of the endorsement system chaincode

→˓to be used for this chaincode
-h, --help help for upgrade
-l, --lang string Language the chaincode is written in (default

→˓"golang")
-n, --name string Name of the chaincode
-p, --path string Path to chaincode

--peerAddresses stringArray The addresses of the peers to connect to
-P, --policy string The endorsement policy associated to this

→˓chaincode
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag

(continues on next page)

11.2. peer chaincode 455

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

-v, --version string Version of the chaincode specified in install/
→˓instantiate/upgrade commands
-V, --vscc string The name of the verification system chaincode

→˓to be used for this chaincode

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

--transient string Transient map of arguments in JSON
→˓encoding

11.2.11 Example Usage

peer chaincode instantiate examples

Here are some examples of the peer chaincode instantiate command, which instantiates the chaincode
named mycc at version 1.0 on channel mychannel:

• Using the --tls and --cafile global flags to instantiate the chaincode in a network with TLS enabled:

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/
→˓tlsca.example.com-cert.pem
peer chaincode instantiate -o orderer.example.com:7050 --tls --cafile $ORDERER_CA
→˓-C mychannel -n mycc -v 1.0 -c '{"Args":["init","a","100","b","200"]}' -P "AND (
→˓'Org1MSP.peer','Org2MSP.peer')"

2018-02-22 16:33:53.324 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 001
→˓Using default escc
2018-02-22 16:33:53.324 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 002
→˓Using default vscc
2018-02-22 16:34:08.698 UTC [main] main -> INFO 003 Exiting.....

• Using only the command-specific options to instantiate the chaincode in a network with TLS disabled:

peer chaincode instantiate -o orderer.example.com:7050 -C mychannel -n mycc -v 1.
→˓0 -c '{"Args":["init","a","100","b","200"]}' -P "AND ('Org1MSP.peer','Org2MSP.
→˓peer')"

2018-02-22 16:34:09.324 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 001
→˓Using default escc
2018-02-22 16:34:09.324 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 002
→˓Using default vscc (continues on next page)

456 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

2018-02-22 16:34:24.698 UTC [main] main -> INFO 003 Exiting.....

peer chaincode invoke example

Here is an example of the peer chaincode invoke command:

• Invoke the chaincode named mycc at version 1.0 on channel mychannel on peer0.org1.example.
com:7051 and peer0.org2.example.com:9051 (the peers defined by --peerAddresses), request-
ing to move 10 units from variable a to variable b:

peer chaincode invoke -o orderer.example.com:7050 -C mychannel -n mycc --
→˓peerAddresses peer0.org1.example.com:7051 --peerAddresses peer0.org2.example.
→˓com:9051 -c '{"Args":["invoke","a","b","10"]}'

2018-02-22 16:34:27.069 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 001
→˓Using default escc
2018-02-22 16:34:27.069 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 002
→˓Using default vscc
.
.
.
2018-02-22 16:34:27.106 UTC [chaincodeCmd] chaincodeInvokeOrQuery -> DEBU 00a
→˓ESCC invoke result: version:1 response:<status:200 message:"OK" > payload:"\n
→˓\237mM\376? [\214\002 \332\204\035\275q\227\2132A\n\204&\2106\037W|\346
→˓#\3413\274\022Y\nE\022\024\n\004lscc\022\014\n\n\n\004mycc\022\002\010\003\022-
→˓\n\004mycc\022
→˓%\n\007\n\001a\022\002\010\003\n\007\n\001b\022\002\010\003\032\007\n\001a\032\00290\032\010\n\001b\032\003210\032\003\010\310\001\
→˓"\013\022\004mycc\032\0031.0" endorsement:<endorser:"\n\007Org1MSP\022\262\006--
→˓---BEGIN CERTIFICATE-----\nMIICLjCCAdWgAwIBAgIRAJYomxY2cqHA/fbRnH5a/
→˓bwwCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzEuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzEuZXhhbXBsZS5jb20wHhcNMTgwMjIyMTYyODE0WhcNMjgwMjIwMTYyODE0\nWjBwMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzETMBEGA1UECxMKRmFicmljUGVlcjEfMB0GA1UEAxMWcGVl\ncjAub3JnMS5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABDEa\nWNNniN3qOCQL89BGWfY39f5V3o1pi/
→˓/7JFDHATJXtLgJhkK5KosDdHuKLYbCqvge\n46u3AC16MZyJRvKBiw6jTTBLMA4GA1UdDwEB/
→˓wQEAwIHgDAMBgNVHRMBAf8EAjAA\nMCsGA1UdIwQkMCKAIN7dJR9dimkFtkus0R5pAOlRz5SA3FB5t8Eaxl9A7lkgMAoG\nCCqGSM49BAMCA0cAMEQCIC2DAsO9QZzQmKi8OOKwcCh9Gd01YmWIN3oVmaCRr8C7\nAiAlQffq2JFlbh6OWURGOko6RckizG8oVOldZG/
→˓Xj3C8lA==\n-----END CERTIFICATE-----\n" signature:"0D\002 \022_
→˓\342\350\344\231G&
→˓\237\n\244\375\302J\220l\302\345\210\335D\250y\253P\0214:\221e\332@\002
→˓\000\254\361\224\247\210\214L\277\370\222\213\217\301\r\341v\227\265\277\336\256^
→˓\217\336\005y*\321\023\025\367" >
2018-02-22 16:34:27.107 UTC [chaincodeCmd] chaincodeInvokeOrQuery -> INFO 00b
→˓Chaincode invoke successful. result: status:200
2018-02-22 16:34:27.107 UTC [main] main -> INFO 00c Exiting.....

Here you can see that the invoke was submitted successfully based on the log message:

2018-02-22 16:34:27.107 UTC [chaincodeCmd] chaincodeInvokeOrQuery -> INFO 00b
→˓Chaincode invoke successful. result: status:200

A successful response indicates that the transaction was submitted for ordering successfully. The transaction
will then be added to a block and, finally, validated or invalidated by each peer on the channel.

peer chaincode list example

Here are some examples of the peer chaincode list command:

• Using the --installed flag to list the chaincodes installed on a peer.

11.2. peer chaincode 457

hyperledger-fabricdocs Documentation, Release master

peer chaincode list --installed

Get installed chaincodes on peer:
Name: mycc, Version: 1.0, Path: github.com/hyperledger/fabric-samples/chaincode/
→˓abstore/go, Id: 8cc2730fdafd0b28ef734eac12b29df5fc98ad98bdb1b7e0ef96265c3d893d61
2018-02-22 17:07:13.476 UTC [main] main -> INFO 001 Exiting.....

You can see that the peer has installed a chaincode called mycc which is at version 1.0.

• Using the --instantiated in combination with the -C (channel ID) flag to list the chaincodes instantiated
on a channel.

peer chaincode list --instantiated -C mychannel

Get instantiated chaincodes on channel mychannel:
Name: mycc, Version: 1.0, Path: github.com/hyperledger/fabric-samples/chaincode/
→˓abstore/go, Escc: escc, Vscc: vscc
2018-02-22 17:07:42.969 UTC [main] main -> INFO 001 Exiting.....

You can see that chaincode mycc at version 1.0 is instantiated on channel mychannel.

peer chaincode package example

Here is an example of the peer chaincode package command, which packages the chaincode named mycc
at version 1.1, creates the chaincode deployment spec, signs the package using the local MSP, and outputs it as
ccpack.out:

peer chaincode package ccpack.out -n mycc -p github.com/hyperledger/fabric-samples/
→˓chaincode/abstore/go -v 1.1 -s -S
.
.
.
2018-02-22 17:27:01.404 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 003

→˓Using default escc
2018-02-22 17:27:01.405 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 004

→˓Using default vscc
.
.
.
2018-02-22 17:27:01.879 UTC [chaincodeCmd] chaincodePackage -> DEBU 011 Packaged

→˓chaincode into deployment spec of size <3426>, with args = [ccpack.out]
2018-02-22 17:27:01.879 UTC [main] main -> INFO 012 Exiting.....

peer chaincode query example

Here is an example of the peer chaincode query command, which queries the peer ledger for the chaincode
named mycc at version 1.0 for the value of variable a:

• You can see from the output that variable a had a value of 90 at the time of the query.

peer chaincode query -C mychannel -n mycc -c '{"Args":["query","a"]}'

2018-02-22 16:34:30.816 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 001
→˓Using default escc

(continues on next page)

458 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

2018-02-22 16:34:30.816 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 002
→˓Using default vscc
Query Result: 90

peer chaincode signpackage example

Here is an example of the peer chaincode signpackage command, which accepts an existing signed package
and creates a new one with signature of the local MSP appended to it.

peer chaincode signpackage ccwith1sig.pak ccwith2sig.pak
Wrote signed package to ccwith2sig.pak successfully
2018-02-24 19:32:47.189 EST [main] main -> INFO 002 Exiting.....

peer chaincode upgrade example

Here is an example of the peer chaincode upgrade command, which upgrades the chaincode named mycc at
version 1.1 on channel mychannel to version 1.2, which contains a new variable c:

• Using the --tls and --cafile global flags to upgrade the chaincode in a network with TLS enabled:

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/
→˓tlsca.example.com-cert.pem
peer chaincode upgrade -o orderer.example.com:7050 --tls --cafile $ORDERER_CA -C
→˓mychannel -n mycc -v 1.2 -c '{"Args":["init","a","100","b","200","c","300"]}' -
→˓P "AND ('Org1MSP.peer','Org2MSP.peer')"
.
.
.
2018-02-22 18:26:31.433 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 003
→˓Using default escc
2018-02-22 18:26:31.434 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 004
→˓Using default vscc
2018-02-22 18:26:31.435 UTC [chaincodeCmd] getChaincodeSpec -> DEBU 005 java
→˓chaincode enabled
2018-02-22 18:26:31.435 UTC [chaincodeCmd] upgrade -> DEBU 006 Get upgrade
→˓proposal for chaincode <name:"mycc" version:"1.1" >
.
.
.
2018-02-22 18:26:46.687 UTC [chaincodeCmd] upgrade -> DEBU 009 endorse upgrade
→˓proposal, get response <status:200 message:"OK" payload:"\n\004mycc\022\0031.
→˓1\032\004escc\"\004vscc*,
→˓\022\014\022\n\010\001\022\002\010\000\022\002\010\001\032\r\022\013\n\007Org1MSP\020\003\032\r\022\013\n\007Org2MSP\020\0032f\n
→˓\261g(^
→˓v\021\220\240\332\251\014\204V\210P\310o\231\271\036\301\022\032\205fC[|=\215\372\223\022
→˓\311b\025?
→˓\323N\343\325\032\005\365\236\001XKj\004E\351\007\247\265fu\305j\367\331\275\253\307R\032
→˓\014H#\014\272!#\345\306s\323\371\350\364\006.
→˓\000\356\230\353\270\263\215\217\303\256\220i^\277\305\214: \375\200zY\275\203}
→˓\375\244\205\035\340\226]l!uE\334\273\214\214\020\303\3474\360\014\234-
→˓\006\315B\031\022\010\022\006\010\001\022\002\010\000\032\r\022\013\n\007Org1MSP\020\001
→˓" >
.

(continues on next page)

11.2. peer chaincode 459

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

.

.
2018-02-22 18:26:46.693 UTC [chaincodeCmd] upgrade -> DEBU 00c Get Signed envelope
2018-02-22 18:26:46.693 UTC [chaincodeCmd] chaincodeUpgrade -> DEBU 00d Send
→˓signed envelope to orderer
2018-02-22 18:26:46.908 UTC [main] main -> INFO 00e Exiting.....

• Using only the command-specific options to upgrade the chaincode in a network with TLS disabled:

peer chaincode upgrade -o orderer.example.com:7050 -C mychannel -n mycc -v 1.2 -c
→˓'{"Args":["init","a","100","b","200","c","300"]}' -P "AND ('Org1MSP.peer',
→˓'Org2MSP.peer')"
.
.
.
2018-02-22 18:28:31.433 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 003
→˓Using default escc
2018-02-22 18:28:31.434 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 004
→˓Using default vscc
2018-02-22 18:28:31.435 UTC [chaincodeCmd] getChaincodeSpec -> DEBU 005 java
→˓chaincode enabled
2018-02-22 18:28:31.435 UTC [chaincodeCmd] upgrade -> DEBU 006 Get upgrade
→˓proposal for chaincode <name:"mycc" version:"1.1" >
.
.
.
2018-02-22 18:28:46.687 UTC [chaincodeCmd] upgrade -> DEBU 009 endorse upgrade
→˓proposal, get response <status:200 message:"OK" payload:"\n\004mycc\022\0031.
→˓1\032\004escc\"\004vscc*,
→˓\022\014\022\n\010\001\022\002\010\000\022\002\010\001\032\r\022\013\n\007Org1MSP\020\003\032\r\022\013\n\007Org2MSP\020\0032f\n
→˓\261g(^
→˓v\021\220\240\332\251\014\204V\210P\310o\231\271\036\301\022\032\205fC[|=\215\372\223\022
→˓\311b\025?
→˓\323N\343\325\032\005\365\236\001XKj\004E\351\007\247\265fu\305j\367\331\275\253\307R\032
→˓\014H#\014\272!#\345\306s\323\371\350\364\006.
→˓\000\356\230\353\270\263\215\217\303\256\220i^\277\305\214: \375\200zY\275\203}
→˓\375\244\205\035\340\226]l!uE\334\273\214\214\020\303\3474\360\014\234-
→˓\006\315B\031\022\010\022\006\010\001\022\002\010\000\032\r\022\013\n\007Org1MSP\020\001
→˓" >
.
.
.
2018-02-22 18:28:46.693 UTC [chaincodeCmd] upgrade -> DEBU 00c Get Signed envelope
2018-02-22 18:28:46.693 UTC [chaincodeCmd] chaincodeUpgrade -> DEBU 00d Send
→˓signed envelope to orderer
2018-02-22 18:28:46.908 UTC [main] main -> INFO 00e Exiting.....

This work is licensed under a Creative Commons Attribution 4.0 International License.

11.3 peer lifecycle chaincode

The peer lifecycle chaincode subcommand allows administrators to use the Fabric chaincode lifecycle to
package a chaincode, install it on your peers, approve a chaincode definition for your organization, and then commit
the definition to a channel. The chaincode is ready to be used after the definition has been successfully committed to
the channel. For more information, visit Fabric chaincode lifecycle.

460 Chapter 11. Commands Reference

../chaincode_lifecycle.html

hyperledger-fabricdocs Documentation, Release master

Note: These instructions use the Fabric chaincode lifecycle introduced in the v2.0 release. If you would like to use the
old lifecycle to install and instantiate a chaincode, visit the peer chaincode command reference.

11.3.1 Syntax

The peer lifecycle chaincode command has the following subcommands:

• package

• install

• queryinstalled

• getinstalledpackage

• approveformyorg

• queryapproved

• checkcommitreadiness

• commit

• querycommitted

Each peer lifecycle chaincode subcommand is described together with its options in its own section in this topic.

11.3.2 peer lifecycle

Perform _lifecycle operations

Usage:
peer lifecycle [command]

Available Commands:
chaincode Perform chaincode operations:

→˓package|install|queryinstalled|getinstalledpackage|approveformyorg|queryapproved|checkcommitreadiness|commit|querycommitted

Flags:
-h, --help help for lifecycle

Use "peer lifecycle [command] --help" for more information about a command.

11.3.3 peer lifecycle chaincode

Perform chaincode operations:
→˓package|install|queryinstalled|getinstalledpackage|approveformyorg|queryapproved|checkcommitreadiness|commit|querycommitted

Usage:
peer lifecycle chaincode [command]

Available Commands:
approveformyorg Approve the chaincode definition for my org.
checkcommitreadiness Check whether a chaincode definition is ready to be committed

→˓on a channel.
commit Commit the chaincode definition on the channel.

(continues on next page)

11.3. peer lifecycle chaincode 461

peerchaincode.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

getinstalledpackage Get an installed chaincode package from a peer.
install Install a chaincode.
package Package a chaincode
queryapproved Query an org's approved chaincode definition from its peer.
querycommitted Query the committed chaincode definitions by channel on a peer.
queryinstalled Query the installed chaincodes on a peer.

Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)

-h, --help help for chaincode
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

Use "peer lifecycle chaincode [command] --help" for more information about a command.

11.3.4 peer lifecycle chaincode package

Package a chaincode and write the package to a file.

Usage:
peer lifecycle chaincode package [outputfile] [flags]

Flags:
--connectionProfile string The fully qualified path to the connection

→˓profile that provides the necessary connection information for the network. Note:
→˓currently only supported for providing peer connection information
-h, --help help for package

--label string The package label contains a human-readable
→˓description of the package
-l, --lang string Language the chaincode is written in (default

→˓"golang")
-p, --path string Path to the chaincode

--peerAddresses stringArray The addresses of the peers to connect to
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
(continues on next page)

462 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.3.5 peer lifecycle chaincode install

Install a chaincode on a peer.

Usage:
peer lifecycle chaincode install [flags]

Flags:
--connectionProfile string The fully qualified path to the connection

→˓profile that provides the necessary connection information for the network. Note:
→˓currently only supported for providing peer connection information
-h, --help help for install

--peerAddresses stringArray The addresses of the peers to connect to
--targetPeer string When using a connection profile, the name of

→˓the peer to target for this action
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.3.6 peer lifecycle chaincode queryinstalled

Query the installed chaincodes on a peer.

Usage:
peer lifecycle chaincode queryinstalled [flags]

Flags:

(continues on next page)

11.3. peer lifecycle chaincode 463

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

--connectionProfile string The fully qualified path to the connection
→˓profile that provides the necessary connection information for the network. Note:
→˓currently only supported for providing peer connection information
-h, --help help for queryinstalled
-O, --output string The output format for query results. Default

→˓is human-readable plain-text. json is currently the only supported format.
--peerAddresses stringArray The addresses of the peers to connect to
--targetPeer string When using a connection profile, the name of

→˓the peer to target for this action
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.3.7 peer lifecycle chaincode getinstalledpackage

Get an installed chaincode package from a peer.

Usage:
peer lifecycle chaincode getinstalledpackage [outputfile] [flags]

Flags:
--connectionProfile string The fully qualified path to the connection

→˓profile that provides the necessary connection information for the network. Note:
→˓currently only supported for providing peer connection information
-h, --help help for getinstalledpackage

--output-directory string The output directory to use when writing a
→˓chaincode install package to disk. Default is the current working directory.

--package-id string The identifier of the chaincode install package
--peerAddresses stringArray The addresses of the peers to connect to
--targetPeer string When using a connection profile, the name of

→˓the peer to target for this action
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint(continues on next page)

464 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

--clientauth Use mutual TLS when communicating with
→˓the orderer endpoint

--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.3.8 peer lifecycle chaincode approveformyorg

Approve the chaincode definition for my organization.

Usage:
peer lifecycle chaincode approveformyorg [flags]

Flags:
--channel-config-policy string The endorsement policy associated to this

→˓chaincode specified as a channel config policy reference
-C, --channelID string The channel on which this command should be

→˓executed
--collections-config string The fully qualified path to the collection

→˓JSON file including the file name
--connectionProfile string The fully qualified path to the connection

→˓profile that provides the necessary connection information for the network. Note:
→˓currently only supported for providing peer connection information
-E, --endorsement-plugin string The name of the endorsement plugin to be used

→˓for this chaincode
-h, --help help for approveformyorg

--init-required Whether the chaincode requires invoking 'init'
-n, --name string Name of the chaincode

--package-id string The identifier of the chaincode install package
--peerAddresses stringArray The addresses of the peers to connect to
--sequence int The sequence number of the chaincode

→˓definition for the channel
--signature-policy string The endorsement policy associated to this

→˓chaincode specified as a signature policy
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag
-V, --validation-plugin string The name of the validation plugin to be used

→˓for this chaincode
-v, --version string Version of the chaincode

--waitForEvent Whether to wait for the event from each peer's
→˓deliver filtered service signifying that the transaction has been committed
→˓successfully (default true)

--waitForEventTimeout duration Time to wait for the event from each peer's
→˓deliver filtered service signifying that the 'invoke' transaction has been
→˓committed successfully (default 30s)

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
(continues on next page)

11.3. peer lifecycle chaincode 465

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

--certfile string Path to file containing PEM-encoded X509
→˓public key to use for mutual TLS communication with the orderer endpoint

--clientauth Use mutual TLS when communicating with
→˓the orderer endpoint

--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.3.9 peer lifecycle chaincode queryapproved

Query an organization's approved chaincode definition from its peer.

Usage:
peer lifecycle chaincode queryapproved [flags]

Flags:
-C, --channelID string The channel on which this command should be

→˓executed
--connectionProfile string The fully qualified path to the connection

→˓profile that provides the necessary connection information for the network. Note:
→˓currently only supported for providing peer connection information
-h, --help help for queryapproved
-n, --name string Name of the chaincode
-O, --output string The output format for query results. Default

→˓is human-readable plain-text. json is currently the only supported format.
--peerAddresses stringArray The addresses of the peers to connect to
--sequence int The sequence number of the chaincode

→˓definition for the channel
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

466 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

11.3.10 peer lifecycle chaincode checkcommitreadiness

Check whether a chaincode definition is ready to be committed on a channel.

Usage:
peer lifecycle chaincode checkcommitreadiness [flags]

Flags:
--channel-config-policy string The endorsement policy associated to this

→˓chaincode specified as a channel config policy reference
-C, --channelID string The channel on which this command should be

→˓executed
--collections-config string The fully qualified path to the collection

→˓JSON file including the file name
--connectionProfile string The fully qualified path to the connection

→˓profile that provides the necessary connection information for the network. Note:
→˓currently only supported for providing peer connection information
-E, --endorsement-plugin string The name of the endorsement plugin to be used

→˓for this chaincode
-h, --help help for checkcommitreadiness

--init-required Whether the chaincode requires invoking 'init'
-n, --name string Name of the chaincode
-O, --output string The output format for query results. Default

→˓is human-readable plain-text. json is currently the only supported format.
--peerAddresses stringArray The addresses of the peers to connect to
--sequence int The sequence number of the chaincode

→˓definition for the channel
--signature-policy string The endorsement policy associated to this

→˓chaincode specified as a signature policy
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag
-V, --validation-plugin string The name of the validation plugin to be used

→˓for this chaincode
-v, --version string Version of the chaincode

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.3.11 peer lifecycle chaincode commit

Commit the chaincode definition on the channel.

(continues on next page)

11.3. peer lifecycle chaincode 467

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Usage:
peer lifecycle chaincode commit [flags]

Flags:
--channel-config-policy string The endorsement policy associated to this

→˓chaincode specified as a channel config policy reference
-C, --channelID string The channel on which this command should be

→˓executed
--collections-config string The fully qualified path to the collection

→˓JSON file including the file name
--connectionProfile string The fully qualified path to the connection

→˓profile that provides the necessary connection information for the network. Note:
→˓currently only supported for providing peer connection information
-E, --endorsement-plugin string The name of the endorsement plugin to be used

→˓for this chaincode
-h, --help help for commit

--init-required Whether the chaincode requires invoking 'init'
-n, --name string Name of the chaincode

--peerAddresses stringArray The addresses of the peers to connect to
--sequence int The sequence number of the chaincode

→˓definition for the channel
--signature-policy string The endorsement policy associated to this

→˓chaincode specified as a signature policy
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag
-V, --validation-plugin string The name of the validation plugin to be used

→˓for this chaincode
-v, --version string Version of the chaincode

--waitForEvent Whether to wait for the event from each peer's
→˓deliver filtered service signifying that the transaction has been committed
→˓successfully (default true)

--waitForEventTimeout duration Time to wait for the event from each peer's
→˓deliver filtered service signifying that the 'invoke' transaction has been
→˓committed successfully (default 30s)

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

468 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

11.3.12 peer lifecycle chaincode querycommitted

Query the committed chaincode definitions by channel on a peer. Optional: provide a
→˓chaincode name to query a specific definition.

Usage:
peer lifecycle chaincode querycommitted [flags]

Flags:
-C, --channelID string The channel on which this command should be

→˓executed
--connectionProfile string The fully qualified path to the connection

→˓profile that provides the necessary connection information for the network. Note:
→˓currently only supported for providing peer connection information
-h, --help help for querycommitted
-n, --name string Name of the chaincode
-O, --output string The output format for query results. Default

→˓is human-readable plain-text. json is currently the only supported format.
--peerAddresses stringArray The addresses of the peers to connect to
--tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root

→˓cert files of the peers to connect to. The order and number of certs specified
→˓should match the --peerAddresses flag

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.3.13 Example Usage

peer lifecycle chaincode package example

A chaincode needs to be packaged before it can be installed on your peers. This example uses the peer lifecycle
chaincode package command to package a Go chaincode.

• Use the --path flag to indicate the location of the chaincode. The path must be a fully qualified path or a path
relative to your present working directory.

• Use the --label flag to provide a chaincode package label of myccv1 that your organization will use to
identify the package.

peer lifecycle chaincode package mycc.tar.gz --path $CHAINCODE_DIR --lang golang -
→˓-label myccv1

11.3. peer lifecycle chaincode 469

hyperledger-fabricdocs Documentation, Release master

peer lifecycle chaincode install example

After the chaincode is packaged, you can use the peer chaincode install command to install the chaincode
on your peers.

• Install the mycc.tar.gz package on peer0.org1.example.com:7051 (the peer defined by
--peerAddresses).

peer lifecycle chaincode install mycc.tar.gz --peerAddresses peer0.org1.example.
→˓com:7051

If successful, the command will return the package identifier. The package ID is the package label combined
with a hash of the chaincode package taken by the peer.

2019-03-13 13:48:53.691 UTC [cli.lifecycle.chaincode] submitInstallProposal ->
→˓INFO 001 Installed remotely: response:<status:200 payload:
→˓"\nEmycc:ebd89878c2bbccf62f68c36072626359376aa83c36435a058d453e8dbfd894cc" >
2019-03-13 13:48:53.691 UTC [cli.lifecycle.chaincode] submitInstallProposal ->
→˓INFO 002 Chaincode code package identifier:
→˓mycc:a7ca45a7cc85f1d89c905b775920361ed089a364e12a9b6d55ba75c965ddd6a9

peer lifecycle chaincode queryinstalled example

You need to use the chaincode package identifier to approve a chaincode definition for your organization. You
can find the package ID for the chaincodes you have installed by using the peer lifecycle chaincode
queryinstalled command:

peer lifecycle chaincode queryinstalled --peerAddresses peer0.org1.example.com:7051

A successful command will return the package ID associated with the package label.

Get installed chaincodes on peer:
Package ID: myccv1:a7ca45a7cc85f1d89c905b775920361ed089a364e12a9b6d55ba75c965ddd6a9,
→˓Label: myccv1

• You can also use the --output flag to have the CLI format the output as JSON.

peer lifecycle chaincode queryinstalled --peerAddresses peer0.org1.example.
→˓com:7051 --output json

If successful, the command will return the chaincodes you have installed as JSON.

{
"installed_chaincodes": [

{
"package_id": "mycc_

→˓1:aab9981fa5649cfe25369fce7bb5086a69672a631e4f95c4af1b5198fe9f845b",
"label": "mycc_1",
"references": {
"mychannel": {
"chaincodes": [
{
"name": "mycc",
"version": "1"

}
]

(continues on next page)

470 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

}
}

}
]

}

peer lifecycle chaincode getinstalledpackage example

You can retrieve an installed chaincode package from a peer using the peer lifecycle chaincode
getinstalledpackage command. Use the package identifier returned by queryinstalled.

• Use the --package-id flag to pass in the chaincode package identifier. Use the --output-directory
flag to specify where to write the chaincode package. If the output directory is not specified, the chaincode
package will be written in the current directory.

peer lifecycle chaincode getinstalledpackage --package-id
→˓myccv1:a7ca45a7cc85f1d89c905b775920361ed089a364e12a9b6d55ba75c965ddd6a9 --output-
→˓directory /tmp --peerAddresses peer0.org1.example.com:7051

peer lifecycle chaincode approveformyorg example

Once the chaincode package has been installed on your peers, you can approve a chaincode definition for your organi-
zation. The chaincode definition includes the important parameters of chaincode governance, including the chaincode
name, version and the endorsement policy.

Here is an example of the peer lifecycle chaincode approveformyorg command, which approves the
definition of a chaincode named mycc at version 1.0 on channel mychannel.

• Use the --package-id flag to pass in the chaincode package identifier. Use the --signature-policy
flag to define an endorsement policy for the chaincode. Use the init-required flag to request the execution
of the Init function to initialize the chaincode.

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/
→˓tlsca.example.com-cert.pem

peer lifecycle chaincode approveformyorg -o orderer.example.com:7050 --tls --
→˓cafile $ORDERER_CA --channelID mychannel --name mycc --version 1.0 --init-
→˓required --package-id
→˓myccv1:a7ca45a7cc85f1d89c905b775920361ed089a364e12a9b6d55ba75c965ddd6a9 --
→˓sequence 1 --signature-policy "AND ('Org1MSP.peer','Org2MSP.peer')"

2019-03-18 16:04:09.046 UTC [cli.lifecycle.chaincode] InitCmdFactory -> INFO 001
→˓Retrieved channel (mychannel) orderer endpoint: orderer.example.com:7050
2019-03-18 16:04:11.253 UTC [chaincodeCmd] ClientWait -> INFO 002 txid
→˓[efba188ca77889cc1c328fc98e0bb12d3ad0abcda3f84da3714471c7c1e6c13c] committed
→˓with status (VALID) at peer0.org1.example.com:7051

• You can also use the --channel-config-policy flag use a policy inside the channel configura-
tion as the chaincode endorsement policy. The default endorsement policy is Channel/Application/
Endorsement

11.3. peer lifecycle chaincode 471

hyperledger-fabricdocs Documentation, Release master

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/
→˓tlsca.example.com-cert.pem

peer lifecycle chaincode approveformyorg -o orderer.example.com:7050 --tls --
→˓cafile $ORDERER_CA --channelID mychannel --name mycc --version 1.0 --init-
→˓required --package-id
→˓myccv1:a7ca45a7cc85f1d89c905b775920361ed089a364e12a9b6d55ba75c965ddd6a9 --
→˓sequence 1 --channel-config-policy Channel/Application/Admins

2019-03-18 16:04:09.046 UTC [cli.lifecycle.chaincode] InitCmdFactory -> INFO 001
→˓Retrieved channel (mychannel) orderer endpoint: orderer.example.com:7050
2019-03-18 16:04:11.253 UTC [chaincodeCmd] ClientWait -> INFO 002 txid
→˓[efba188ca77889cc1c328fc98e0bb12d3ad0abcda3f84da3714471c7c1e6c13c] committed
→˓with status (VALID) at peer0.org1.example.com:7051

peer lifecycle chaincode queryapproved example

You can query an organization’s approved chaincode definition by using the peer lifecycle chaincode
queryapproved command. You can use this command to see the details (including package ID) of approved
chaincode definitions.

• Here is an example of the peer lifecycle chaincode queryapproved command, which queries
the approved definition of a chaincode named mycc at sequence number 1 on channel mychannel.

peer lifecycle chaincode queryapproved -C mychannel -n mycc --sequence 1

Approved chaincode definition for chaincode 'mycc' on channel 'mychannel':
sequence: 1, version: 1, init-required: true, package-id: mycc_
→˓1:d02f72000e7c0f715840f51cb8d72d70bc1ba230552f8445dded0ec8b6e0b830, endorsement
→˓plugin: escc, validation plugin: vscc

If NO package is specified for the approved definition, this command will display an empty package ID.

• You can also use this command without specifying the sequence number in order to query the latest approved
definition (latest: the newer of the currently defined sequence number and the next sequence number).

peer lifecycle chaincode queryapproved -C mychannel -n mycc

Approved chaincode definition for chaincode 'mycc' on channel 'mychannel':
sequence: 3, version: 3, init-required: false, package-id: mycc_
→˓1:d02f72000e7c0f715840f51cb8d72d70bc1ba230552f8445dded0ec8b6e0b830, endorsement
→˓plugin: escc, validation plugin: vscc

• You can also use the --output flag to have the CLI format the output as JSON.

– When querying an approved chaincode definition for which package is specified

peer lifecycle chaincode queryapproved -C mychannel -n mycc --sequence 1 --
→˓output json

If successful, the command will return a JSON that has the approved chaincode definition for chaincode
mycc at sequence number 1 on channel mychannel.

{
"sequence": 1,

(continues on next page)

472 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"version": "1",
"endorsement_plugin": "escc",
"validation_plugin": "vscc",
"validation_parameter": "EiAvQ2hhbm5lbC9BcHBsaWNhdGlvbi9FbmRvcnNlbWVudA==",
"collections": {},
"init_required": true,
"source": {
"Type": {
"LocalPackage": {
"package_id": "mycc_

→˓1:d02f72000e7c0f715840f51cb8d72d70bc1ba230552f8445dded0ec8b6e0b830"
}

}
}

}

– When querying an approved chaincode definition for which package is NOT specified

peer lifecycle chaincode queryapproved -C mychannel -n mycc --sequence 2 --
→˓output json

If successful, the command will return a JSON that has the approved chaincode definition for chaincode
mycc at sequence number 2 on channel mychannel.

{
"sequence": 2,
"version": "2",
"endorsement_plugin": "escc",
"validation_plugin": "vscc",
"validation_parameter": "EiAvQ2hhbm5lbC9BcHBsaWNhdGlvbi9FbmRvcnNlbWVudA==",
"collections": {},
"source": {
"Type": {
"Unavailable": {}

}
}

}

peer lifecycle chaincode checkcommitreadiness example

You can check whether a chaincode definition is ready to be committed using the peer lifecycle chaincode
checkcommitreadiness command, which will return successfully if a subsequent commit of the definition is
expected to succeed. It also outputs which organizations have approved the chaincode definition. If an organization
has approved the chaincode definition specified in the command, the command will return a value of true. You
can use this command to learn whether enough channel members have approved a chaincode definition to meet the
Application/Channel/Endorsement policy (a majority by default) before the definition can be committed
to a channel.

• Here is an example of the peer lifecycle chaincode checkcommitreadiness command, which
checks a chaincode named mycc at version 1.0 on channel mychannel.

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/
→˓tlsca.example.com-cert.pem

(continues on next page)

11.3. peer lifecycle chaincode 473

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

peer lifecycle chaincode checkcommitreadiness -o orderer.example.com:7050 --
→˓channelID mychannel --tls --cafile $ORDERER_CA --name mycc --version 1.0 --init-
→˓required --sequence 1

If successful, the command will return the organizations that have approved the chaincode definition.

Chaincode definition for chaincode 'mycc', version '1.0', sequence '1' on channel
'mychannel' approval status by org:
Org1MSP: true
Org2MSP: true

• You can also use the --output flag to have the CLI format the output as JSON.

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/
→˓tlsca.example.com-cert.pem

peer lifecycle chaincode checkcommitreadiness -o orderer.example.com:7050 --
→˓channelID mychannel --tls --cafile $ORDERER_CA --name mycc --version 1.0 --init-
→˓required --sequence 1 --output json

If successful, the command will return a JSON map that shows if an organization has approved the chaincode
definition.

{
"Approvals": {

"Org1MSP": true,
"Org2MSP": true

}
}

peer lifecycle chaincode commit example

Once a sufficient number of organizations approve a chaincode definition for their organizations (a majority by de-
fault), one organization can commit the definition the channel using the peer lifecycle chaincode commit
command:

• This command needs to target the peers of other organizations on the channel to collect their organization
endorsement for the definition.

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/
→˓tlsca.example.com-cert.pem

peer lifecycle chaincode commit -o orderer.example.com:7050 --channelID mychannel
→˓--name mycc --version 1.0 --sequence 1 --init-required --tls --cafile $ORDERER_
→˓CA --peerAddresses peer0.org1.example.com:7051 --peerAddresses peer0.org2.
→˓example.com:9051

2019-03-18 16:14:27.258 UTC [chaincodeCmd] ClientWait -> INFO 001 txid
→˓[b6f657a14689b27d69a50f39590b3949906b5a426f9d7f0dcee557f775e17882] committed
→˓with status (VALID) at peer0.org2.example.com:9051
2019-03-18 16:14:27.321 UTC [chaincodeCmd] ClientWait -> INFO 002 txid
→˓[b6f657a14689b27d69a50f39590b3949906b5a426f9d7f0dcee557f775e17882] committed
→˓with status (VALID) at peer0.org1.example.com:7051

474 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

peer lifecycle chaincode querycommitted example

You can query the chaincode definitions that have been committed to a channel by using the peer lifecycle
chaincode querycommitted command. You can use this command to query the current definition sequence
number before upgrading a chaincode.

• You need to supply the chaincode name and channel name in order to query a specific chaincode definition and
the organizations that have approved it.

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/
→˓tlsca.example.com-cert.pem

peer lifecycle chaincode querycommitted -o orderer.example.com:7050 --channelID
→˓mychannel --name mycc --tls --cafile $ORDERER_CA --peerAddresses peer0.org1.
→˓example.com:7051

Committed chaincode definition for chaincode 'mycc' on channel 'mychannel':
Version: 1, Sequence: 1, Endorsement Plugin: escc, Validation Plugin: vscc
Approvals: [Org1MSP: true, Org2MSP: true]

• You can also specify just the channel name in order to query all chaincode definitions on that channel.

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/
→˓tlsca.example.com-cert.pem

peer lifecycle chaincode querycommitted -o orderer.example.com:7050 --channelID
→˓mychannel --tls --cafile $ORDERER_CA --peerAddresses peer0.org1.example.com:7051

Committed chaincode definitions on channel 'mychannel':
Name: mycc, Version: 1, Sequence: 1, Endorsement Plugin: escc, Validation Plugin:
→˓vscc
Name: yourcc, Version: 2, Sequence: 3, Endorsement Plugin: escc, Validation
→˓Plugin: vscc

• You can also use the --output flag to have the CLI format the output as JSON.

– For querying a specific chaincode definition

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/
→˓tlscacerts/tlsca.example.com-cert.pem

peer lifecycle chaincode querycommitted -o orderer.example.com:7050 --
→˓channelID mychannel --name mycc --tls --cafile $ORDERER_CA --peerAddresses
→˓peer0.org1.example.com:7051 --output json

If successful, the command will return a JSON that has committed chaincode definition for chaincode
‘mycc’ on channel ‘mychannel’.

{
"sequence": 1,
"version": "1",
"endorsement_plugin": "escc",
"validation_plugin": "vscc",
"validation_parameter": "EiAvQ2hhbm5lbC9BcHBsaWNhdGlvbi9FbmRvcnNlbWVudA==",
"collections": {},

(continues on next page)

11.3. peer lifecycle chaincode 475

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"init_required": true,
"approvals": {
"Org1MSP": true,
"Org2MSP": true

}
}

The validation_parameter is base64 encoded. An example of the command to decode it is as
follows.

echo EiAvQ2hhbm5lbC9BcHBsaWNhdGlvbi9FbmRvcnNlbWVudA== | base64 -d

/Channel/Application/Endorsement

– For querying all chaincode definitions on that channel

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/
→˓tlscacerts/tlsca.example.com-cert.pem

peer lifecycle chaincode querycommitted -o orderer.example.com:7050 --
→˓channelID mychannel --tls --cafile $ORDERER_CA --peerAddresses peer0.org1.
→˓example.com:7051 --output json

If successful, the command will return a JSON that has committed chaincode definitions on channel ‘my-
channel’.

{
"chaincode_definitions": [
{
"name": "mycc",
"sequence": 1,
"version": "1",
"endorsement_plugin": "escc",
"validation_plugin": "vscc",
"validation_parameter":

→˓"EiAvQ2hhbm5lbC9BcHBsaWNhdGlvbi9FbmRvcnNlbWVudA==",
"collections": {},
"init_required": true

},
{
"name": "yourcc",
"sequence": 3,
"version": "2",
"endorsement_plugin": "escc",
"validation_plugin": "vscc",
"validation_parameter":

→˓"EiAvQ2hhbm5lbC9BcHBsaWNhdGlvbi9FbmRvcnNlbWVudA==",
"collections": {}

}
]

}

This work is licensed under a Creative Commons Attribution 4.0 International License.

476 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

11.4 peer channel

The peer channel command allows administrators to perform channel related operations on a peer, such as joining
a channel or listing the channels to which a peer is joined.

11.4.1 Syntax

The peer channel command has the following subcommands:

• create

• fetch

• getinfo

• join

• list

• signconfigtx

• update

11.4.2 peer channel

Operate a channel: create|fetch|join|list|update|signconfigtx|getinfo.

Usage:
peer channel [command]

Available Commands:
create Create a channel
fetch Fetch a block
getinfo get blockchain information of a specified channel.
join Joins the peer to a channel.
list List of channels peer has joined.
signconfigtx Signs a configtx update.
update Send a configtx update.

Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)

-h, --help help for channel
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

Use "peer channel [command] --help" for more information about a command.

11.4. peer channel 477

hyperledger-fabricdocs Documentation, Release master

11.4.3 peer channel create

Create a channel and write the genesis block to a file.

Usage:
peer channel create [flags]

Flags:
-c, --channelID string In case of a newChain command, the channel ID to create.

→˓It must be all lower case, less than 250 characters long and match the regular
→˓expression: [a-z][a-z0-9.-]*
-f, --file string Configuration transaction file generated by a tool such

→˓as configtxgen for submitting to orderer
-h, --help help for create

--outputBlock string The path to write the genesis block for the channel.
→˓(default ./<channelID>.block)
-t, --timeout duration Channel creation timeout (default 10s)

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.4.4 peer channel fetch

Fetch a specified block, writing it to a file.

Usage:
peer channel fetch <newest|oldest|config|(number)> [outputfile] [flags]

Flags:
--bestEffort Whether fetch requests should ignore errors and return

→˓blocks on a best effort basis
-c, --channelID string In case of a newChain command, the channel ID to create.

→˓It must be all lower case, less than 250 characters long and match the regular
→˓expression: [a-z][a-z0-9.-]*
-h, --help help for fetch

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
(continues on next page)

478 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.4.5 peer channel getinfo

get blockchain information of a specified channel. Requires '-c'.

Usage:
peer channel getinfo [flags]

Flags:
-c, --channelID string In case of a newChain command, the channel ID to create.

→˓It must be all lower case, less than 250 characters long and match the regular
→˓expression: [a-z][a-z0-9.-]*
-h, --help help for getinfo

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.4.6 peer channel join

Joins the peer to a channel.

Usage:
peer channel join [flags]

Flags:
-b, --blockpath string Path to file containing genesis block
-h, --help help for join

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint(continues on next page)

11.4. peer channel 479

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

--clientauth Use mutual TLS when communicating with
→˓the orderer endpoint

--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.4.7 peer channel list

List of channels peer has joined.

Usage:
peer channel list [flags]

Flags:
-h, --help help for list

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.4.8 peer channel signconfigtx

Signs the supplied configtx update file in place on the filesystem. Requires '-f'.

Usage:
peer channel signconfigtx [flags]

Flags:
-f, --file string Configuration transaction file generated by a tool such as

→˓configtxgen for submitting to orderer
-h, --help help for signconfigtx

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint(continues on next page)

480 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

--clientauth Use mutual TLS when communicating with
→˓the orderer endpoint

--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.4.9 peer channel update

Signs and sends the supplied configtx update file to the channel. Requires '-f', '-o',
→˓ '-c'.

Usage:
peer channel update [flags]

Flags:
-c, --channelID string In case of a newChain command, the channel ID to create.

→˓It must be all lower case, less than 250 characters long and match the regular
→˓expression: [a-z][a-z0-9.-]*
-f, --file string Configuration transaction file generated by a tool such as

→˓configtxgen for submitting to orderer
-h, --help help for update

Global Flags:
--cafile string Path to file containing PEM-encoded

→˓trusted certificate(s) for the ordering endpoint
--certfile string Path to file containing PEM-encoded X509

→˓public key to use for mutual TLS communication with the orderer endpoint
--clientauth Use mutual TLS when communicating with

→˓the orderer endpoint
--connTimeout duration Timeout for client to connect (default 3s)
--keyfile string Path to file containing PEM-encoded

→˓private key to use for mutual TLS communication with the orderer endpoint
-o, --orderer string Ordering service endpoint

--ordererTLSHostnameOverride string The hostname override to use when
→˓validating the TLS connection to the orderer.

--tls Use TLS when communicating with the
→˓orderer endpoint

11.4.10 Example Usage

peer channel create examples

Here’s an example that uses the --orderer global flag on the peer channel create command.

• Create a sample channel mychannel defined by the configuration transaction contained in file ./
createchannel.tx. Use the orderer at orderer.example.com:7050.

11.4. peer channel 481

hyperledger-fabricdocs Documentation, Release master

peer channel create -c mychannel -f ./createchannel.tx --orderer orderer.example.
→˓com:7050

2018-02-25 08:23:57.548 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and
→˓orderer connections initialized
2018-02-25 08:23:57.626 UTC [channelCmd] InitCmdFactory -> INFO 019 Endorser and
→˓orderer connections initialized
2018-02-25 08:23:57.834 UTC [channelCmd] readBlock -> INFO 020 Received block: 0
2018-02-25 08:23:57.835 UTC [main] main -> INFO 021 Exiting.....

Block 0 is returned indicating that the channel has been successfully created.

Here’s an example of the peer channel create command option.

• Create a new channel mychannel for the network, using the orderer at ip address orderer.example.
com:7050. The configuration update transaction required to create this channel is defined the file ./
createchannel.tx. Wait 30 seconds for the channel to be created.

peer channel create -c mychannel --orderer orderer.example.com:7050 -f ./
→˓createchannel.tx -t 30s

2018-02-23 06:31:58.568 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser
→˓and orderer connections initialized
2018-02-23 06:31:58.669 UTC [channelCmd] InitCmdFactory -> INFO 019 Endorser

→˓and orderer connections initialized
2018-02-23 06:31:58.877 UTC [channelCmd] readBlock -> INFO 020 Received block: 0
2018-02-23 06:31:58.878 UTC [main] main -> INFO 021 Exiting.....

ls -l

-rw-r--r-- 1 root root 11982 Feb 25 12:24 mychannel.block

You can see that channel mychannel has been successfully created, as indicated in the output where block 0
(zero) is added to the blockchain for this channel and returned to the peer, where it is stored in the local directory
as mychannel.block.

Block zero is often called the genesis block as it provides the starting configuration for the channel. All sub-
sequent updates to the channel will be captured as configuration blocks on the channel’s blockchain, each of
which supersedes the previous configuration.

peer channel fetch example

Here’s some examples of the peer channel fetch command.

• Using the newest option to retrieve the most recent channel block, and store it in the file mychannel.block.

peer channel fetch newest mychannel.block -c mychannel --orderer orderer.example.
→˓com:7050

2018-02-25 13:10:16.137 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and
→˓orderer connections initialized
2018-02-25 13:10:16.144 UTC [channelCmd] readBlock -> INFO 00a Received block: 32
2018-02-25 13:10:16.145 UTC [main] main -> INFO 00b Exiting.....

ls -l

-rw-r--r-- 1 root root 11982 Feb 25 13:10 mychannel.block

482 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

You can see that the retrieved block is number 32, and that the information has been written to the file
mychannel.block.

• Using the (block number) option to retrieve a specific block – in this case, block number 16 – and store it
in the default block file.

peer channel fetch 16 -c mychannel --orderer orderer.example.com:7050

2018-02-25 13:46:50.296 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and
→˓orderer connections initialized
2018-02-25 13:46:50.302 UTC [channelCmd] readBlock -> INFO 00a Received block: 16
2018-02-25 13:46:50.302 UTC [main] main -> INFO 00b Exiting.....

ls -l

-rw-r--r-- 1 root root 11982 Feb 25 13:10 mychannel.block
-rw-r--r-- 1 root root 4783 Feb 25 13:46 mychannel_16.block

You can see that the retrieved block is number 16, and that the information has been written to the default file
mychannel_16.block.

For configuration blocks, the block file can be decoded using the configtxlator command. See this com-
mand for an example of decoded output. User transaction blocks can also be decoded, but a user program must
be written to do this.

peer channel getinfo example

Here’s an example of the peer channel getinfo command.

• Get information about the local peer for channel mychannel.

peer channel getinfo -c mychannel

2018-02-25 15:15:44.135 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and
→˓orderer connections initialized
Blockchain info: {"height":5,"currentBlockHash":"JgK9lcaPUNmFb5Mp1qe1SVMsx3o/
→˓22Ct4+n5tejcXCw=","previousBlockHash":
→˓"f8lZXoAn3gF86zrFq7L1DzW2aKuabH9Ow6SIE5Y04a4="}
2018-02-25 15:15:44.139 UTC [main] main -> INFO 006 Exiting.....

You can see that the latest block for channel mychannel is block 5. You can also see the cryptographic hashes
for the most recent blocks in the channel’s blockchain.

peer channel join example

Here’s an example of the peer channel join command.

• Join a peer to the channel defined in the genesis block identified by the file ./mychannel.genesis.block.
In this example, the channel block was previously retrieved by the peer channel fetch command.

peer channel join -b ./mychannel.genesis.block

2018-02-25 12:25:26.511 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and
→˓orderer connections initialized
2018-02-25 12:25:26.571 UTC [channelCmd] executeJoin -> INFO 006 Successfully
→˓submitted proposal to join channel
2018-02-25 12:25:26.571 UTC [main] main -> INFO 007 Exiting.....

11.4. peer channel 483

./configtxlator.html

hyperledger-fabricdocs Documentation, Release master

You can see that the peer has successfully made a request to join the channel.

peer channel list example

Here’s an example of the peer channel list command.

• List the channels to which a peer is joined.

peer channel list

2018-02-25 14:21:20.361 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and
→˓orderer connections initialized
Channels peers has joined:
mychannel
2018-02-25 14:21:20.372 UTC [main] main -> INFO 006 Exiting.....

You can see that the peer is joined to channel mychannel.

peer channel signconfigtx example

Here’s an example of the peer channel signconfigtx command.

• Sign the channel update transaction defined in the file ./updatechannel.tx. The example lists the
configuration transaction file before and after the command.

ls -l

-rw-r--r-- 1 anthonyodowd staff 284 25 Feb 18:16 updatechannel.tx

peer channel signconfigtx -f updatechannel.tx

2018-02-25 18:16:44.456 GMT [channelCmd] InitCmdFactory -> INFO 001 Endorser and
→˓orderer connections initialized
2018-02-25 18:16:44.459 GMT [main] main -> INFO 002 Exiting.....

ls -l

-rw-r--r-- 1 anthonyodowd staff 2180 25 Feb 18:16 updatechannel.tx

You can see that the peer has successfully signed the configuration transaction by the increase in the size of the
file updatechannel.tx from 284 bytes to 2180 bytes.

peer channel update example

Here’s an example of the peer channel update command.

• Update the channel mychannel using the configuration transaction defined in the file ./updatechannel.
tx. Use the orderer at ip address orderer.example.com:7050 to send the configuration transaction to
all peers in the channel to update their copy of the channel configuration.

peer channel update -c mychannel -f ./updatechannel.tx -o orderer.example.com:7050

2018-02-23 06:32:11.569 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and
→˓orderer connections initialized
2018-02-23 06:32:11.626 UTC [main] main -> INFO 010 Exiting.....

484 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

At this point, the channel mychannel has been successfully updated.

This work is licensed under a Creative Commons Attribution 4.0 International License.

11.5 peer version

The peer version command displays the version information of the peer. It displays version, Commit SHA, Go
version, OS/architecture, and chaincode information. For example:

peer:
Version: 2.1.0
Commit SHA: b78d79b
Go version: go1.14.1
OS/Arch: linux/amd64
Chaincode:
Base Docker Label: org.hyperledger.fabric
Docker Namespace: hyperledger

11.5.1 Syntax

The peer version command takes no arguments.

11.5.2 peer version

Print current version of the fabric peer server.

Usage:
peer version [flags]

Flags:
-h, --help help for version

This work is licensed under a Creative Commons Attribution 4.0 International License.

11.6 peer node

The peer node command allows an administrator to start a peer node, reset all channels in a peer to the genesis
block, or rollback a channel to a given block number.

11.6.1 Syntax

The peer node command has the following subcommands:

• start

• reset

• rollback

11.5. peer version 485

hyperledger-fabricdocs Documentation, Release master

11.6.2 peer node start

Starts a node that interacts with the network.

Usage:
peer node start [flags]

Flags:
-h, --help help for start

--peer-chaincodedev start peer in chaincode development mode

11.6.3 peer node reset

Resets all channels to the genesis block. When the command is executed, the peer must
→˓be offline. When the peer starts after the reset, it will receive blocks starting
→˓with block number one from an orderer or another peer to rebuild the block store
→˓and state database.

Usage:
peer node reset [flags]

Flags:
-h, --help help for reset

11.6.4 peer node rollback

Rolls back a channel to a specified block number. When the command is executed, the
→˓peer must be offline. When the peer starts after the rollback, it will receive
→˓blocks, which got removed during the rollback, from an orderer or another peer to
→˓rebuild the block store and state database.

Usage:
peer node rollback [flags]

Flags:
-b, --blockNumber uint Block number to which the channel needs to be rolled back

→˓to.
-c, --channelID string Channel to rollback.
-h, --help help for rollback

11.6.5 Example Usage

peer node start example

The following command:

peer node start --peer-chaincodedev

starts a peer node in chaincode development mode. Normally chaincode containers are started and maintained by
peer. However in chaincode development mode, chaincode is built and started by the user. This mode is useful during
chaincode development phase for iterative development.

486 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

peer node reset example

peer node reset

resets all channels in the peer to the genesis block, i.e., the first block in the channel. The command also records the
pre-reset height of each channel in the file system. Note that the peer process should be stopped while executing this
command. If the peer process is running, this command detects that and returns an error instead of performing the
reset. When the peer is started after performing the reset, the peer will fetch the blocks for each channel which were
removed by the reset command (either from other peers or orderers) and commit the blocks up to the pre-reset height.
Until all channels reach the pre-reset height, the peer will not endorse any transactions.

peer node rollback example

The following command:

peer node rollback -c ch1 -b 150

rolls back the channel ch1 to block number 150. The command also records the pre-rolled back height of channel ch1
in the file system. Note that the peer should be stopped while executing this command. If the peer process is running,
this command detects that and returns an error instead of performing the rollback. When the peer is started after
performing the rollback, the peer will fetch the blocks for channel ch1 which were removed by the rollback command
(either from other peers or orderers) and commit the blocks up to the pre-rolled back height. Until the channel ch1
reaches the pre-rolled back height, the peer will not endorse any transaction for any channel.

This work is licensed under a Creative Commons Attribution 4.0 International License.

11.7 configtxgen

The configtxgen command allows users to create and inspect channel config related artifacts. The content of the
generated artifacts is dictated by the contents of configtx.yaml.

11.7.1 Syntax

The configtxgen tool has no sub-commands, but supports flags which can be set to accomplish a number of tasks.

11.7.2 configtxgen

Usage of configtxgen:
-asOrg string

Performs the config generation as a particular organization (by name), only
→˓including values in the write set that org (likely) has privilege to set
-channelCreateTxBaseProfile string

Specifies a profile to consider as the orderer system channel current state
→˓to allow modification of non-application parameters during channel create tx
→˓generation. Only valid in conjunction with 'outputCreateChannelTx'.
-channelID string

The channel ID to use in the configtx
-configPath string

The path containing the configuration to use (if set)
-inspectBlock string

(continues on next page)

11.7. configtxgen 487

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Prints the configuration contained in the block at the specified path
-inspectChannelCreateTx string

Prints the configuration contained in the transaction at the specified path
-outputAnchorPeersUpdate string

[DEPRECATED] Creates a config update to update an anchor peer (works only
→˓with the default channel creation, and only for the first update)
-outputBlock string

The path to write the genesis block to (if set)
-outputCreateChannelTx string

The path to write a channel creation configtx to (if set)
-printOrg string

Prints the definition of an organization as JSON. (useful for adding an org
→˓to a channel manually)
-profile string

The profile from configtx.yaml to use for generation.
-version

Show version information

11.7.3 Usage

Output a genesis block

Write a genesis block to genesis_block.pb for channel orderer-system-channel for profile
SampleSingleMSPRaftV1_1.

configtxgen -outputBlock genesis_block.pb -profile SampleSingleMSPRaftV1_1 -channelID
→˓orderer-system-channel

Output a channel creation tx

Write a channel creation transaction to create_chan_tx.pb for profile SampleSingleMSPChannelV1_1.

configtxgen -outputCreateChannelTx create_chan_tx.pb -profile
→˓SampleSingleMSPChannelV1_1 -channelID application-channel-1

Inspect a genesis block

Print the contents of a genesis block named genesis_block.pb to the screen as JSON.

configtxgen -inspectBlock genesis_block.pb

Inspect a channel creation tx

Print the contents of a channel creation tx named create_chan_tx.pb to the screen as JSON.

configtxgen -inspectChannelCreateTx create_chan_tx.pb

488 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

Print an organization definition

Construct an organization definition based on the parameters such as MSPDir from configtx.yaml and print it as
JSON to the screen. (This output is useful for channel reconfiguration workflows, such as adding a member).

configtxgen -printOrg Org1

Output anchor peer tx (deprecated)

Output a channel configuration update transaction anchor_peer_tx.pb based on the anchor peers defined for
Org1 and channel profile SampleSingleMSPChannelV1_1 in configtx.yaml. Transaction will set anchor peers
for Org1 if no anchor peers have been set on the channel.

configtxgen -outputAnchorPeersUpdate anchor_peer_tx.pb -profile
→˓SampleSingleMSPChannelV1_1 -asOrg Org1

The -outputAnchorPeersUpdate output flag has been deprecated. To set anchor peers on the channel, use
configtxlator to update the channel configuration.

11.7.4 Configuration

The configtxgen tool’s output is largely controlled by the content of configtx.yaml. This file is searched for
at FABRIC_CFG_PATH and must be present for configtxgen to operate.

Refer to the sample configtx.yaml shipped with Fabric for all possible configuration options. You may find this
file in the config directory of the release artifacts tar, or you may find it under the sampleconfig folder if you
are building from source.

This work is licensed under a Creative Commons Attribution 4.0 International License.

11.8 configtxlator

The configtxlator command allows users to translate between protobuf and JSON versions of fabric data struc-
tures and create config updates. The command may either start a REST server to expose its functions over HTTP or
may be utilized directly as a command line tool.

11.8.1 Syntax

The configtxlator tool has five sub-commands, as follows:

• start

• proto_encode

• proto_decode

• compute_update

• version

11.8. configtxlator 489

configtxlator.html

hyperledger-fabricdocs Documentation, Release master

11.8.2 configtxlator start

usage: configtxlator start [<flags>]

Start the configtxlator REST server

Flags:
--help Show context-sensitive help (also try --help-long and

--help-man).
--hostname="0.0.0.0" The hostname or IP on which the REST server will listen
--port=7059 The port on which the REST server will listen
--CORS=CORS ... Allowable CORS domains, e.g. '*' or 'www.example.com'

(may be repeated).

11.8.3 configtxlator proto_encode

usage: configtxlator proto_encode --type=TYPE [<flags>]

Converts a JSON document to protobuf.

Flags:
--help Show context-sensitive help (also try --help-long and

--help-man).
--type=TYPE The type of protobuf structure to encode to. For

example, 'common.Config'.
--input=/dev/stdin A file containing the JSON document.
--output=/dev/stdout A file to write the output to.

11.8.4 configtxlator proto_decode

usage: configtxlator proto_decode --type=TYPE [<flags>]

Converts a proto message to JSON.

Flags:
--help Show context-sensitive help (also try --help-long and

--help-man).
--type=TYPE The type of protobuf structure to decode from. For

example, 'common.Config'.
--input=/dev/stdin A file containing the proto message.
--output=/dev/stdout A file to write the JSON document to.

11.8.5 configtxlator compute_update

usage: configtxlator compute_update --channel_id=CHANNEL_ID [<flags>]

Takes two marshaled common.Config messages and computes the config update which
transitions between the two.

Flags:
--help Show context-sensitive help (also try --help-long and

(continues on next page)

490 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

--help-man).
--original=ORIGINAL The original config message.
--updated=UPDATED The updated config message.
--channel_id=CHANNEL_ID The name of the channel for this update.
--output=/dev/stdout A file to write the JSON document to.

11.8.6 configtxlator version

usage: configtxlator version

Show version information

Flags:
--help Show context-sensitive help (also try --help-long and --help-man).

11.8.7 Examples

Decoding

Decode a block named fabric_block.pb to JSON and print to stdout.

configtxlator proto_decode --input fabric_block.pb --type common.Block

Alternatively, after starting the REST server, the following curl command performs the same operation through the
REST API.

curl -X POST --data-binary @fabric_block.pb "${CONFIGTXLATOR_URL}/protolator/decode/
→˓common.Block"

Encoding

Convert a JSON document for a policy from stdin to a file named policy.pb.

configtxlator proto_encode --type common.Policy --output policy.pb

Alternatively, after starting the REST server, the following curl command performs the same operation through the
REST API.

curl -X POST --data-binary /dev/stdin "${CONFIGTXLATOR_URL}/protolator/encode/common.
→˓Policy" > policy.pb

Pipelines

Compute a config update from original_config.pb and modified_config.pb and decode it to JSON to
stdout.

configtxlator compute_update --channel_id testchan --original original_config.pb --
→˓updated modified_config.pb | configtxlator proto_decode --type common.ConfigUpdate

11.8. configtxlator 491

hyperledger-fabricdocs Documentation, Release master

Alternatively, after starting the REST server, the following curl commands perform the same operations through the
REST API.

curl -X POST -F channel=testchan -F "original=@original_config.pb" -F
→˓"updated=@modified_config.pb" "${CONFIGTXLATOR_URL}/configtxlator/compute/update-
→˓from-configs" | curl -X POST --data-binary /dev/stdin "${CONFIGTXLATOR_URL}/
→˓protolator/decode/common.ConfigUpdate"

11.8.8 Additional Notes

The tool name is a portmanteau of configtx and translator and is intended to convey that the tool simply converts
between different equivalent data representations. It does not generate configuration. It does not submit or retrieve
configuration. It does not modify configuration itself, it simply provides some bijective operations between different
views of the configtx format.

There is no configuration file configtxlator nor any authentication or authorization facilities included for the
REST server. Because configtxlator does not have any access to data, key material, or other information which
might be considered sensitive, there is no risk to the owner of the server in exposing it to other clients. However,
because the data sent by a user to the REST server might be confidential, the user should either trust the administrator
of the server, run a local instance, or operate via the CLI.

This work is licensed under a Creative Commons Attribution 4.0 International License.

11.9 cryptogen

cryptogen is an utility for generating Hyperledger Fabric key material. It is provided as a means of preconfiguring
a network for testing purposes. It would normally not be used in the operation of a production network.

11.9.1 Syntax

The cryptogen command has five subcommands, as follows:

• help

• generate

• showtemplate

• extend

• version

11.9.2 cryptogen help

usage: cryptogen [<flags>] <command> [<args> ...]

Utility for generating Hyperledger Fabric key material

Flags:
--help Show context-sensitive help (also try --help-long and --help-man).

Commands:
help [<command>...]

(continues on next page)

492 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Show help.

generate [<flags>]
Generate key material

showtemplate
Show the default configuration template

version
Show version information

extend [<flags>]
Extend existing network

11.9.3 cryptogen generate

usage: cryptogen generate [<flags>]

Generate key material

Flags:
--help Show context-sensitive help (also try --help-long

and --help-man).
--output="crypto-config" The output directory in which to place artifacts
--config=CONFIG The configuration template to use

11.9.4 cryptogen showtemplate

usage: cryptogen showtemplate

Show the default configuration template

Flags:
--help Show context-sensitive help (also try --help-long and --help-man).

11.9.5 cryptogen extend

usage: cryptogen extend [<flags>]

Extend existing network

Flags:
--help Show context-sensitive help (also try --help-long and

--help-man).
--input="crypto-config" The input directory in which existing network place
--config=CONFIG The configuration template to use

11.9. cryptogen 493

hyperledger-fabricdocs Documentation, Release master

11.9.6 cryptogen version

usage: cryptogen version

Show version information

Flags:
--help Show context-sensitive help (also try --help-long and --help-man).

11.9.7 Usage

Here’s an example using the different available flags on the cryptogen extend command.

cryptogen extend --input="crypto-config" --config=config.yaml

org3.example.com

Where config.yaml adds a new peer organization called org3.example.com

This work is licensed under a Creative Commons Attribution 4.0 International License.

11.10 Service Discovery CLI

The discovery service has its own Command Line Interface (CLI) which uses a YAML configuration file to persist
properties such as certificate and private key paths, as well as MSP ID.

The discover command has the following subcommands:

• saveConfig

• peers

• config

• endorsers

And the usage of the command is shown below:

usage: discover [<flags>] <command> [<args> ...]

Command line client for fabric discovery service

Flags:
--help Show context-sensitive help (also try --help-long and --

→˓help-man).
--configFile=CONFIGFILE Specifies the config file to load the configuration from
--peerTLSCA=PEERTLSCA Sets the TLS CA certificate file path that verifies the

→˓TLS peer's certificate
--tlsCert=TLSCERT (Optional) Sets the client TLS certificate file path that

→˓is used when the peer enforces client authentication
--tlsKey=TLSKEY (Optional) Sets the client TLS key file path that is used

→˓when the peer enforces client authentication
--userKey=USERKEY Sets the user's key file path that is used to sign

→˓messages sent to the peer
--userCert=USERCERT Sets the user's certificate file path that is used to

→˓authenticate the messages sent to the peer

(continues on next page)

494 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

--MSP=MSP Sets the MSP ID of the user, which represents the CA(s)
→˓that issued its user certificate

Commands:
help [<command>...]
Show help.

peers [<flags>]
Discover peers

config [<flags>]
Discover channel config

endorsers [<flags>]
Discover chaincode endorsers

saveConfig
Save the config passed by flags into the file specified by --configFile

11.10.1 Configuring external endpoints

Currently, to see peers in service discovery they need to have EXTERNAL_ENDPOINT to be configured for them.
Otherwise, Fabric assumes the peer should not be disclosed.

To define these endpoints, you need to specify them in the core.yaml of the peer, replacing the sample endpoint
below with the ones of your peer.

CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer1.org1.example.com:8051

11.10.2 Persisting configuration

To persist the configuration, a config file name should be supplied via the flag --configFile, along with the
command saveConfig:

discover --configFile conf.yaml --peerTLSCA tls/ca.crt --userKey msp/keystore/
→˓ea4f6a38ac7057b6fa9502c2f5f39f182e320f71f667749100fe7dd94c23ce43_sk --userCert msp/
→˓signcerts/User1\@org1.example.com-cert.pem --MSP Org1MSP saveConfig

By executing the above command, configuration file would be created:

$ cat conf.yaml
version: 0
tlsconfig:

certpath: ""
keypath: ""
peercacertpath: /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/

→˓peerOrganizations/org1.example.com/users/User1@org1.example.com/tls/ca.crt
timeout: 0s

signerconfig:
mspid: Org1MSP
identitypath: /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/

→˓peerOrganizations/org1.example.com/users/User1@org1.example.com/msp/signcerts/
→˓User1@org1.example.com-cert.pem

(continues on next page)

11.10. Service Discovery CLI 495

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

keypath: /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓peerOrganizations/org1.example.com/users/User1@org1.example.com/msp/keystore/
→˓ea4f6a38ac7057b6fa9502c2f5f39f182e320f71f667749100fe7dd94c23ce43_sk

When the peer runs with TLS enabled, the discovery service on the peer requires the client to connect to it with mutual
TLS, which means it needs to supply a TLS certificate. The peer is configured by default to request (but not to verify)
client TLS certificates, so supplying a TLS certificate isn’t needed (unless the peer’s tls.clientAuthRequired
is set to true).

When the discovery CLI’s config file has a certificate path for peercacertpath, but the certpath and keypath
aren’t configured as in the above - the discovery CLI generates a self-signed TLS certificate and uses this to connect
to the peer.

When the peercacertpath isn’t configured, the discovery CLI connects without TLS , and this is highly not
recommended, as the information is sent over plaintext, un-encrypted.

11.10.3 Querying the discovery service

The discoveryCLI acts as a discovery client, and it needs to be executed against a peer. This is done via specifying the
--server flag. In addition, the queries are channel-scoped, so the --channel flag must be used.

The only query that doesn’t require a channel is the local membership peer query, which by default can only be used
by administrators of the peer being queried.

The discover CLI supports all server-side queries:

• Peer membership query

• Configuration query

• Endorsers query

Let’s go over them and see how they should be invoked and parsed:

11.10.4 Peer membership query:

$ discover --configFile conf.yaml peers --channel mychannel --server peer0.org1.
→˓example.com:7051
[

{
"MSPID": "Org2MSP",
"LedgerHeight": 5,
"Endpoint": "peer0.org2.example.com:9051",
"Identity": "-----BEGIN CERTIFICATE-----

→˓\nMIICKTCCAc+gAwIBAgIRANK4WBck5gKuzTxVQIwhYMUwCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzIuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzIuZXhhbXBsZS5jb20wHhcNMTgwNjE3MTM0NTIxWhcNMjgwNjE0MTM0NTIx\nWjBqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzENMAsGA1UECxMEcGVlcjEfMB0GA1UEAxMWcGVlcjAub3Jn\nMi5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJa0gkMRqJCi\nzmx+L9xy/
→˓ecJNvdAV2zmSx5Sf2qospVAH1MYCHyudDEvkiRuBPgmCdOdwJsE0g+h\nz0nZdKq6/
→˓X+jTTBLMA4GA1UdDwEB/
→˓wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1Ud\nIwQkMCKAIFZMuZfUtY6n2iyxaVr3rl+x5lU0CdG9x7KAeYydQGTMMAoGCCqGSM49\nBAMCA0gAMEUCIQC0M9/
→˓LJ7j3I9NEPQ/B1BpnJP+UNPnGO2peVrM/
→˓mJ1nVgIgS1ZA\nA1tsxuDyllaQuHx2P+P9NDFdjXx5T08lZhxuWYM=\n-----END CERTIFICATE-----\n
→˓",

"Chaincodes": [
"mycc"

]
},
{

(continues on next page)

496 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"MSPID": "Org2MSP",
"LedgerHeight": 5,
"Endpoint": "peer1.org2.example.com:10051",
"Identity": "-----BEGIN CERTIFICATE-----

→˓\nMIICKDCCAc+gAwIBAgIRALnNJzplCrYy4Y8CjZtqL7AwCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzIuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzIuZXhhbXBsZS5jb20wHhcNMTgwNjE3MTM0NTIxWhcNMjgwNjE0MTM0NTIx\nWjBqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzENMAsGA1UECxMEcGVlcjEfMB0GA1UEAxMWcGVlcjEub3Jn\nMi5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABNDopAkHlDdu\nq10HEkdxvdpkbs7EJyqv1clvCt/
→˓YMn1hS6sM+bFDgkJKalG7s9Hg3URF0aGpy51R\nU+4F9Muo+XajTTBLMA4GA1UdDwEB/
→˓wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1Ud\nIwQkMCKAIFZMuZfUtY6n2iyxaVr3rl+x5lU0CdG9x7KAeYydQGTMMAoGCCqGSM49\nBAMCA0cAMEQCIAR4fBmIBKW2jp0HbbabVepNtl1c7+6++riIrEBnoyIVAiBBvWmI\nyG02c5hu4wPAuVQMB7AU6tGSeYaWSAAo/
→˓ExunQ==\n-----END CERTIFICATE-----\n",

"Chaincodes": [
"mycc"

]
},
{

"MSPID": "Org1MSP",
"LedgerHeight": 5,
"Endpoint": "peer0.org1.example.com:7051",
"Identity": "-----BEGIN CERTIFICATE-----

→˓\nMIICKDCCAc6gAwIBAgIQP18LeXtEXGoN8pTqzXTHZTAKBggqhkjOPQQDAjBzMQsw\nCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNU2FuIEZy\nYW5jaXNjbzEZMBcGA1UEChMQb3JnMS5leGFtcGxlLmNvbTEcMBoGA1UEAxMTY2Eu\nb3JnMS5leGFtcGxlLmNvbTAeFw0xODA2MTcxMzQ1MjFaFw0yODA2MTQxMzQ1MjFa\nMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1T\nYW4gRnJhbmNpc2NvMQ0wCwYDVQQLEwRwZWVyMR8wHQYDVQQDExZwZWVyMC5vcmcx\nLmV4YW1wbGUuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEKeC/
→˓1Rg/ynSk\nNNItaMlaCDZOaQvxJEl6o3fqx1PVFlfXE4NarY3OO1N3YZI41hWWoXksSwJu/
→˓35S\nM7wMEzw+3KNNMEswDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/
→˓wQCMAAwKwYDVR0j\nBCQwIoAgcecTOxTes6rfgyxHH6KIW7hsRAw2bhP9ikCHkvtv/
→˓RcwCgYIKoZIzj0E\nAwIDSAAwRQIhAKiJEv79XBmr8gGY6kHrGL0L3sq95E7IsCYzYdAQHj+DAiBPcBTg\nRuA0/
→˓/Kq+3aHJ2T0KpKHqD3FfhZZolKDkcrkwQ==\n-----END CERTIFICATE-----\n",

"Chaincodes": [
"mycc"

]
},
{

"MSPID": "Org1MSP",
"LedgerHeight": 5,
"Endpoint": "peer1.org1.example.com:8051",
"Identity": "-----BEGIN CERTIFICATE-----

→˓\nMIICJzCCAc6gAwIBAgIQO7zMEHlMfRhnP6Xt65jwtDAKBggqhkjOPQQDAjBzMQsw\nCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNU2FuIEZy\nYW5jaXNjbzEZMBcGA1UEChMQb3JnMS5leGFtcGxlLmNvbTEcMBoGA1UEAxMTY2Eu\nb3JnMS5leGFtcGxlLmNvbTAeFw0xODA2MTcxMzQ1MjFaFw0yODA2MTQxMzQ1MjFa\nMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1T\nYW4gRnJhbmNpc2NvMQ0wCwYDVQQLEwRwZWVyMR8wHQYDVQQDExZwZWVyMS5vcmcx\nLmV4YW1wbGUuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEoII9k8db/
→˓Q2g\nRHw5rk3SYw+OMFw9jNbsJJyC5ttJRvc12Dn7lQ8ZR9hW1vLQ3NtqO/
→˓couccDJcHg\nt47iHBNadaNNMEswDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/
→˓wQCMAAwKwYDVR0j\nBCQwIoAgcecTOxTes6rfgyxHH6KIW7hsRAw2bhP9ikCHkvtv/
→˓RcwCgYIKoZIzj0E\nAwIDRwAwRAIgGHGtRVxcFVeMQr9yRlebs23OXEECNo6hNqd/
→˓4ChLwwoCIBFKFd6t\nlL5BVzVMGQyXWcZGrjFgl4+fDrwjmMe+jAfa\n-----END CERTIFICATE-----\n
→˓",

"Chaincodes": null
}

]

As seen, this command outputs a JSON containing membership information about all the peers in the channel that the
peer queried possesses.

The Identity that is returned is the enrollment certificate of the peer, and it can be parsed with a combination of
jq and openssl:

$ discover --configFile conf.yaml peers --channel mychannel --server peer0.org1.
→˓example.com:7051 | jq .[0].Identity | sed "s/\\\n/\n/g" | sed "s/\"//g" | openssl
→˓x509 -text -noout
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

55:e9:3f:97:94:d5:74:db:e2:d6:99:3c:01:24:be:bf
(continues on next page)

11.10. Service Discovery CLI 497

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Signature Algorithm: ecdsa-with-SHA256
Issuer: C=US, ST=California, L=San Francisco, O=org2.example.com, CN=ca.org2.

→˓example.com
Validity

Not Before: Jun 9 11:58:28 2018 GMT
Not After : Jun 6 11:58:28 2028 GMT

Subject: C=US, ST=California, L=San Francisco, OU=peer, CN=peer0.org2.example.
→˓com

Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey

Public-Key: (256 bit)
pub:

04:f5:69:7a:11:65:d9:85:96:65:b7:b7:1b:08:77:
43:de:cb:ad:3a:79:ec:cc:2a:bc:d7:93:68:ae:92:
1c:4b:d8:32:47:d6:3d:72:32:f1:f1:fb:26:e4:69:
c2:eb:c9:45:69:99:78:d7:68:a9:77:09:88:c6:53:
01:2a:c1:f8:c0

ASN1 OID: prime256v1
NIST CURVE: P-256

X509v3 extensions:
X509v3 Key Usage: critical

Digital Signature
X509v3 Basic Constraints: critical

CA:FALSE
X509v3 Authority Key Identifier:

→˓keyid:8E:58:82:C9:0A:11:10:A9:0B:93:03:EE:A0:54:42:F4:A3:EF:11:4C:82:B6:F9:CE:10:A2:1E:24:AB:13:82:A0

Signature Algorithm: ecdsa-with-SHA256
30:44:02:20:29:3f:55:2b:9f:7b:99:b2:cb:06:ca:15:3f:93:
a1:3d:65:5c:7b:79:a1:7a:d1:94:50:f0:cd:db:ea:61:81:7a:
02:20:3b:40:5b:60:51:3c:f8:0f:9b:fc:ae:fc:21:fd:c8:36:
a3:18:39:58:20:72:3d:1a:43:74:30:f3:56:01:aa:26

11.10.5 Configuration query:

The configuration query returns a mapping from MSP IDs to orderer endpoints, as well as the FabricMSPConfig
which can be used to verify all peer and orderer nodes by the SDK:

$ discover --configFile conf.yaml config --channel mychannel --server peer0.org1.
→˓example.com:7051
{

"msps": {
"OrdererOrg": {

"name": "OrdererMSP",
"root_certs": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNMekNDQWRhZ0F3SUJBZ0lSQU1pWkxUb3RmMHR6VTRzNUdIdkQ0UjR3Q2dZSUtvWkl6ajBFQXdJd2FURUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhGREFTQmdOVkJBb1RDMlY0WVcxd2JHVXVZMjl0TVJjd0ZRWURWUVFERXc1allTNWxlR0Z0CmNHeGxMbU52YlRBZUZ3MHhPREEyTURreE1UVTRNamhhRncweU9EQTJNRFl4TVRVNE1qaGFNR2t4Q3pBSkJnTlYKQkFZVEFsVlRNUk13RVFZRFZRUUlFd3BEWVd4cFptOXlibWxoTVJZd0ZBWURWUVFIRXcxVFlXNGdSbkpoYm1OcApjMk52TVJRd0VnWURWUVFLRXd0bGVHRnRjR3hsTG1OdmJURVhNQlVHQTFVRUF4TU9ZMkV1WlhoaGJYQnNaUzVqCmIyMHdXVEFUQmdjcWhrak9QUUlCQmdncWhrak9QUU1CQndOQ0FBUW9ySjVSamFTQUZRci9yc2xoMWdobnNCWEQKeDVsR1lXTUtFS1pDYXJDdkZBekE0bHUwb2NQd0IzNWJmTVN5bFJPVmdVdHF1ZU9IcFBNc2ZLNEFrWjR5bzE4dwpYVEFPQmdOVkhROEJBZjhFQkFNQ0FhWXdEd1lEVlIwbEJBZ3dCZ1lFVlIwbEFEQVBCZ05WSFJNQkFmOEVCVEFECkFRSC9NQ2tHQTFVZERnUWlCQ0JnbmZJd0pzNlBaWUZCclpZVkRpU05vSjNGZWNFWHYvN2xHL3QxVUJDbVREQUsKQmdncWhrak9QUVFEQWdOSEFEQkVBaUE5NGFkc21UK0hLalpFVVpnM0VkaWdSM296L3pEQkNhWUY3TEJUVXpuQgpEZ0lnYS9RZFNPQnk1TUx2c0lSNTFDN0N4UnR2NUM5V05WRVlmWk5SaGdXRXpoOD0KLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
→˓"

],
"admins": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNDVENDQWJDZ0F3SUJBZ0lRR2wzTjhaSzRDekRRQmZqYVpwMVF5VEFLQmdncWhrak9QUVFEQWpCcE1Rc3cKQ1FZRFZRUUdFd0pWVXpFVE1CRUdBMVVFQ0JNS1EyRnNhV1p2Y201cFlURVdNQlFHQTFVRUJ4TU5VMkZ1SUVaeQpZVzVqYVhOamJ6RVVNQklHQTFVRUNoTUxaWGhoYlhCc1pTNWpiMjB4RnpBVkJnTlZCQU1URG1OaExtVjRZVzF3CmJHVXVZMjl0TUI0WERURTRNRFl3T1RFeE5UZ3lPRm9YRFRJNE1EWXdOakV4TlRneU9Gb3dWakVMTUFrR0ExVUUKQmhNQ1ZWTXhFekFSQmdOVkJBZ1RDa05oYkdsbWIzSnVhV0V4RmpBVUJnTlZCQWNURFZOaGJpQkdjbUZ1WTJsegpZMjh4R2pBWUJnTlZCQU1NRVVGa2JXbHVRR1Y0WVcxd2JHVXVZMjl0TUZrd0V3WUhLb1pJemowQ0FRWUlLb1pJCnpqMERBUWNEUWdBRWl2TXQybVdiQ2FHb1FZaWpka1BRM1NuTGFkMi8rV0FESEFYMnRGNWthMTBteG1OMEx3VysKdmE5U1dLMmJhRGY5RDQ2TVROZ2gycnRhUitNWXFWRm84Nk5OTUVzd0RnWURWUjBQQVFIL0JBUURBZ2VBTUF3RwpBMVVkRXdFQi93UUNNQUF3S3dZRFZSMGpCQ1F3SW9BZ1lKM3lNQ2JPajJXQlFhMldGUTRramFDZHhYbkJGNy8rCjVSdjdkVkFRcGt3d0NnWUlLb1pJemowRUF3SURSd0F3UkFJZ2RIc0pUcGM5T01DZ3JPVFRLTFNnU043UWk3MWIKSWpkdzE4MzJOeXFQZnJ3Q0lCOXBhSlRnL2R5ckNhWUx1ZndUbUtFSnZZMEtXVzcrRnJTeG5CTGdzZjJpCi0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K
→˓"

],

(continues on next page)

498 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"crypto_config": {
"signature_hash_family": "SHA2",
"identity_identifier_hash_function": "SHA256"

},
"tls_root_certs": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNORENDQWR1Z0F3SUJBZ0lRZDdodzFIaHNZTXI2a25ETWJrZThTakFLQmdncWhrak9QUVFEQWpCc01Rc3cKQ1FZRFZRUUdFd0pWVXpFVE1CRUdBMVVFQ0JNS1EyRnNhV1p2Y201cFlURVdNQlFHQTFVRUJ4TU5VMkZ1SUVaeQpZVzVqYVhOamJ6RVVNQklHQTFVRUNoTUxaWGhoYlhCc1pTNWpiMjB4R2pBWUJnTlZCQU1URVhSc2MyTmhMbVY0CllXMXdiR1V1WTI5dE1CNFhEVEU0TURZd09URXhOVGd5T0ZvWERUSTRNRFl3TmpFeE5UZ3lPRm93YkRFTE1Ba0cKQTFVRUJoTUNWVk14RXpBUkJnTlZCQWdUQ2tOaGJHbG1iM0p1YVdFeEZqQVVCZ05WQkFjVERWTmhiaUJHY21GdQpZMmx6WTI4eEZEQVNCZ05WQkFvVEMyVjRZVzF3YkdVdVkyOXRNUm93R0FZRFZRUURFeEYwYkhOallTNWxlR0Z0CmNHeGxMbU52YlRCWk1CTUdCeXFHU000OUFnRUdDQ3FHU000OUF3RUhBMElBQk9ZZGdpNm53a3pYcTBKQUF2cTIKZU5xNE5Ybi85L0VRaU13Tzc1dXdpTWJVbklYOGM1N2NYU2dQdy9NMUNVUGFwNmRyMldvTjA3RGhHb1B6ZXZaMwp1aFdqWHpCZE1BNEdBMVVkRHdFQi93UUVBd0lCcGpBUEJnTlZIU1VFQ0RBR0JnUlZIU1VBTUE4R0ExVWRFd0VCCi93UUZNQU1CQWY4d0tRWURWUjBPQkNJRUlCcW0xZW9aZy9qSW52Z1ZYR2cwbzVNamxrd2tSekRlalAzZkplbW8KU1hBek1Bb0dDQ3FHU000OUJBTUNBMGNBTUVRQ0lEUG9FRkF5bFVYcEJOMnh4VEo0MVplaS9ZQWFvN29aL0tEMwpvTVBpQ3RTOUFpQmFiU1dNS3UwR1l4eXdsZkFwdi9CWitxUEJNS0JMNk5EQ1haUnpZZmtENEE9PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓"

]
},
"Org1MSP": {

"name": "Org1MSP",
"root_certs": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNSRENDQWVxZ0F3SUJBZ0lSQU1nN2VETnhwS0t0ZGl0TDRVNDRZMUl3Q2dZSUtvWkl6ajBFQXdJd2N6RUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpFdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekV1WlhoaGJYQnNaUzVqYjIwd0hoY05NVGd3TmpBNU1URTFPREk0V2hjTk1qZ3dOakEyTVRFMU9ESTQKV2pCek1Rc3dDUVlEVlFRR0V3SlZVekVUTUJFR0ExVUVDQk1LUTJGc2FXWnZjbTVwWVRFV01CUUdBMVVFQnhNTgpVMkZ1SUVaeVlXNWphWE5qYnpFWk1CY0dBMVVFQ2hNUWIzSm5NUzVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFCkF4TVRZMkV1YjNKbk1TNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUEKQk41d040THpVNGRpcUZSWnB6d3FSVm9JbWw1MVh0YWkzbWgzUXo0UEZxWkhXTW9lZ0ovUWRNKzF4L3RobERPcwpnbmVRcndGd216WGpvSSszaHJUSmRuU2pYekJkTUE0R0ExVWREd0VCL3dRRUF3SUJwakFQQmdOVkhTVUVDREFHCkJnUlZIU1VBTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3S1FZRFZSME9CQ0lFSU9CZFFMRitjTVdhNmUxcDJDcE8KRXg3U0hVaW56VnZkNTVoTG03dzZ2NzJvTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFDQyt6T1lHcll0ZTB4SgpSbDVYdUxjUWJySW9UeHpsRnJLZWFNWnJXMnVaSkFJZ0NVVGU5MEl4aW55dk4wUkh4UFhoVGNJTFdEZzdLUEJOCmVrNW5TRlh3Y0lZPQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓"

],
"admins": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNLakNDQWRDZ0F3SUJBZ0lRRTRFK0tqSHgwdTlzRSsxZUgrL1dOakFLQmdncWhrak9QUVFEQWpCek1Rc3cKQ1FZRFZRUUdFd0pWVXpFVE1CRUdBMVVFQ0JNS1EyRnNhV1p2Y201cFlURVdNQlFHQTFVRUJ4TU5VMkZ1SUVaeQpZVzVqYVhOamJ6RVpNQmNHQTFVRUNoTVFiM0puTVM1bGVHRnRjR3hsTG1OdmJURWNNQm9HQTFVRUF4TVRZMkV1CmIzSm5NUzVsZUdGdGNHeGxMbU52YlRBZUZ3MHhPREEyTURreE1UVTRNamhhRncweU9EQTJNRFl4TVRVNE1qaGEKTUd3eEN6QUpCZ05WQkFZVEFsVlRNUk13RVFZRFZRUUlFd3BEWVd4cFptOXlibWxoTVJZd0ZBWURWUVFIRXcxVApZVzRnUm5KaGJtTnBjMk52TVE4d0RRWURWUVFMRXdaamJHbGxiblF4SHpBZEJnTlZCQU1NRmtGa2JXbHVRRzl5Clp6RXVaWGhoYlhCc1pTNWpiMjB3V1RBVEJnY3Foa2pPUFFJQkJnZ3Foa2pPUFFNQkJ3TkNBQVFqK01MZk1ESnUKQ2FlWjV5TDR2TnczaWp4ZUxjd2YwSHo1blFrbXVpSnFETjRhQ0ZwVitNTTVablFEQmx1dWRyUS80UFA1Sk1WeQpreWZsQ3pJa2NCNjdvMDB3U3pBT0JnTlZIUThCQWY4RUJBTUNCNEF3REFZRFZSMFRBUUgvQkFJd0FEQXJCZ05WCkhTTUVKREFpZ0NEZ1hVQ3hmbkRGbXVudGFkZ3FUaE1lMGgxSXA4MWIzZWVZUzV1OE9yKzlxREFLQmdncWhrak8KUFFRREFnTklBREJGQWlFQXlJV21QcjlQakdpSk1QM1pVd05MRENnNnVwMlVQVXNJSzd2L2h3RVRra01DSUE0cQo3cHhQZy9VVldiamZYeE0wUCsvcTEzbXFFaFlYaVpTTXpoUENFNkNmCi0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K
→˓"

],
"crypto_config": {

"signature_hash_family": "SHA2",
"identity_identifier_hash_function": "SHA256"

},
"tls_root_certs": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNTVENDQWUrZ0F3SUJBZ0lRZlRWTE9iTENVUjdxVEY3Z283UXgvakFLQmdncWhrak9QUVFEQWpCMk1Rc3cKQ1FZRFZRUUdFd0pWVXpFVE1CRUdBMVVFQ0JNS1EyRnNhV1p2Y201cFlURVdNQlFHQTFVRUJ4TU5VMkZ1SUVaeQpZVzVqYVhOamJ6RVpNQmNHQTFVRUNoTVFiM0puTVM1bGVHRnRjR3hsTG1OdmJURWZNQjBHQTFVRUF4TVdkR3h6ClkyRXViM0puTVM1bGVHRnRjR3hsTG1OdmJUQWVGdzB4T0RBMk1Ea3hNVFU0TWpoYUZ3MHlPREEyTURZeE1UVTQKTWpoYU1IWXhDekFKQmdOVkJBWVRBbFZUTVJNd0VRWURWUVFJRXdwRFlXeHBabTl5Ym1saE1SWXdGQVlEVlFRSApFdzFUWVc0Z1JuSmhibU5wYzJOdk1Sa3dGd1lEVlFRS0V4QnZjbWN4TG1WNFlXMXdiR1V1WTI5dE1SOHdIUVlEClZRUURFeFowYkhOallTNXZjbWN4TG1WNFlXMXdiR1V1WTI5dE1Ga3dFd1lIS29aSXpqMENBUVlJS29aSXpqMEQKQVFjRFFnQUVZbnp4bmMzVUpHS0ZLWDNUNmR0VGpkZnhJTVYybGhTVzNab0lWSW9mb04rWnNsWWp0d0g2ZXZXYgptTkZGQmRaYWExTjluaXRpbmxxbVVzTU1NQ2JieXFOZk1GMHdEZ1lEVlIwUEFRSC9CQVFEQWdHbU1BOEdBMVVkCkpRUUlNQVlHQkZVZEpRQXdEd1lEVlIwVEFRSC9CQVV3QXdFQi96QXBCZ05WSFE0RUlnUWdlVTAwNlNaUllUNDIKN1Uxb2YwL3RGdHUvRFVtazVLY3hnajFCaklJakduZ3dDZ1lJS29aSXpqMEVBd0lEU0FBd1JRSWhBSWpvcldJTwpRNVNjYjNoZDluRi9UamxWcmk1UHdTaDNVNmJaMFdYWEsxYzVBaUFlMmM5QmkyNFE1WjQ0aXQ1MkI5cm1hU1NpCkttM2NZVlY0cWJ6RFhMOHZYUT09Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K
→˓"

],
"fabric_node_ous": {

"enable": true,
"client_ou_identifier": {

"certificate":
→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNSRENDQWVxZ0F3SUJBZ0lSQU1nN2VETnhwS0t0ZGl0TDRVNDRZMUl3Q2dZSUtvWkl6ajBFQXdJd2N6RUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpFdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekV1WlhoaGJYQnNaUzVqYjIwd0hoY05NVGd3TmpBNU1URTFPREk0V2hjTk1qZ3dOakEyTVRFMU9ESTQKV2pCek1Rc3dDUVlEVlFRR0V3SlZVekVUTUJFR0ExVUVDQk1LUTJGc2FXWnZjbTVwWVRFV01CUUdBMVVFQnhNTgpVMkZ1SUVaeVlXNWphWE5qYnpFWk1CY0dBMVVFQ2hNUWIzSm5NUzVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFCkF4TVRZMkV1YjNKbk1TNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUEKQk41d040THpVNGRpcUZSWnB6d3FSVm9JbWw1MVh0YWkzbWgzUXo0UEZxWkhXTW9lZ0ovUWRNKzF4L3RobERPcwpnbmVRcndGd216WGpvSSszaHJUSmRuU2pYekJkTUE0R0ExVWREd0VCL3dRRUF3SUJwakFQQmdOVkhTVUVDREFHCkJnUlZIU1VBTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3S1FZRFZSME9CQ0lFSU9CZFFMRitjTVdhNmUxcDJDcE8KRXg3U0hVaW56VnZkNTVoTG03dzZ2NzJvTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFDQyt6T1lHcll0ZTB4SgpSbDVYdUxjUWJySW9UeHpsRnJLZWFNWnJXMnVaSkFJZ0NVVGU5MEl4aW55dk4wUkh4UFhoVGNJTFdEZzdLUEJOCmVrNW5TRlh3Y0lZPQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓",

"organizational_unit_identifier": "client"
},
"peer_ou_identifier": {

"certificate":
→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNSRENDQWVxZ0F3SUJBZ0lSQU1nN2VETnhwS0t0ZGl0TDRVNDRZMUl3Q2dZSUtvWkl6ajBFQXdJd2N6RUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpFdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekV1WlhoaGJYQnNaUzVqYjIwd0hoY05NVGd3TmpBNU1URTFPREk0V2hjTk1qZ3dOakEyTVRFMU9ESTQKV2pCek1Rc3dDUVlEVlFRR0V3SlZVekVUTUJFR0ExVUVDQk1LUTJGc2FXWnZjbTVwWVRFV01CUUdBMVVFQnhNTgpVMkZ1SUVaeVlXNWphWE5qYnpFWk1CY0dBMVVFQ2hNUWIzSm5NUzVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFCkF4TVRZMkV1YjNKbk1TNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUEKQk41d040THpVNGRpcUZSWnB6d3FSVm9JbWw1MVh0YWkzbWgzUXo0UEZxWkhXTW9lZ0ovUWRNKzF4L3RobERPcwpnbmVRcndGd216WGpvSSszaHJUSmRuU2pYekJkTUE0R0ExVWREd0VCL3dRRUF3SUJwakFQQmdOVkhTVUVDREFHCkJnUlZIU1VBTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3S1FZRFZSME9CQ0lFSU9CZFFMRitjTVdhNmUxcDJDcE8KRXg3U0hVaW56VnZkNTVoTG03dzZ2NzJvTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFDQyt6T1lHcll0ZTB4SgpSbDVYdUxjUWJySW9UeHpsRnJLZWFNWnJXMnVaSkFJZ0NVVGU5MEl4aW55dk4wUkh4UFhoVGNJTFdEZzdLUEJOCmVrNW5TRlh3Y0lZPQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓",

"organizational_unit_identifier": "peer"
}

}
},
"Org2MSP": {

"name": "Org2MSP",
"root_certs": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNSRENDQWVxZ0F3SUJBZ0lSQUx2SWV2KzE4Vm9LZFR2V1RLNCtaZ2d3Q2dZSUtvWkl6ajBFQXdJd2N6RUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpJdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekl1WlhoaGJYQnNaUzVqYjIwd0hoY05NVGd3TmpBNU1URTFPREk0V2hjTk1qZ3dOakEyTVRFMU9ESTQKV2pCek1Rc3dDUVlEVlFRR0V3SlZVekVUTUJFR0ExVUVDQk1LUTJGc2FXWnZjbTVwWVRFV01CUUdBMVVFQnhNTgpVMkZ1SUVaeVlXNWphWE5qYnpFWk1CY0dBMVVFQ2hNUWIzSm5NaTVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFCkF4TVRZMkV1YjNKbk1pNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUEKQkhUS01aall0TDdnSXZ0ekN4Y2pMQit4NlZNdENzVW0wbExIcGtIeDFQaW5LUU1ybzFJWWNIMEpGVmdFempvSQpCcUdMYURyQmhWQkpoS1kwS21kMUJJZWpYekJkTUE0R0ExVWREd0VCL3dRRUF3SUJwakFQQmdOVkhTVUVDREFHCkJnUlZIU1VBTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3S1FZRFZSME9CQ0lFSUk1WWdza0tFUkNwQzVNRDdxQlUKUXZTajd4Rk1ncmI1emhDaUhpU3JFNEtnTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFDWnNSUjVBVU5KUjdJbwpQQzgzUCt1UlF1RmpUYS94eitzVkpZYnBsNEh1Z1FJZ0QzUlhuQWFqaGlPMU1EL1JzSC9JN2FPL1RuWUxkQUl6Cnd4VlNJenhQbWd3PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓"

],
"admins": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNLVENDQWRDZ0F3SUJBZ0lRU1lpeE1vdmpoM1N2c25WMmFUOXl1REFLQmdncWhrak9QUVFEQWpCek1Rc3cKQ1FZRFZRUUdFd0pWVXpFVE1CRUdBMVVFQ0JNS1EyRnNhV1p2Y201cFlURVdNQlFHQTFVRUJ4TU5VMkZ1SUVaeQpZVzVqYVhOamJ6RVpNQmNHQTFVRUNoTVFiM0puTWk1bGVHRnRjR3hsTG1OdmJURWNNQm9HQTFVRUF4TVRZMkV1CmIzSm5NaTVsZUdGdGNHeGxMbU52YlRBZUZ3MHhPREEyTURreE1UVTRNamhhRncweU9EQTJNRFl4TVRVNE1qaGEKTUd3eEN6QUpCZ05WQkFZVEFsVlRNUk13RVFZRFZRUUlFd3BEWVd4cFptOXlibWxoTVJZd0ZBWURWUVFIRXcxVApZVzRnUm5KaGJtTnBjMk52TVE4d0RRWURWUVFMRXdaamJHbGxiblF4SHpBZEJnTlZCQU1NRmtGa2JXbHVRRzl5Clp6SXVaWGhoYlhCc1pTNWpiMjB3V1RBVEJnY3Foa2pPUFFJQkJnZ3Foa2pPUFFNQkJ3TkNBQVJFdStKc3l3QlQKdkFYUUdwT2FuS3ZkOVhCNlMxVGU4NTJ2L0xRODVWM1Rld0hlYXZXeGUydUszYTBvRHA5WDV5SlJ4YXN2b2hCcwpOMGJIRWErV1ZFQjdvMDB3U3pBT0JnTlZIUThCQWY4RUJBTUNCNEF3REFZRFZSMFRBUUgvQkFJd0FEQXJCZ05WCkhTTUVKREFpZ0NDT1dJTEpDaEVRcVF1VEErNmdWRUwwbys4UlRJSzIrYzRRb2g0a3F4T0NvREFLQmdncWhrak8KUFFRREFnTkhBREJFQWlCVUFsRStvbFBjMTZBMitmNVBRSmdTZFp0SjNPeXBieG9JVlhOdi90VUJ2QUlnVGFNcgo1K2k2TUxpaU9FZ0wzcWZSWmdkcG1yVm1SbHlIdVdabWE0NXdnaE09Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K
→˓" (continues on next page)

11.10. Service Discovery CLI 499

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

],
"crypto_config": {

"signature_hash_family": "SHA2",
"identity_identifier_hash_function": "SHA256"

},
"tls_root_certs": [

→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNTakNDQWZDZ0F3SUJBZ0lSQUtoUFFxUGZSYnVpSktqL0JRanQ3RXN3Q2dZSUtvWkl6ajBFQXdJd2RqRUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpJdVpYaGhiWEJzWlM1amIyMHhIekFkQmdOVkJBTVRGblJzCmMyTmhMbTl5WnpJdVpYaGhiWEJzWlM1amIyMHdIaGNOTVRnd05qQTVNVEUxT0RJNFdoY05Namd3TmpBMk1URTEKT0RJNFdqQjJNUXN3Q1FZRFZRUUdFd0pWVXpFVE1CRUdBMVVFQ0JNS1EyRnNhV1p2Y201cFlURVdNQlFHQTFVRQpCeE1OVTJGdUlFWnlZVzVqYVhOamJ6RVpNQmNHQTFVRUNoTVFiM0puTWk1bGVHRnRjR3hsTG1OdmJURWZNQjBHCkExVUVBeE1XZEd4elkyRXViM0puTWk1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDkKQXdFSEEwSUFCRVIrMnREOWdkME9NTlk5Y20rbllZR2NUeWszRStCMnBsWWxDL2ZVdGdUU0QyZUVyY2kyWmltdQo5N25YeUIrM0NwNFJwVjFIVHdaR0JMbmNnbVIyb1J5alh6QmRNQTRHQTFVZER3RUIvd1FFQXdJQnBqQVBCZ05WCkhTVUVDREFHQmdSVkhTVUFNQThHQTFVZEV3RUIvd1FGTUFNQkFmOHdLUVlEVlIwT0JDSUVJUEN0V01JRFRtWC8KcGxseS8wNDI4eFRXZHlhazQybU9tbVNJSENCcnAyN0tNQW9HQ0NxR1NNNDlCQU1DQTBnQU1FVUNJUUNtN2xmVQpjbG91VHJrS2Z1YjhmdmdJTTU3QS85bW5IdzhpQnAycURtamZhUUlnSjkwcnRUV204YzVBbE93bFpyYkd0NWZMCjF6WXg5QW5DMTJBNnhOZDIzTG89Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K
→˓"

],
"fabric_node_ous": {

"enable": true,
"client_ou_identifier": {

"certificate":
→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNSRENDQWVxZ0F3SUJBZ0lSQUx2SWV2KzE4Vm9LZFR2V1RLNCtaZ2d3Q2dZSUtvWkl6ajBFQXdJd2N6RUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpJdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekl1WlhoaGJYQnNaUzVqYjIwd0hoY05NVGd3TmpBNU1URTFPREk0V2hjTk1qZ3dOakEyTVRFMU9ESTQKV2pCek1Rc3dDUVlEVlFRR0V3SlZVekVUTUJFR0ExVUVDQk1LUTJGc2FXWnZjbTVwWVRFV01CUUdBMVVFQnhNTgpVMkZ1SUVaeVlXNWphWE5qYnpFWk1CY0dBMVVFQ2hNUWIzSm5NaTVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFCkF4TVRZMkV1YjNKbk1pNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUEKQkhUS01aall0TDdnSXZ0ekN4Y2pMQit4NlZNdENzVW0wbExIcGtIeDFQaW5LUU1ybzFJWWNIMEpGVmdFempvSQpCcUdMYURyQmhWQkpoS1kwS21kMUJJZWpYekJkTUE0R0ExVWREd0VCL3dRRUF3SUJwakFQQmdOVkhTVUVDREFHCkJnUlZIU1VBTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3S1FZRFZSME9CQ0lFSUk1WWdza0tFUkNwQzVNRDdxQlUKUXZTajd4Rk1ncmI1emhDaUhpU3JFNEtnTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFDWnNSUjVBVU5KUjdJbwpQQzgzUCt1UlF1RmpUYS94eitzVkpZYnBsNEh1Z1FJZ0QzUlhuQWFqaGlPMU1EL1JzSC9JN2FPL1RuWUxkQUl6Cnd4VlNJenhQbWd3PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓",

"organizational_unit_identifier": "client"
},
"peer_ou_identifier": {

"certificate":
→˓"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNSRENDQWVxZ0F3SUJBZ0lSQUx2SWV2KzE4Vm9LZFR2V1RLNCtaZ2d3Q2dZSUtvWkl6ajBFQXdJd2N6RUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpJdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekl1WlhoaGJYQnNaUzVqYjIwd0hoY05NVGd3TmpBNU1URTFPREk0V2hjTk1qZ3dOakEyTVRFMU9ESTQKV2pCek1Rc3dDUVlEVlFRR0V3SlZVekVUTUJFR0ExVUVDQk1LUTJGc2FXWnZjbTVwWVRFV01CUUdBMVVFQnhNTgpVMkZ1SUVaeVlXNWphWE5qYnpFWk1CY0dBMVVFQ2hNUWIzSm5NaTVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFCkF4TVRZMkV1YjNKbk1pNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUEKQkhUS01aall0TDdnSXZ0ekN4Y2pMQit4NlZNdENzVW0wbExIcGtIeDFQaW5LUU1ybzFJWWNIMEpGVmdFempvSQpCcUdMYURyQmhWQkpoS1kwS21kMUJJZWpYekJkTUE0R0ExVWREd0VCL3dRRUF3SUJwakFQQmdOVkhTVUVDREFHCkJnUlZIU1VBTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3S1FZRFZSME9CQ0lFSUk1WWdza0tFUkNwQzVNRDdxQlUKUXZTajd4Rk1ncmI1emhDaUhpU3JFNEtnTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFDWnNSUjVBVU5KUjdJbwpQQzgzUCt1UlF1RmpUYS94eitzVkpZYnBsNEh1Z1FJZ0QzUlhuQWFqaGlPMU1EL1JzSC9JN2FPL1RuWUxkQUl6Cnd4VlNJenhQbWd3PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
→˓",

"organizational_unit_identifier": "peer"
}

}
},
"Org3MSP": {

"name": "Org3MSP",
"root_certs": [

"CgJPVQoEUm9sZQoMRW5yb2xsbWVudElEChBSZXZvY2F0aW9uSGFuZGxlEkQKIKoEXcq/
→˓psdYnMKCiT79N+dS1hM8k+SuzU1blOgTuN++EiBe2m3E+FjWLuQGMNRGRrEVTMqTvC4A/
→˓5jvCLv2ja1sZxpECiDBbI0kwetxAwFzHwb1hi8TlkGW3OofvuVzfFt9VlewcRIgyvsxG5/
→˓THdWyKJTdNx8Gle2hoCbVF0Y1/
→˓DQESBjGOGciRAog25fMyWps+FLOjzj1vIsGUyO457ri3YMvmUcycIH2FvQSICTtzaFvSPUiDtNtAVz+uetuB9kfmjUdUSQxjyXULOm2IkQKIO8FKzwoWwu8Mo77GNqnKFGCZaJL9tlrkdTuEMu9ujzbEiA4xtzo8oo8oEhFVsl6010mNoj1VuI0Wmz4tvUgXolCIiJECiDZcZPuwk/
→˓uaJMuVph7Dy/
→˓icgnAtVYHShET41O0Eh3Q5BIgy5q9VMQrch9VW5yajhY8dH1uA593gKd5kBqGdLfiXzAiRAogAnUYq/
→˓kwKzFfmIm/
→˓W4nZxi1kjG2C8NRjsYYBkeAOQ6wSIGyX5GGmwgvxgXXehNWBfijyNIJALGRVhO8YtBqr+vnrKogBCiDHR1XQsDbpcBoZFJ09V97zsIKNVTxjUow7/
→˓wwC+tq3oBIgSWT/
→˓peiO2BI0DecypKfgMpVR8DWXl8ZHSrPISsL3Mc8aINem9+BOezLwFKCbtVH1KAHIRLyyiNP+TkIKW6x9RkThIiAbIJCYU6O02EB8uX6rqLU/
→˓1lHxV0vtWdIsKCTLx2EZmDJECiCPXeyUyFzPS3iFv8CQUOLCPZxf6buZS5JlM6EE/
→˓gCRaxIgmF9GKPLLmEoA77+AU3J8Iwnu9pBxnaHtUlyf/F9p30c6RAogG7ENKWlOZ4aF0HprqXAjl++Iao7/
→˓iE8xeVcKRlmfq1ASIGtmmavDAVS2bw3zClQd4ZBD2DrqCBO9NPOcLNB0IWeIQiCjxTdbmcuBNINZYWe+5fWyI1oY9LavKzDVkdh+miu26EogY2uJtJGfKrQQjy+pgf9FdPMUk+8PNUBtH9LCD4bos7JSIPl6m5lEP/
→˓PRAmBaeTQLXdbMxIthxM2gw+Zkc5+IJEWX"

],
"intermediate_certs": [

"CtgCCkQKIP0UVivtH8NlnRNrZuuu6jpaj2ZbEB4/
→˓secGS57MfbINEiDSJweLUMIQSW12jugBQG81lIQflJWvi7vi925u+PU/
→˓+xJECiDgOGdNbAiGSoHmTjKhT22fqUqYLIVh+JBHetm4kF4skhIg9XTWRkUqtsfYKENzPgm7ZUSmCHNF8xH7Vnhuc1EpAUgaINwSnJKofiMoyDRZwUBhgfwMH9DJzMccvRVW7IvLMe/
→˓cIiCnlRj+mfNVAJGKthLgQBB/
→˓JKM14NbUeutyJtTgrmDDiCogme25qGvxJfgQNnzldMMicVyiI6YMfnoThAUyqsTzyXkqIAAAKiCZ7bmoa/
→˓El+BA2fOV0wyJxXKIjpgx+ehOEBTKqxPPJeSogAAESIFYUenRvjbmEh+37YHJrvFJt4lGq9ShtJ4kEBrfHArPjGgNPVTEqA09VMTL0ARKIAQog/
→˓gwzULTJbCAoVg9XfCiROs4cU5oSv4Q80iYWtonAnvsSIE6mYFdzisBU21rhxjfYE7kk3Xjih9A1idJp7TSjfmorGiBwIEbnxUKjs3Z3DXUSTj5R78skdY1hWEjpCbSBvtwn/
→˓yIgBVTjvNOIwpBC7qZJKX6yn4tMvoCCGpiz4BKBEUqtBJsaZzBlAjBwZ4WXYOttkhsNA2r94gBfLUdx/
→˓4VhW4hwUImcztlau1T14UlNzJolCNkdiLc9CqsCMQD6OBkgDWGq9UlhkK9dJBzU+RElcZdSfVV1hDbbqt+lFRWOzzEkZ+BXCR1k3xybz+o=
→˓"

],
(continues on next page)

500 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"admins": [

→˓"LS0tLS1CRUdJTiBQVUJMSUMgS0VZLS0tLS0KTUhZd0VBWUhLb1pJemowQ0FRWUZLNEVFQUNJRFlnQUVUYk13SEZteEpEMWR3SjE2K0hnVnRDZkpVRzdKK2FTYgorbkVvVmVkREVHYmtTc1owa1lraEpyYkx5SHlYZm15ZWV0ejFIUk1rWjRvMjdxRlMzTlVFb1J2QlM3RHJPWDJjCnZLaDRnbWhHTmlPbzRiWjFOVG9ZL2o3QnpqMFlMSXNlCi0tLS0tRU5EIFBVQkxJQyBLRVktLS0tLQo=
→˓"

]
}

},
"orderers": {

"OrdererOrg": {
"endpoint": [

{
"host": "orderer.example.com",
"port": 7050

}
]

}
}

}

It’s important to note that the certificates here are base64 encoded, and thus should decoded in a manner similar to the
following:

$ discover --configFile conf.yaml config --channel mychannel --server peer0.org1.
→˓example.com:7051 | jq .msps.OrdererOrg.root_certs[0] | sed "s/\"//g" | base64 --
→˓decode | openssl x509 -text -noout
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

c8:99:2d:3a:2d:7f:4b:73:53:8b:39:18:7b:c3:e1:1e
Signature Algorithm: ecdsa-with-SHA256

Issuer: C=US, ST=California, L=San Francisco, O=example.com, CN=ca.example.com
Validity

Not Before: Jun 9 11:58:28 2018 GMT
Not After : Jun 6 11:58:28 2028 GMT

Subject: C=US, ST=California, L=San Francisco, O=example.com, CN=ca.example.
→˓com

Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey

Public-Key: (256 bit)
pub:

04:28:ac:9e:51:8d:a4:80:15:0a:ff:ae:c9:61:d6:
08:67:b0:15:c3:c7:99:46:61:63:0a:10:a6:42:6a:
b0:af:14:0c:c0:e2:5b:b4:a1:c3:f0:07:7e:5b:7c:
c4:b2:95:13:95:81:4b:6a:b9:e3:87:a4:f3:2c:7c:
ae:00:91:9e:32

ASN1 OID: prime256v1
NIST CURVE: P-256

X509v3 extensions:
X509v3 Key Usage: critical

Digital Signature, Key Encipherment, Certificate Sign, CRL Sign
X509v3 Extended Key Usage:

Any Extended Key Usage
X509v3 Basic Constraints: critical

CA:TRUE
X509v3 Subject Key Identifier:

(continues on next page)

11.10. Service Discovery CLI 501

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

→˓60:9D:F2:30:26:CE:8F:65:81:41:AD:96:15:0E:24:8D:A0:9D:C5:79:C1:17:BF:FE:E5:1B:FB:75:50:10:A6:4C
Signature Algorithm: ecdsa-with-SHA256

30:44:02:20:3d:e1:a7:6c:99:3f:87:2a:36:44:51:98:37:11:
d8:a0:47:7a:33:ff:30:c1:09:a6:05:ec:b0:53:53:39:c1:0e:
02:20:6b:f4:1d:48:e0:72:e4:c2:ef:b0:84:79:d4:2e:c2:c5:
1b:6f:e4:2f:56:35:51:18:7d:93:51:86:05:84:ce:1f

11.10.6 Endorsers query:

To query for the endorsers of a chaincode call, additional flags need to be supplied:

• The --chaincode flag is mandatory and it provides the chaincode name(s). To query for a chaincode-to-
chaincode invocation, one needs to repeat the --chaincode flag with all the chaincodes.

• The --collection is used to specify private data collections that are expected to used by the chaincode(s).
To map from thechaincodes passed via --chaincode to the collections, the following syntax should be used:
collection=CC:Collection1,Collection2,....

• The --noPrivateReads is used to indicate that the transaction is not expected to read private data for a
certain chaincode. This is useful for private data “blind writes”, among other things.

For example, to query for a chaincode invocation that results in both cc1 and cc2 to be invoked, as well as
writes to private data collection col1 by cc2, one needs to specify: --chaincode=cc1 --chaincode=cc2
--collection=cc2:col1

If chaincode cc2 is not expected to read from collection col1 then --noPrivateReads=cc2 should be used.

Below is the output of an endorsers query for chaincode mycc when the endorsement policy is AND('Org1.peer',
'Org2.peer'):

$ discover --configFile conf.yaml endorsers --channel mychannel --server peer0.org1.
→˓example.com:7051 --chaincode mycc
[

{
"Chaincode": "mycc",
"EndorsersByGroups": {

"G0": [
{

"MSPID": "Org1MSP",
"LedgerHeight": 5,
"Endpoint": "peer0.org1.example.com:7051",
"Identity": "-----BEGIN CERTIFICATE-----

→˓\nMIICKDCCAc+gAwIBAgIRANTiKfUVHVGnrYVzEy1ZSKIwCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzEuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzEuZXhhbXBsZS5jb20wHhcNMTgwNjA5MTE1ODI4WhcNMjgwNjA2MTE1ODI4\nWjBqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzENMAsGA1UECxMEcGVlcjEfMB0GA1UEAxMWcGVlcjAub3Jn\nMS5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABD8jGz1l5Rrw\n5UWqAYnc4JrR46mCYwHhHFgwydccuytb00ouD4rECiBsCaeZFr5tODAK70jFOP/
→˓k\n/CtORCDPQ02jTTBLMA4GA1UdDwEB/
→˓wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1Ud\nIwQkMCKAIOBdQLF+cMWa6e1p2CpOEx7SHUinzVvd55hLm7w6v72oMAoGCCqGSM49\nBAMCA0cAMEQCIC3bacbDYphXfHrNULxpV/
→˓zwD08t7hJxNe8MwgP8/48fAiBiC0cr\nu99oLsRNCFB7R3egyKg1YYao0KWTrr1T+rK9Bg==\n-----END
→˓CERTIFICATE-----\n"

}
],
"G1": [

{
"MSPID": "Org2MSP",
"LedgerHeight": 5,
"Endpoint": "peer1.org2.example.com:10051",
"Identity": "-----BEGIN CERTIFICATE-----

→˓\nMIICKDCCAc+gAwIBAgIRAIs6fFxk4Y5cJxSwTjyJ9A8wCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzIuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzIuZXhhbXBsZS5jb20wHhcNMTgwNjA5MTE1ODI4WhcNMjgwNjA2MTE1ODI4\nWjBqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzENMAsGA1UECxMEcGVlcjEfMB0GA1UEAxMWcGVlcjEub3Jn\nMi5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABOVFyWVmKZ25\nxDYV3xZBDX4gKQ7rAZfYgOu1djD9EHccZhJVPsdwSjbRsvrfs9Z8mMuwEeSWq/
→˓cq\n0cGrMKR93vKjTTBLMA4GA1UdDwEB/
→˓wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1Ud\nIwQkMCKAII5YgskKERCpC5MD7qBUQvSj7xFMgrb5zhCiHiSrE4KgMAoGCCqGSM49\nBAMCA0cAMEQCIDJmxseFul1GZ26djKa6jZ6zYYf6hchNF5xxMRWXpCnuAiBMf6JZ\njZjVM9F/
→˓OidQ2SBR7OZyMAzgXc5nAabWZpdkuQ==\n-----END CERTIFICATE-----\n"

(continues on next page)

502 Chapter 11. Commands Reference

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

},
{

"MSPID": "Org2MSP",
"LedgerHeight": 5,
"Endpoint": "peer0.org2.example.com:9051",
"Identity": "-----BEGIN CERTIFICATE-----\nMIICJzCCAc6gAwIBAgIQVek/

→˓l5TVdNvi1pk8ASS+vzAKBggqhkjOPQQDAjBzMQsw\nCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNU2FuIEZy\nYW5jaXNjbzEZMBcGA1UEChMQb3JnMi5leGFtcGxlLmNvbTEcMBoGA1UEAxMTY2Eu\nb3JnMi5leGFtcGxlLmNvbTAeFw0xODA2MDkxMTU4MjhaFw0yODA2MDYxMTU4Mjha\nMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1T\nYW4gRnJhbmNpc2NvMQ0wCwYDVQQLEwRwZWVyMR8wHQYDVQQDExZwZWVyMC5vcmcy\nLmV4YW1wbGUuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE9Wl6EWXZhZZl\nt7cbCHdD3sutOnnszCq815NorpIcS9gyR9Y9cjLx8fsm5GnC68lFaZl412ipdwmI\nxlMBKsH4wKNNMEswDgYDVR0PAQH/
→˓BAQDAgeAMAwGA1UdEwEB/
→˓wQCMAAwKwYDVR0j\nBCQwIoAgjliCyQoREKkLkwPuoFRC9KPvEUyCtvnOEKIeJKsTgqAwCgYIKoZIzj0E\nAwIDRwAwRAIgKT9VK597mbLLBsoVP5OhPWVce3mhetGUUPDN2+phgXoCIDtAW2BR\nPPgPm/
→˓yu/CH9yDajGDlYIHI9GkN0MPNWAaom\n-----END CERTIFICATE-----\n"

}
]

},
"Layouts": [

{
"quantities_by_group": {

"G0": 1,
"G1": 1

}
}

]
}

]

11.10.7 Not using a configuration file

It is possible to execute the discovery CLI without having a configuration file, and just passing all needed configuration
as commandline flags. The following is an example of a local peer membership query which loads administrator
credentials:

$ discover --peerTLSCA tls/ca.crt --userKey msp/keystore/
→˓cf31339d09e8311ac9ca5ed4e27a104a7f82f1e5904b3296a170ba4725ffde0d_sk --userCert msp/
→˓signcerts/Admin\@org1.example.com-cert.pem --MSP Org1MSP --tlsCert tls/client.crt --
→˓tlsKey tls/client.key peers --server peer0.org1.example.com:7051
[

{
"MSPID": "Org1MSP",
"Endpoint": "peer1.org1.example.com:8051",
"Identity": "-----BEGIN CERTIFICATE-----

→˓\nMIICJzCCAc6gAwIBAgIQO7zMEHlMfRhnP6Xt65jwtDAKBggqhkjOPQQDAjBzMQsw\nCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNU2FuIEZy\nYW5jaXNjbzEZMBcGA1UEChMQb3JnMS5leGFtcGxlLmNvbTEcMBoGA1UEAxMTY2Eu\nb3JnMS5leGFtcGxlLmNvbTAeFw0xODA2MTcxMzQ1MjFaFw0yODA2MTQxMzQ1MjFa\nMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1T\nYW4gRnJhbmNpc2NvMQ0wCwYDVQQLEwRwZWVyMR8wHQYDVQQDExZwZWVyMS5vcmcx\nLmV4YW1wbGUuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEoII9k8db/
→˓Q2g\nRHw5rk3SYw+OMFw9jNbsJJyC5ttJRvc12Dn7lQ8ZR9hW1vLQ3NtqO/
→˓couccDJcHg\nt47iHBNadaNNMEswDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/
→˓wQCMAAwKwYDVR0j\nBCQwIoAgcecTOxTes6rfgyxHH6KIW7hsRAw2bhP9ikCHkvtv/
→˓RcwCgYIKoZIzj0E\nAwIDRwAwRAIgGHGtRVxcFVeMQr9yRlebs23OXEECNo6hNqd/
→˓4ChLwwoCIBFKFd6t\nlL5BVzVMGQyXWcZGrjFgl4+fDrwjmMe+jAfa\n-----END CERTIFICATE-----\n
→˓",

},
{

"MSPID": "Org1MSP",
"Endpoint": "peer0.org1.example.com:7051",
"Identity": "-----BEGIN CERTIFICATE-----

→˓\nMIICKDCCAc6gAwIBAgIQP18LeXtEXGoN8pTqzXTHZTAKBggqhkjOPQQDAjBzMQsw\nCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNU2FuIEZy\nYW5jaXNjbzEZMBcGA1UEChMQb3JnMS5leGFtcGxlLmNvbTEcMBoGA1UEAxMTY2Eu\nb3JnMS5leGFtcGxlLmNvbTAeFw0xODA2MTcxMzQ1MjFaFw0yODA2MTQxMzQ1MjFa\nMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1T\nYW4gRnJhbmNpc2NvMQ0wCwYDVQQLEwRwZWVyMR8wHQYDVQQDExZwZWVyMC5vcmcx\nLmV4YW1wbGUuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEKeC/
→˓1Rg/ynSk\nNNItaMlaCDZOaQvxJEl6o3fqx1PVFlfXE4NarY3OO1N3YZI41hWWoXksSwJu/
→˓35S\nM7wMEzw+3KNNMEswDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/
→˓wQCMAAwKwYDVR0j\nBCQwIoAgcecTOxTes6rfgyxHH6KIW7hsRAw2bhP9ikCHkvtv/
→˓RcwCgYIKoZIzj0E\nAwIDSAAwRQIhAKiJEv79XBmr8gGY6kHrGL0L3sq95E7IsCYzYdAQHj+DAiBPcBTg\nRuA0/
→˓/Kq+3aHJ2T0KpKHqD3FfhZZolKDkcrkwQ==\n-----END CERTIFICATE-----\n",

(continues on next page)

11.10. Service Discovery CLI 503

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

},
{

"MSPID": "Org2MSP",
"Endpoint": "peer0.org2.example.com:9051",
"Identity": "-----BEGIN CERTIFICATE-----

→˓\nMIICKTCCAc+gAwIBAgIRANK4WBck5gKuzTxVQIwhYMUwCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzIuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzIuZXhhbXBsZS5jb20wHhcNMTgwNjE3MTM0NTIxWhcNMjgwNjE0MTM0NTIx\nWjBqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzENMAsGA1UECxMEcGVlcjEfMB0GA1UEAxMWcGVlcjAub3Jn\nMi5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJa0gkMRqJCi\nzmx+L9xy/
→˓ecJNvdAV2zmSx5Sf2qospVAH1MYCHyudDEvkiRuBPgmCdOdwJsE0g+h\nz0nZdKq6/
→˓X+jTTBLMA4GA1UdDwEB/
→˓wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1Ud\nIwQkMCKAIFZMuZfUtY6n2iyxaVr3rl+x5lU0CdG9x7KAeYydQGTMMAoGCCqGSM49\nBAMCA0gAMEUCIQC0M9/
→˓LJ7j3I9NEPQ/B1BpnJP+UNPnGO2peVrM/
→˓mJ1nVgIgS1ZA\nA1tsxuDyllaQuHx2P+P9NDFdjXx5T08lZhxuWYM=\n-----END CERTIFICATE-----\n
→˓",

},
{

"MSPID": "Org2MSP",
"Endpoint": "peer1.org2.example.com:10051",
"Identity": "-----BEGIN CERTIFICATE-----

→˓\nMIICKDCCAc+gAwIBAgIRALnNJzplCrYy4Y8CjZtqL7AwCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzIuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzIuZXhhbXBsZS5jb20wHhcNMTgwNjE3MTM0NTIxWhcNMjgwNjE0MTM0NTIx\nWjBqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzENMAsGA1UECxMEcGVlcjEfMB0GA1UEAxMWcGVlcjEub3Jn\nMi5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABNDopAkHlDdu\nq10HEkdxvdpkbs7EJyqv1clvCt/
→˓YMn1hS6sM+bFDgkJKalG7s9Hg3URF0aGpy51R\nU+4F9Muo+XajTTBLMA4GA1UdDwEB/
→˓wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1Ud\nIwQkMCKAIFZMuZfUtY6n2iyxaVr3rl+x5lU0CdG9x7KAeYydQGTMMAoGCCqGSM49\nBAMCA0cAMEQCIAR4fBmIBKW2jp0HbbabVepNtl1c7+6++riIrEBnoyIVAiBBvWmI\nyG02c5hu4wPAuVQMB7AU6tGSeYaWSAAo/
→˓ExunQ==\n-----END CERTIFICATE-----\n",

}
]

11.11 Fabric-CA Commands

The Hyperledger Fabric CA is a Certificate Authority (CA) for Hyperledger Fabric. The commands available for the
fabric-ca client and fabric-ca server are described in the links below.

11.11.1 Fabric-CA Client

The fabric-ca-client command allows you to manage identities (including attribute management) and certificates (in-
cluding renewal and revocation).

More information on fabric-ca-client commands can be found here.

11.11.2 Fabric-CA Server

The fabric-ca-server command allows you to initialize and start a server process which may host one or more certificate
authorities.

More information on fabric-ca-server commands can be found here.

504 Chapter 11. Commands Reference

https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/clientcli.html#fabric-ca-client-s-cli
https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/servercli.html#fabric-ca-server-s-cli

CHAPTER 12

Architecture Reference

12.1 Hyperledger Fabric SDKs

Hyperledger Fabric intends to offer a number of SDKs for a wide variety of programming languages. The first two
delivered are the Node.js and Java SDKs. We hope to provide Python, REST and Go SDKs in a subsequent release.

• Hyperledger Fabric Node SDK documentation.

• Hyperledger Fabric Java SDK documentation.

12.2 Transaction Flow

This document outlines the transactional mechanics that take place during a standard asset exchange. The scenario
includes two clients, A and B, who are buying and selling radishes. They each have a peer on the network through
which they send their transactions and interact with the ledger.

Assumptions

This flow assumes that a channel is set up and running. The application user has registered and enrolled with the orga-
nization’s Certificate Authority (CA) and received back necessary cryptographic material, which is used to authenticate
to the network.

505

https://hyperledger.github.io/fabric-sdk-node/
https://hyperledger.github.io/fabric-gateway-java/

hyperledger-fabricdocs Documentation, Release master

The chaincode (containing a set of key value pairs representing the initial state of the radish market) is installed on
the peers and deployed to the channel. The chaincode contains logic defining a set of transaction instructions and the
agreed upon price for a radish. An endorsement policy has also been set for this chaincode, stating that both peerA
and peerB must endorse any transaction.

1. Client A initiates a transaction

What’s happening? Client A is sending a request to purchase radishes. This request targets peerA and peerB, who
are respectively representative of Client A and Client B. The endorsement policy states that both peers must endorse
any transaction, therefore the request goes to peerA and peerB.

Next, the transaction proposal is constructed. An application leveraging a supported SDK (Node, Java, Python) utilizes
one of the available API’s to generate a transaction proposal. The proposal is a request to invoke a chaincode function
with certain input parameters, with the intent of reading and/or updating the ledger.

The SDK serves as a shim to package the transaction proposal into the properly architected format (protocol buffer
over gRPC) and takes the user’s cryptographic credentials to produce a unique signature for this transaction proposal.

2. Endorsing peers verify signature & execute the transaction

The endorsing peers verify (1) that the transaction proposal is well formed, (2) it has not been submitted already in
the past (replay-attack protection), (3) the signature is valid (using the MSP), and (4) that the submitter (Client A, in
the example) is properly authorized to perform the proposed operation on that channel (namely, each endorsing peer
ensures that the submitter satisfies the channel’s Writers policy). The endorsing peers take the transaction proposal
inputs as arguments to the invoked chaincode’s function. The chaincode is then executed against the current state
database to produce transaction results including a response value, read set, and write set (i.e. key/value pairs repre-
senting an asset to create or update). No updates are made to the ledger at this point. The set of these values, along
with the endorsing peer’s signature is passed back as a “proposal response” to the SDK which parses the payload for
the application to consume.

Note: The MSP is a peer component that allows peers to verify transaction requests arriving from clients and to

506 Chapter 12. Architecture Reference

hyperledger-fabricdocs Documentation, Release master

sign transaction results (endorsements). The writing policy is defined at channel creation time and determines which
users are entitled to submit a transaction to that channel. For more information about membership, check out our
Membership Service Provider (MSP) documentation.

3. Proposal responses are inspected

The application verifies the endorsing peer signatures and compares the proposal responses to determine if the proposal
responses are the same. If the chaincode is only querying the ledger, the application would only inspect the query
response and would typically not submit the transaction to the ordering service. If the client application intends
to submit the transaction to the ordering service to update the ledger, the application determines if the specified
endorsement policy has been fulfilled before submitting (i.e. did peerA and peerB both endorse). The architecture is
such that even if an application chooses not to inspect responses or otherwise forwards an unendorsed transaction, the
endorsement policy will still be enforced by peers and upheld at the commit validation phase.

4. Client assembles endorsements into a transaction

The application “broadcasts” the transaction proposal and response within a “transaction message” to the ordering
service. The transaction will contain the read/write sets, the endorsing peers signatures and the Channel ID. The
ordering service does not need to inspect the entire content of a transaction in order to perform its operation, it simply
receives transactions from all channels in the network, orders them chronologically by channel, and creates blocks of
transactions per channel.

12.2. Transaction Flow 507

hyperledger-fabricdocs Documentation, Release master

5. Transaction is validated and committed

The blocks of transactions are “delivered” to all peers on the channel. The transactions within the block are validated
to ensure endorsement policy is fulfilled and to ensure that there have been no changes to ledger state for read set
variables since the read set was generated by the transaction execution. Transactions in the block are tagged as being
valid or invalid.

6. Ledger updated

Each peer appends the block to the channel’s chain, and for each valid transaction the write sets are committed to
current state database. An event is emitted by each peer to notify the client application that the transaction (invoca-
tion) has been immutably appended to the chain, as well as notification of whether the transaction was validated or
invalidated.

Note: Applications should listen for the transaction event after submitting a transaction, for example by using the
submitTransaction API, which automatically listen for transaction events. Without listening for transaction
events, you will not know whether your transaction has actually been ordered, validated, and committed to the ledger.

You can also use the swimlane sequence diagram below to examine the transaction flow in more detail.

508 Chapter 12. Architecture Reference

hyperledger-fabricdocs Documentation, Release master

12.3 Service Discovery

12.3.1 Why do we need service discovery?

In order to execute chaincode on peers, submit transactions to orderers, and to be updated about the status of transac-
tions, applications connect to an API exposed by an SDK.

However, the SDK needs a lot of information in order to allow applications to connect to the relevant network nodes.
In addition to the CA and TLS certificates of the orderers and peers on the channel – as well as their IP addresses and
port numbers – it must know the relevant endorsement policies as well as which peers have the chaincode installed (so
the application knows which peers to send chaincode proposals to).

Prior to v1.2, this information was statically encoded. However, this implementation is not dynamically reactive to
network changes (such as the addition of peers who have installed the relevant chaincode, or peers that are temporarily
offline). Static configurations also do not allow applications to react to changes of the endorsement policy itself (as
might happen when a new organization joins a channel).

In addition, the client application has no way of knowing which peers have updated ledgers and which do not. As a
result, the application might submit proposals to peers whose ledger data is not in sync with the rest of the network,
resulting in transaction being invalidated upon commit and wasting resources as a consequence.

The discovery service improves this process by having the peers compute the needed information dynamically and
present it to the SDK in a consumable manner.

12.3.2 How service discovery works in Fabric

The application is bootstrapped knowing about a group of peers which are trusted by the application devel-
oper/administrator to provide authentic responses to discovery queries. A good candidate peer to be used by the
client application is one that is in the same organization. Note that in order for peers to be known to the discovery
service, they must have an EXTERNAL_ENDPOINT defined. To see how to do this, check out our Service Discovery
CLI documentation.

12.3. Service Discovery 509

hyperledger-fabricdocs Documentation, Release master

The application issues a configuration query to the discovery service and obtains all the static information it would
have otherwise needed to communicate with the rest of the nodes of the network. This information can be refreshed at
any point by sending a subsequent query to the discovery service of a peer.

The service runs on peers – not on the application – and uses the network metadata information maintained by the
gossip communication layer to find out which peers are online. It also fetches information, such as any relevant
endorsement policies, from the peer’s state database.

With service discovery, applications no longer need to specify which peers they need endorsements from. The SDK
can simply send a query to the discovery service asking which peers are needed given a channel and a chaincode ID.
The discovery service will then compute a descriptor comprised of two objects:

1. Layouts: a list of groups of peers and a corresponding amount of peers from each group which should be
selected.

2. Group to peer mapping: from the groups in the layouts to the peers of the channel. In practice, each group
would most likely be peers that represent individual organizations, but because the service API is generic and
ignorant of organizations this is just a “group”.

The following is an example of a descriptor from the evaluation of a policy of AND(Org1, Org2) where there are
two peers in each of the organizations.

Layouts: [
QuantitiesByGroup: {

“Org1”: 1,
“Org2”: 1,

}
],
EndorsersByGroups: {

“Org1”: [peer0.org1, peer1.org1],
“Org2”: [peer0.org2, peer1.org2]

}

In other words, the endorsement policy requires a signature from one peer in Org1 and one peer in Org2. And it
provides the names of available peers in those orgs who can endorse (peer0 and peer1 in both Org1 and in Org2).

The SDK then selects a random layout from the list. In the example above, the endorsement policy is Org1 AND Org2.
If instead it was an OR policy, the SDK would randomly select either Org1 or Org2, since a signature from a peer from
either Org would satisfy the policy.

After the SDK has selected a layout, it selects from the peers in the layout based on a criteria specified on the client
side (the SDK can do this because it has access to metadata like ledger height). For example, it can prefer peers with
higher ledger heights over others – or to exclude peers that the application has discovered to be offline – according to
the number of peers from each group in the layout. If no single peer is preferable based on the criteria, the SDK will
randomly select from the peers that best meet the criteria.

Capabilities of the discovery service

The discovery service can respond to the following queries:

• Configuration query: Returns the MSPConfig of all organizations in the channel along with the orderer
endpoints of the channel.

• Peer membership query: Returns the peers that have joined the channel.

• Endorsement query: Returns an endorsement descriptor for given chaincode(s) in a channel.

• Local peer membership query: Returns the local membership information of the peer that responds to the
query. By default the client needs to be an administrator for the peer to respond to this query.

510 Chapter 12. Architecture Reference

hyperledger-fabricdocs Documentation, Release master

Special requirements

When the peer is running with TLS enabled the client must provide a TLS certificate when connecting to the peer. If the
peer isn’t configured to verify client certificates (clientAuthRequired is false), this TLS certificate can be self-signed.

12.4 Defining capability requirements

As discussed in Channel capabilities, capability requirements are defined per channel in the channel configuration
(found in the channel’s most recent configuration block). The channel configuration contains three locations, each of
which defines a capability of a different type.

Capability Type Canonical Path JSON Path
Channel /Channel/Capabilities .channel_group.values.Capabilities
Orderer /Channel/Orderer/Capabilities .channel_group.groups.Orderer.values.Capabilities
Application /Channel/Application/Capabilities .channel_group.groups.Application.values. Capabilities

12.4.1 Setting Capabilities

Capabilities are set as part of the channel configuration (either as part of the initial configuration – which we’ll talk
about in a moment – or as part of a reconfiguration).

Note: For more information about how to update a channel configuration, check out Updating a channel configura-
tion.

Because new channels copy the configuration of the ordering system channel by default, new channels will automati-
cally be configured to work with the orderer and channel capabilities of the ordering system channel and the application
capabilities specified by the channel creation transaction.

Capabilities in an Initial Configuration

In the configtx.yaml file distributed in the config directory of the release artifacts, there is a Capabilities
section which enumerates the possible capabilities for each capability type (Channel, Orderer, and Application).

Note that there is a Capabilities section defined at the root level (for the channel capabilities), and at the Orderer
level (for orderer capabilities).

When defining the orderer system channel there is no Application section, as those capabilities are defined during the
creation of an application channel.

12.5 Channels

A Hyperledger Fabric channel is a private “subnet” of communication between two or more specific network mem-
bers, for the purpose of conducting private and confidential transactions. A channel is defined by members (organiza-
tions), anchor peers per member, the shared ledger, chaincode application(s) and the ordering service node(s). Each
transaction on the network is executed on a channel, where each party must be authenticated and authorized to transact
on that channel. Each peer that joins a channel, has its own identity given by a membership services provider (MSP),
which authenticates each peer to its channel peers and services.

12.4. Defining capability requirements 511

hyperledger-fabricdocs Documentation, Release master

To create a new channel, the client SDK calls configuration system chaincode and references properties such as
anchor peers, and members (organizations). This request creates a genesis block for the channel ledger,
which stores configuration information about the channel policies, members and anchor peers. When adding a new
member to an existing channel, either this genesis block, or if applicable, a more recent reconfiguration block, is shared
with the new member.

Note: See the Channel Configuration (configtx) section for more details on the properties and proto structures of
config transactions.

The election of a leading peer for each member on a channel determines which peer communicates with the
ordering service on behalf of the member. If no leader is identified, an algorithm can be used to identify the leader.
The consensus service orders transactions and delivers them, in a block, to each leading peer, which then distributes
the block to its member peers, and across the channel, using the gossip protocol.

Although any one anchor peer can belong to multiple channels, and therefore maintain multiple ledgers, no ledger
data can pass from one channel to another. This separation of ledgers, by channel, is defined and implemented by con-
figuration chaincode, the identity membership service and the gossip data dissemination protocol. The dissemination
of data, which includes information on transactions, ledger state and channel membership, is restricted to peers with
verifiable membership on the channel. This isolation of peers and ledger data, by channel, allows network members
that require private and confidential transactions to coexist with business competitors and other restricted members,
on the same blockchain network.

12.6 CouchDB as the State Database

12.6.1 State Database options

The current options for the peer state database are LevelDB and CouchDB. LevelDB is the default key-value state
database embedded in the peer process. CouchDB is an alternative external state database. Like the LevelDB key-value
store, CouchDB can store any binary data that is modeled in chaincode (CouchDB attachments are used internally for
non-JSON data). As a document object store, CouchDB allows you to store data in JSON format, issue rich queries
against your data, and use indexes to support your queries.

Both LevelDB and CouchDB support core chaincode operations such as getting and setting a key (asset), and querying
based on keys. Keys can be queried by range, and composite keys can be modeled to enable equivalence queries against
multiple parameters. For example a composite key of owner,asset_id can be used to query all assets owned by a
certain entity. These key-based queries can be used for read-only queries against the ledger, as well as in transactions
that update the ledger.

Modeling your data in JSON allows you to issue rich queries against the values of your data, instead of only being able
to query the keys. This makes it easier for your applications and chaincode to read the data stored on the blockchain
ledger. Using CouchDB can help you meet auditing and reporting requirements for many use cases that are not
supported by LevelDB. If you use CouchDB and model your data in JSON, you can also deploy indexes with your
chaincode. Using indexes makes queries more flexible and efficient and enables you to query large datasets from
chaincode.

CouchDB runs as a separate database process alongside the peer, therefore there are additional considerations in terms
of setup, management, and operations. You may consider starting with the default embedded LevelDB, and move to
CouchDB if you require the additional complex rich queries. It is a good practice to model asset data as JSON, so that
you have the option to perform complex rich queries if needed in the future.

Note: The key for a CouchDB JSON document can only contain valid UTF-8 strings and cannot begin with an
underscore (“_”). Whether you are using CouchDB or LevelDB, you should avoid using U+0000 (nil byte) in keys.

512 Chapter 12. Architecture Reference

hyperledger-fabricdocs Documentation, Release master

JSON documents in CouchDB cannot use the following values as top level field names. These values are reserved for
internal use.

• Any field beginning with an underscore, "_"

• ~version

12.6.2 Using CouchDB from Chaincode

Chaincode queries

Most of the chaincode shim APIs can be utilized with either LevelDB or CouchDB state database, e.g. GetState,
PutState, GetStateByRange, GetStateByPartialCompositeKey. Additionally when you utilize
CouchDB as the state database and model assets as JSON in chaincode, you can perform rich queries against the
JSON in the state database by using the GetQueryResult API and passing a CouchDB query string. The query
string follows the CouchDB JSON query syntax.

The marbles02 fabric sample demonstrates use of CouchDB queries from chaincode. It includes a
queryMarblesByOwner() function that demonstrates parameterized queries by passing an owner id into chain-
code. It then queries the state data for JSON documents matching the docType of “marble” and the owner id using the
JSON query syntax:

{"selector":{"docType":"marble","owner":<OWNER_ID>}}

The responses to rich queries are useful for understanding the data on the ledger. However, there is no guarantee that
the result set for a rich query will be stable between the chaincode execution and commit time. As a result, you should
not use a rich query and update the channel ledger in a single transaction. For example, if you perform a rich query
for all assets owned by Alice and transfer them to Bob, a new asset may be assigned to Alice by another transaction
between chaincode execution time and commit time.

CouchDB pagination

Fabric supports paging of query results for rich queries and range based queries. APIs supporting pagination allow
the use of page size and bookmarks to be used for both range and rich queries. To support efficient pagination, the
Fabric pagination APIs must be used. Specifically, the CouchDB limit keyword will not be honored in CouchDB
queries since Fabric itself manages the pagination of query results and implicitly sets the pageSize limit that is passed
to CouchDB.

If a pageSize is specified using the paginated query APIs (GetStateByRangeWithPagination(),
GetStateByPartialCompositeKeyWithPagination(), and GetQueryResultWithPagination()),
a set of results (bound by the pageSize) will be returned to the chaincode along with a bookmark. The bookmark can
be returned from chaincode to invoking clients, which can use the bookmark in a follow on query to receive the next
“page” of results.

The pagination APIs are for use in read-only transactions only, the query results are intended to support client paging
requirements. For transactions that need to read and write, use the non-paginated chaincode query APIs. Within
chaincode you can iterate through result sets to your desired depth.

Regardless of whether the pagination APIs are utilized, all chaincode queries are bound by totalQueryLimit
(default 100000) from core.yaml. This is the maximum number of results that chaincode will iterate through and
return to the client, in order to avoid accidental or malicious long-running queries.

Note: Regardless of whether chaincode uses paginated queries or not, the peer will query CouchDB in batches based
on internalQueryLimit (default 1000) from core.yaml. This behavior ensures reasonably sized result sets

12.6. CouchDB as the State Database 513

https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStubInterface
http://docs.couchdb.org/en/2.1.1/api/database/find.html
https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/marbles_chaincode.go

hyperledger-fabricdocs Documentation, Release master

are passed between the peer and CouchDB when executing chaincode, and is transparent to chaincode and the calling
client.

An example using pagination is included in the Using CouchDB tutorial.

CouchDB indexes

Indexes in CouchDB are required in order to make JSON queries efficient and are required for any JSON query with a
sort. Indexes enable you to query data from chaincode when you have a large amount of data on your ledger. Indexes
can be packaged alongside chaincode in a /META-INF/statedb/couchdb/indexes directory. Each index
must be defined in its own text file with extension *.json with the index definition formatted in JSON following the
CouchDB index JSON syntax. For example, to support the above marble query, a sample index on the docType and
owner fields is provided:

{"index":{"fields":["docType","owner"]},"ddoc":"indexOwnerDoc", "name":"indexOwner",
→˓"type":"json"}

The sample index can be found here.

Any index in the chaincode’s META-INF/statedb/couchdb/indexes directory will be packaged up with the
chaincode for deployment. The index will be deployed to a peers channel and chaincode specific database when the
chaincode package is installed on the peer and the chaincode definition is committed to the channel. If you install the
chaincode first and then commit the chaincode definition to the channel, the index will be deployed at commit time.
If the chaincode has already been defined on the channel and the chaincode package subsequently installed on a peer
joined to the channel, the index will be deployed at chaincode installation time.

Upon deployment, the index will automatically be utilized by chaincode queries. CouchDB can automatically deter-
mine which index to use based on the fields being used in a query. Alternatively, in the selector query the index can be
specified using the use_index keyword.

The same index may exist in subsequent versions of the chaincode that gets installed. To change the index, use the
same index name but alter the index definition. Upon installation/instantiation, the index definition will get re-deployed
to the peer’s state database.

If you have a large volume of data already, and later install the chaincode, the index creation upon installation may take
some time. Similarly, if you have a large volume of data already and commit the definition of a subsequent chaincode
version, the index creation may take some time. Avoid calling chaincode functions that query the state database at
these times as the chaincode query may time out while the index is getting initialized. During transaction processing,
the indexes will automatically get refreshed as blocks are committed to the ledger. If the peer crashes during chaincode
installation, the couchdb indexes may not get created. If this occurs, you need to reinstall the chaincode to create the
indexes.

12.6.3 CouchDB Configuration

CouchDB is enabled as the state database by changing the stateDatabase configuration option from goleveldb
to CouchDB. Additionally, the couchDBAddress needs to configured to point to the CouchDB to be used by the
peer. The username and password properties should be populated with an admin username and password if CouchDB
is configured with a username and password. Additional options are provided in the couchDBConfig section and
are documented in place. Changes to the core.yaml will be effective immediately after restarting the peer.

You can also pass in docker environment variables to override core.yaml values, for example
CORE_LEDGER_STATE_STATEDATABASE and CORE_LEDGER_STATE_COUCHDBCONFIG_COUCHDBADDRESS.

Below is the stateDatabase section from core.yaml:

514 Chapter 12. Architecture Reference

http://docs.couchdb.org/en/2.1.1/api/database/find.html#db-index
https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/META-INF/statedb/couchdb/indexes/indexOwner.json

hyperledger-fabricdocs Documentation, Release master

state:
stateDatabase - options are "goleveldb", "CouchDB"
goleveldb - default state database stored in goleveldb.
CouchDB - store state database in CouchDB
stateDatabase: goleveldb
Limit on the number of records to return per query
totalQueryLimit: 10000
couchDBConfig:

It is recommended to run CouchDB on the same server as the peer, and
not map the CouchDB container port to a server port in docker-compose.
Otherwise proper security must be provided on the connection between
CouchDB client (on the peer) and server.
couchDBAddress: couchdb:5984
This username must have read and write authority on CouchDB
username:
The password is recommended to pass as an environment variable
during start up (e.g. LEDGER_COUCHDBCONFIG_PASSWORD).
If it is stored here, the file must be access control protected
to prevent unintended users from discovering the password.
password:
Number of retries for CouchDB errors
maxRetries: 3
Number of retries for CouchDB errors during peer startup
maxRetriesOnStartup: 10
CouchDB request timeout (unit: duration, e.g. 20s)
requestTimeout: 35s
Limit on the number of records per each CouchDB query
Note that chaincode queries are only bound by totalQueryLimit.
Internally the chaincode may execute multiple CouchDB queries,
each of size internalQueryLimit.
internalQueryLimit: 1000
Limit on the number of records per CouchDB bulk update batch
maxBatchUpdateSize: 1000
Warm indexes after every N blocks.
This option warms any indexes that have been
deployed to CouchDB after every N blocks.
A value of 1 will warm indexes after every block commit,
to ensure fast selector queries.
Increasing the value may improve write efficiency of peer and CouchDB,
but may degrade query response time.
warmIndexesAfterNBlocks: 1

CouchDB hosted in docker containers supplied with Hyperledger Fabric have the capability of setting the CouchDB
username and password with environment variables passed in with the COUCHDB_USER and COUCHDB_PASSWORD
environment variables using Docker Compose scripting.

For CouchDB installations outside of the docker images supplied with Fabric, the local.ini file of that installation must
be edited to set the admin username and password.

Docker compose scripts only set the username and password at the creation of the container. The local.ini file must be
edited if the username or password is to be changed after creation of the container.

If you choose to map the fabric-couchdb container port to a host port, make sure you are aware of the security im-
plications. Mapping the CouchDB container port in a development environment exposes the CouchDB REST API
and allows you to visualize the database via the CouchDB web interface (Fauxton). In a production environment you
should refrain from mapping the host port to restrict access to the CouchDB container. Only the peer will be able to
access the CouchDB container.

12.6. CouchDB as the State Database 515

http://docs.couchdb.org/en/2.1.1/config/intro.html#configuration-files

hyperledger-fabricdocs Documentation, Release master

Note: CouchDB peer options are read on each peer startup.

12.6.4 Good practices for queries

Avoid using chaincode for queries that will result in a scan of the entire CouchDB database. Full length database
scans will result in long response times and will degrade the performance of your network. You can take some of the
following steps to avoid long queries:

• When using JSON queries:

– Be sure to create indexes in the chaincode package.

– Avoid query operators such as $or, $in and $regex, which lead to full database scans.

• For range queries, composite key queries, and JSON queries:

– Utilize paging support instead of one large result set.

• If you want to build a dashboard or collect aggregate data as part of your application, you can query an off-chain
database that replicates the data from your blockchain network. This will allow you to query and analyze the
blockchain data in a data store optimized for your needs, without degrading the performance of your network or
disrupting transactions. To achieve this, applications may use block or chaincode events to write transaction data
to an off-chain database or analytics engine. For each block received, the block listener application would iterate
through the block transactions and build a data store using the key/value writes from each valid transaction’s
rwset. The Peer channel-based event services provide replayable events to ensure the integrity of downstream
data stores.

12.7 Peer channel-based event services

12.7.1 General overview

In previous versions of Fabric, the peer event service was known as the event hub. This service sent events any time
a new block was added to the peer’s ledger, regardless of the channel to which that block pertained, and it was only
accessible to members of the organization running the eventing peer (i.e., the one being connected to for events).

Starting with v1.1, there are new services which provide events. These services use an entirely different design to
provide events on a per-channel basis. This means that registration for events occurs at the level of the channel instead
of the peer, allowing for fine-grained control over access to the peer’s data. Requests to receive events are accepted
from identities outside of the peer’s organization (as defined by the channel configuration). This also provides greater
reliability and a way to receive events that may have been missed (whether due to a connectivity issue or because the
peer is joining a network that has already been running).

12.7.2 Available services

• Deliver

This service sends entire blocks that have been committed to the ledger. If any events were set by a chaincode, these
can be found within the ChaincodeActionPayload of the block.

• DeliverWithPrivateData

This service sends the same data as the Deliver service, and additionally includes any private data from collections
that the client’s organization is authorized to access.

516 Chapter 12. Architecture Reference

hyperledger-fabricdocs Documentation, Release master

• DeliverFiltered

This service sends “filtered” blocks, minimal sets of information about blocks that have been committed to the ledger.
It is intended to be used in a network where owners of the peers wish for external clients to primarily receive informa-
tion about their transactions and the status of those transactions. If any events were set by a chaincode, these can be
found within the FilteredChaincodeAction of the filtered block.

Note: The payload of chaincode events will not be included in filtered blocks.

12.7.3 How to register for events

Registration for events is done by sending an envelope containing a deliver seek info message to the peer that contains
the desired start and stop positions, the seek behavior (block until ready or fail if not ready). There are helper variables
SeekOldest and SeekNewest that can be used to indicate the oldest (i.e. first) block or the newest (i.e. last) block
on the ledger. To have the services send events indefinitely, the SeekInfo message should include a stop position of
MAXINT64.

Note: If mutual TLS is enabled on the peer, the TLS certificate hash must be set in the envelope’s channel header.

By default, the event services use the Channel Readers policy to determine whether to authorize requesting clients for
events.

12.7.4 Overview of deliver response messages

The event services send back DeliverResponse messages.

Each message contains one of the following:

• status – HTTP status code. Each of the services will return the appropriate failure code if any failure occurs;
otherwise, it will return 200 - SUCCESS once the service has completed sending all information requested
by the SeekInfo message.

• block – returned only by the Deliver service.

• block and private data – returned only by the DeliverWithPrivateData service.

• filtered block – returned only by the DeliverFiltered service.

A filtered block contains:

• channel ID.

• number (i.e. the block number).

• array of filtered transactions.

• transaction ID.

– type (e.g. ENDORSER_TRANSACTION, CONFIG).

– transaction validation code.

• filtered transaction actions.

– array of filtered chaincode actions.

* chaincode event for the transaction (with the payload nilled out).

12.7. Peer channel-based event services 517

hyperledger-fabricdocs Documentation, Release master

12.7.5 SDK event documentation

For further details on using the event services, refer to the SDK documentation.

12.8 Private Data

Note: This topic assumes an understanding of the conceptual material in the documentation on private data.

12.8.1 Private data collection definition

A collection definition contains one or more collections, each having a policy definition listing the organizations in
the collection, as well as properties used to control dissemination of private data at endorsement time and, optionally,
whether the data will be purged.

Beginning with the Fabric chaincode lifecycle introduced with Fabric v2.0, the collection definition is part of the chain-
code definition. The collection is approved by channel members, and then deployed when the chaincode definition is
committed to the channel. The collection file needs to be the same for all channel members. If you are using the peer
CLI to approve and commit the chaincode definition, use the --collections-config flag to specify the path to
the collection definition file. If you are using the Fabric SDK for Node.js, visit How to install and start your chain-
code. To use the previous lifecycle process to deploy a private data collection, use the --collections-config
flag when instantiating your chaincode.

Collection definitions are composed of the following properties:

• name: Name of the collection.

• policy: The private data collection distribution policy defines which organizations’ peers are allowed to
persist the collection data expressed using the Signature policy syntax, with each member being included in
an OR signature policy list. To support read/write transactions, the private data distribution policy must define a
broader set of organizations than the chaincode endorsement policy, as peers must have the private data in order
to endorse proposed transactions. For example, in a channel with ten organizations, five of the organizations
might be included in a private data collection distribution policy, but the endorsement policy might call for any
three of the organizations to endorse.

• requiredPeerCount: Minimum number of peers (across authorized organizations) that each endorsing peer
must successfully disseminate private data to before the peer signs the endorsement and returns the proposal
response back to the client. Requiring dissemination as a condition of endorsement will ensure that private data
is available in the network even if the endorsing peer(s) become unavailable. When requiredPeerCount is
0, it means that no distribution is required, but there may be some distribution if maxPeerCount is greater
than zero. A requiredPeerCount of 0 would typically not be recommended, as it could lead to loss of
private data in the network if the endorsing peer(s) becomes unavailable. Typically you would want to require
at least some distribution of the private data at endorsement time to ensure redundancy of the private data on
multiple peers in the network.

• maxPeerCount: For data redundancy purposes, the maximum number of other peers (across authorized or-
ganizations) that each endorsing peer will attempt to distribute the private data to. If an endorsing peer becomes
unavailable between endorsement time and commit time, other peers that are collection members but who did
not yet receive the private data at endorsement time, will be able to pull the private data from peers the private
data was disseminated to. If this value is set to 0, the private data is not disseminated at endorsement time,
forcing private data pulls against endorsing peers on all authorized peers at commit time.

• blockToLive: Represents how long the data should live on the private database in terms of blocks. The data
will live for this specified number of blocks on the private database and after that it will get purged, making this

518 Chapter 12. Architecture Reference

https://hyperledger.github.io/fabric-sdk-node/master/tutorial-channel-events.html
private-data/private-data.html
https://hyperledger.github.io/fabric-sdk-node/master/tutorial-chaincode-lifecycle.html
https://hyperledger.github.io/fabric-sdk-node/master/tutorial-chaincode-lifecycle.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/chaincode4noah.html
https://hyperledger-fabric.readthedocs.io/en/latest/commands/peerchaincode.html#peer-chaincode-instantiate

hyperledger-fabricdocs Documentation, Release master

data obsolete from the network so that it cannot be queried from chaincode, and cannot be made available to
requesting peers. To keep private data indefinitely, that is, to never purge private data, set the blockToLive
property to 0.

• memberOnlyRead: a value of true indicates that peers automatically enforce that only clients belonging
to one of the collection member organizations are allowed read access to private data. If a client from a non-
member org attempts to execute a chaincode function that performs a read of a private data key, the chaincode
invocation is terminated with an error. Utilize a value of false if you would like to encode more granular
access control within individual chaincode functions.

• memberOnlyWrite: a value of true indicates that peers automatically enforce that only clients belonging
to one of the collection member organizations are allowed to write private data from chaincode. If a client from
a non-member org attempts to execute a chaincode function that performs a write on a private data key, the
chaincode invocation is terminated with an error. Utilize a value of false if you would like to encode more
granular access control within individual chaincode functions, for example you may want certain clients from
non-member organization to be able to create private data in a certain collection.

• endorsementPolicy: An optional endorsement policy to utilize for the collection that overrides the chain-
code level endorsement policy. A collection level endorsement policy may be specified in the form of a
signaturePolicy or may be a channelConfigPolicy reference to an existing policy from the channel
configuration. The endorsementPolicy may be the same as the collection distribution policy, or may
require fewer or additional organization peers.

Here is a sample collection definition JSON file, containing an array of two collection definitions:

[
{

"name": "collectionMarbles",
"policy": "OR('Org1MSP.member', 'Org2MSP.member')",
"requiredPeerCount": 0,
"maxPeerCount": 3,
"blockToLive":1000000,
"memberOnlyRead": true,
"memberOnlyWrite": true

},
{

"name": "collectionMarblePrivateDetails",
"policy": "OR('Org1MSP.member')",
"requiredPeerCount": 0,
"maxPeerCount": 3,
"blockToLive":3,
"memberOnlyRead": true,
"memberOnlyWrite":true,
"endorsementPolicy": {

"signaturePolicy": "OR('Org1MSP.member')"
}

}
]

This example uses the organizations from the Fabric test network, Org1 and Org2. The policy in the
collectionMarbles definition authorizes both organizations to the private data. This is a typical configura-
tion when the chaincode data needs to remain private from the ordering service nodes. However, the policy in the
collectionMarblePrivateDetails definition restricts access to a subset of organizations in the channel (in
this case Org1). Additionally, writing to this collection requires endorsement from an Org1 peer, even though the
chaincode level endorsement policy may require endorsement from Org1 or Org2. And since “memberOnlyWrite”
is true, only clients from Org1 may invoke chaincode that writes to the private data collection. In this way you can
control which organizations are entrusted to write to certain private data collections.

12.8. Private Data 519

hyperledger-fabricdocs Documentation, Release master

12.8.2 Private data dissemination

Since private data is not included in the transactions that get submitted to the ordering service, and therefore not
included in the blocks that get distributed to all peers in a channel, the endorsing peer plays an important role in
disseminating private data to other peers of authorized organizations. This ensures the availability of private data
in the channel’s collection, even if endorsing peers become unavailable after their endorsement. To assist with this
dissemination, the maxPeerCount and requiredPeerCount properties in the collection definition control the
degree of dissemination at endorsement time.

If the endorsing peer cannot successfully disseminate the private data to at least the requiredPeerCount, it will
return an error back to the client. The endorsing peer will attempt to disseminate the private data to peers of different
organizations, in an effort to ensure that each authorized organization has a copy of the private data. Since transactions
are not committed at chaincode execution time, the endorsing peer and recipient peers store a copy of the private data
in a local transient store alongside their blockchain until the transaction is committed.

When authorized peers do not have a copy of the private data in their transient data store at commit time (either because
they were not an endorsing peer or because they did not receive the private data via dissemination at endorsement time),
they will attempt to pull the private data from another authorized peer, for a configurable amount of time based on the
peer property peer.gossip.pvtData.pullRetryThreshold in the peer configuration core.yaml file.

Note: The peers being asked for private data will only return the private data if the requesting peer is a member of
the collection as defined by the private data dissemination policy.

Considerations when using pullRetryThreshold:

• If the requesting peer is able to retrieve the private data within the pullRetryThreshold, it will commit the
transaction to its ledger (including the private data hash), and store the private data in its state database, logically
separated from other channel state data.

• If the requesting peer is not able to retrieve the private data within the pullRetryThreshold, it will commit
the transaction to it’s blockchain (including the private data hash), without the private data.

• If the peer was entitled to the private data but it is missing, then that peer will not be able to endorse future
transactions that reference the missing private data - a chaincode query for a key that is missing will be detected
(based on the presence of the key’s hash in the state database), and the chaincode will receive an error.

Therefore, it is important to set the requiredPeerCount and maxPeerCount properties large enough to ensure
the availability of private data in your channel. For example, if each of the endorsing peers become unavailable before
the transaction commits, the requiredPeerCount and maxPeerCount properties will have ensured the private
data is available on other peers.

Note: For collections to work, it is important to have cross organizational gossip configured correctly. Refer to our
documentation on Gossip data dissemination protocol, paying particular attention to the “anchor peers” and “external
endpoint” configuration.

12.8.3 Referencing collections from chaincode

A set of shim APIs are available for setting and retrieving private data.

The same chaincode data operations can be applied to channel state data and private data, but in the case
of private data, a collection name is specified along with the data in the chaincode APIs, for example
PutPrivateData(collection,key,value) and GetPrivateData(collection,key).

A single chaincode can reference multiple collections.

520 Chapter 12. Architecture Reference

https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim

hyperledger-fabricdocs Documentation, Release master

12.8.4 Referencing implicit collections from chaincode

Starting in v2.0, an implicit private data collection can be used for each organization in a channel, so that you don’t
have to define collections if you’d like to utilize per-organization collections. Each org-specific implicit collection has a
distribution policy and endorsement policy of the matching organization. You can therefore utilize implicit collections
for use cases where you’d like to ensure that a specific organization has written to a collection key namespace. The
v2.0 chaincode lifecycle uses implicit collections to track which organizations have approved a chaincode definition.
Similarly, you can use implicit collections in application chaincode to track which organizations have approved or
voted for some change in state.

To write and read an implicit private data collection key, in the PutPrivateData and GetPrivateData
chaincode APIs, specify the collection parameter as "_implicit_org_<MSPID>", for example
"_implicit_org_Org1MSP".

Note: Application defined collection names are not allowed to start with an underscore, therefore there is no chance
for an implicit collection name to collide with an application defined collection name.

How to pass private data in a chaincode proposal

Since the chaincode proposal gets stored on the blockchain, it is also important not to include private data in the main
part of the chaincode proposal. A special field in the chaincode proposal called the transient field can be used to
pass private data from the client (or data that chaincode will use to generate private data), to chaincode invocation on
the peer. The chaincode can retrieve the transient field by calling the GetTransient() API. This transient field
gets excluded from the channel transaction.

Protecting private data content

If the private data is relatively simple and predictable (e.g. transaction dollar amount), channel members who are not
authorized to the private data collection could try to guess the content of the private data via brute force hashing of
the domain space, in hopes of finding a match with the private data hash on the chain. Private data that is predictable
should therefore include a random “salt” that is concatenated with the private data key and included in the private data
value, so that a matching hash cannot realistically be found via brute force. The random “salt” can be generated at
the client side (e.g. by sampling a secure pseudo-random source) and then passed along with the private data in the
transient field at the time of chaincode invocation.

Access control for private data

Until version 1.3, access control to private data based on collection membership was enforced for peers only. Access
control based on the organization of the chaincode proposal submitter was required to be encoded in chaincode logic.
Collection configuration options memberOnlyRead (since version v1.4) and memberOnlyWrite (since version
v2.0) can automatically enforce that the chaincode proposal submitter must be from a collection member in order to
read or write private data keys. For more information about collection configuration definitions and how to set them,
refer back to the Private data collection definition section of this topic.

Note: If you would like more granular access control, you can set memberOnlyRead and memberOnlyWrite
to false. You can then apply your own access control logic in chaincode, for example by calling the GetCreator()
chaincode API or using the client identity chaincode library .

12.8. Private Data 521

https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStub.GetTransient
https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStub.GetCreator

hyperledger-fabricdocs Documentation, Release master

Querying Private Data

Private data collection can be queried just like normal channel data, using shim APIs:

• GetPrivateDataByRange(collection, startKey, endKey string)

• GetPrivateDataByPartialCompositeKey(collection, objectType string, keys
[]string)

And for the CouchDB state database, JSON content queries can be passed using the shim API:

• GetPrivateDataQueryResult(collection, query string)

Limitations:

• Clients that call chaincode that executes range or rich JSON queries should be aware that they may receive a
subset of the result set, if the peer they query has missing private data, based on the explanation in Private Data
Dissemination section above. Clients can query multiple peers and compare the results to determine if a peer
may be missing some of the result set.

• Chaincode that executes range or rich JSON queries and updates data in a single transaction is not supported, as
the query results cannot be validated on the peers that don’t have access to the private data, or on peers that are
missing the private data that they have access to. If a chaincode invocation both queries and updates private data,
the proposal request will return an error. If your application can tolerate result set changes between chaincode
execution and validation/commit time, then you could call one chaincode function to perform the query, and then
call a second chaincode function to make the updates. Note that calls to GetPrivateData() to retrieve individual
keys can be made in the same transaction as PutPrivateData() calls, since all peers can validate key reads based
on the hashed key version.

Using Indexes with collections

The topic CouchDB as the State Database describes indexes that can be applied to the channel’s state database to
enable JSON content queries, by packaging indexes in a META-INF/statedb/couchdb/indexes directory at
chaincode installation time. Similarly, indexes can also be applied to private data collections, by packaging indexes in
a META-INF/statedb/couchdb/collections/<collection_name>/indexes directory. An example
index is available here.

12.8.5 Considerations when using private data

Private data purging

Private data can be periodically purged from peers. For more details, see the blockToLive collection definition
property above.

Additionally, recall that prior to commit, peers store private data in a local transient data store. This data au-
tomatically gets purged when the transaction commits. But if a transaction was never submitted to the chan-
nel and therefore never committed, the private data would remain in each peer’s transient store. This data is
purged from the transient store after a configurable number blocks by using the peer’s peer.gossip.pvtData.
transientstoreMaxBlockRetention property in the peer core.yaml file.

Updating a collection definition

To update a collection definition or add a new collection, you can update the chaincode definition and pass
the new collection configuration in the chaincode approve and commit transactions, for example using the

522 Chapter 12. Architecture Reference

https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02_private/go/META-INF/statedb/couchdb/collections/collectionMarbles/indexes/indexOwner.json

hyperledger-fabricdocs Documentation, Release master

--collections-config flag if using the CLI. If a collection configuration is specified when updating the chain-
code definition, a definition for each of the existing collections must be included.

When updating a chaincode definition, you can add new private data collections, and update existing private data
collections, for example to add new members to an existing collection or change one of the collection definition prop-
erties. Note that you cannot update the collection name or the blockToLive property, since a consistent blockToLive
is required regardless of a peer’s block height.

Collection updates becomes effective when a peer commits the block with the updated chaincode definition. Note that
collections cannot be deleted, as there may be prior private data hashes on the channel’s blockchain that cannot be
removed.

Private data reconciliation

Starting in v1.4, peers of organizations that are added to an existing collection will automatically fetch private data
that was committed to the collection before they joined the collection.

This private data “reconciliation” also applies to peers that were entitled to receive private data but did not yet receive
it — because of a network failure, for example — by keeping track of private data that was “missing” at the time of
block commit.

Private data reconciliation occurs periodically based on the peer.gossip.pvtData.
reconciliationEnabled and peer.gossip.pvtData.reconcileSleepInterval properties in
core.yaml. The peer will periodically attempt to fetch the private data from other collection member peers that are
expected to have it.

Note that this private data reconciliation feature only works on peers running v1.4 or later of Fabric.

12.9 Read-Write set semantics

This document discusses the details of the current implementation about the semantics of read-write sets.

12.9.1 Transaction simulation and read-write set

During simulation of a transaction at an endorser, a read-write set is prepared for the transaction. The read set
contains a list of unique keys and their committed version numbers (but not values) that the transaction reads during
simulation. The write set contains a list of unique keys (though there can be overlap with the keys present in the
read set) and their new values that the transaction writes. A delete marker is set (in the place of new value) for the key
if the update performed by the transaction is to delete the key.

Further, if the transaction writes a value multiple times for a key, only the last written value is retained. Also, if a
transaction reads a value for a key, the value in the committed state is returned even if the transaction has updated the
value for the key before issuing the read. In another words, Read-your-writes semantics are not supported.

As noted earlier, the versions of the keys are recorded only in the read set; the write set just contains the list of unique
keys and their latest values set by the transaction.

There could be various schemes for implementing versions. The minimal requirement for a versioning scheme is to
produce non-repeating identifiers for a given key. For instance, using monotonically increasing numbers for versions
can be one such scheme. In the current implementation, we use a blockchain height based versioning scheme in which
the height of the committing transaction is used as the latest version for all the keys modified by the transaction. In
this scheme, the height of a transaction is represented by a tuple (txNumber is the height of the transaction within
the block). This scheme has many advantages over the incremental number scheme - primarily, it enables other
components such as statedb, transaction simulation and validation to make efficient design choices.

12.9. Read-Write set semantics 523

hyperledger-fabricdocs Documentation, Release master

Following is an illustration of an example read-write set prepared by simulation of a hypothetical transaction. For the
sake of simplicity, in the illustrations, we use the incremental numbers for representing the versions.

<TxReadWriteSet>
<NsReadWriteSet name="chaincode1">
<read-set>

<read key="K1", version="1">
<read key="K2", version="1">

</read-set>
<write-set>

<write key="K1", value="V1">
<write key="K3", value="V2">
<write key="K4", isDelete="true">

</write-set>
</NsReadWriteSet>

<TxReadWriteSet>

Additionally, if the transaction performs a range query during simulation, the range query as well as its results will be
added to the read-write set as query-info.

12.9.2 Transaction validation and updating world state using read-write set

A committer uses the read set portion of the read-write set for checking the validity of a transaction and the write
set portion of the read-write set for updating the versions and the values of the affected keys.

In the validation phase, a transaction is considered valid if the version of each key present in the read set of the
transaction matches the version for the same key in the world state - assuming all the preceding valid transactions
(including the preceding transactions in the same block) are committed (committed-state). An additional validation is
performed if the read-write set also contains one or more query-info.

This additional validation should ensure that no key has been inserted/deleted/updated in the super range (i.e., union
of the ranges) of the results captured in the query-info(s). In other words, if we re-execute any of the range queries
(that the transaction performed during simulation) during validation on the committed-state, it should yield the same
results that were observed by the transaction at the time of simulation. This check ensures that if a transaction observes
phantom items during commit, the transaction should be marked as invalid. Note that the this phantom protection is
limited to range queries (i.e., GetStateByRange function in the chaincode) and not yet implemented for other
queries (i.e., GetQueryResult function in the chaincode). Other queries are at risk of phantoms, and should
therefore only be used in read-only transactions that are not submitted to ordering, unless the application can guarantee
the stability of the result set between simulation and validation/commit time.

If a transaction passes the validity check, the committer uses the write set for updating the world state. In the update
phase, for each key present in the write set, the value in the world state for the same key is set to the value as specified
in the write set. Further, the version of the key in the world state is changed to reflect the latest version.

12.9.3 Example simulation and validation

This section helps with understanding the semantics through an example scenario. For the purpose of this example,
the presence of a key, k, in the world state is represented by a tuple (k,ver,val) where ver is the latest version
of the key k having val as its value.

Now, consider a set of five transactions T1, T2, T3, T4, and T5, all simulated on the same snapshot of the
world state. The following snippet shows the snapshot of the world state against which the transactions are simulated
and the sequence of read and write activities performed by each of these transactions.

524 Chapter 12. Architecture Reference

hyperledger-fabricdocs Documentation, Release master

World state: (k1,1,v1), (k2,1,v2), (k3,1,v3), (k4,1,v4), (k5,1,v5)
T1 -> Write(k1, v1'), Write(k2, v2')
T2 -> Read(k1), Write(k3, v3')
T3 -> Write(k2, v2'')
T4 -> Write(k2, v2'''), read(k2)
T5 -> Write(k6, v6'), read(k5)

Now, assume that these transactions are ordered in the sequence of T1,..,T5 (could be contained in a single block or
different blocks)

1. T1 passes validation because it does not perform any read. Further, the tuple of keys k1 and k2 in the world
state are updated to (k1,2,v1'), (k2,2,v2')

2. T2 fails validation because it reads a key, k1, which was modified by a preceding transaction - T1

3. T3 passes the validation because it does not perform a read. Further the tuple of the key, k2, in the world state
is updated to (k2,3,v2'')

4. T4 fails the validation because it reads a key, k2, which was modified by a preceding transaction T1

5. T5 passes validation because it reads a key, k5, which was not modified by any of the preceding transactions

Note: Transactions with multiple read-write sets are not yet supported.

12.10 Gossip data dissemination protocol

Hyperledger Fabric optimizes blockchain network performance, security, and scalability by dividing workload across
transaction execution (endorsing and committing) peers and transaction ordering nodes. This decoupling of network
operations requires a secure, reliable and scalable data dissemination protocol to ensure data integrity and consistency.
To meet these requirements, Fabric implements a gossip data dissemination protocol.

12.10.1 Gossip protocol

Peers leverage gossip to broadcast ledger and channel data in a scalable fashion. Gossip messaging is continuous, and
each peer on a channel is constantly receiving current and consistent ledger data from multiple peers. Each gossiped
message is signed, thereby allowing Byzantine participants sending faked messages to be easily identified and the
distribution of the message(s) to unwanted targets to be prevented. Peers affected by delays, network partitions, or
other causes resulting in missed blocks will eventually be synced up to the current ledger state by contacting peers in
possession of these missing blocks.

The gossip-based data dissemination protocol performs three primary functions on a Fabric network:

1. Manages peer discovery and channel membership, by continually identifying available member peers, and even-
tually detecting peers that have gone offline.

2. Disseminates ledger data across all peers on a channel. Any peer with data that is out of sync with the rest of
the channel identifies the missing blocks and syncs itself by copying the correct data.

3. Bring newly connected peers up to speed by allowing peer-to-peer state transfer update of ledger data.

Gossip-based broadcasting operates by peers receiving messages from other peers on the channel, and then forwarding
these messages to a number of randomly selected peers on the channel, where this number is a configurable constant.
Peers can also exercise a pull mechanism rather than waiting for delivery of a message. This cycle repeats, with the
result of channel membership, ledger and state information continually being kept current and in sync. For dissem-
ination of new blocks, the leader peer on the channel pulls the data from the ordering service and initiates gossip
dissemination to peers in its own organization.

12.10. Gossip data dissemination protocol 525

hyperledger-fabricdocs Documentation, Release master

12.10.2 Leader election

The leader election mechanism is used to elect one peer per organization which will maintain connection with the
ordering service and initiate distribution of newly arrived blocks across the peers of its own organization. Leveraging
leader election provides the system with the ability to efficiently utilize the bandwidth of the ordering service. There
are two possible modes of operation for a leader election module:

1. Static — a system administrator manually configures a peer in an organization to be the leader.

2. Dynamic — peers execute a leader election procedure to select one peer in an organization to become leader.

Static leader election

Static leader election allows you to manually define one or more peers within an organization as leader peers. Please
note, however, that having too many peers connect to the ordering service may result in inefficient use of bandwidth.
To enable static leader election mode, configure the following parameters within the section of core.yaml:

peer:
Gossip related configuration
gossip:

useLeaderElection: false
orgLeader: true

Alternatively these parameters could be configured and overridden with environmental variables:

export CORE_PEER_GOSSIP_USELEADERELECTION=false
export CORE_PEER_GOSSIP_ORGLEADER=true

Note: The following configuration will keep peer in stand-by mode, i.e. peer will not try to become a leader:

export CORE_PEER_GOSSIP_USELEADERELECTION=false
export CORE_PEER_GOSSIP_ORGLEADER=false

2. Setting CORE_PEER_GOSSIP_USELEADERELECTION and CORE_PEER_GOSSIP_ORGLEADER with
true value is ambiguous and will lead to an error.

3. In static configuration organization admin is responsible to provide high availability of the leader node in case
for failure or crashes.

Dynamic leader election

Dynamic leader election enables organization peers to elect one peer which will connect to the ordering service and
pull out new blocks. This leader is elected for an organization’s peers independently.

A dynamically elected leader sends heartbeat messages to the rest of the peers as an evidence of liveness. If one or
more peers don’t receive heartbeats updates during a set period of time, they will elect a new leader.

In the worst case scenario of a network partition, there will be more than one active leader for organization to guarantee
resiliency and availability to allow an organization’s peers to continue making progress. After the network partition
has been healed, one of the leaders will relinquish its leadership. In a steady state with no network partitions, there
will be only one active leader connecting to the ordering service.

Following configuration controls frequency of the leader heartbeat messages:

526 Chapter 12. Architecture Reference

hyperledger-fabricdocs Documentation, Release master

peer:
Gossip related configuration
gossip:

election:
leaderAliveThreshold: 10s

In order to enable dynamic leader election, the following parameters need to be configured within core.yaml:

peer:
Gossip related configuration
gossip:

useLeaderElection: true
orgLeader: false

Alternatively these parameters could be configured and overridden with environment variables:

export CORE_PEER_GOSSIP_USELEADERELECTION=true
export CORE_PEER_GOSSIP_ORGLEADER=false

12.10.3 Anchor peers

Anchor peers are used by gossip to make sure peers in different organizations know about each other.

When a configuration block that contains an update to the anchor peers is committed, peers reach out to the anchor
peers and learn from them about all of the peers known to the anchor peer(s). Once at least one peer from each
organization has contacted an anchor peer, the anchor peer learns about every peer in the channel. Since gossip
communication is constant, and because peers always ask to be told about the existence of any peer they don’t know
about, a common view of membership can be established for a channel.

For example, let’s assume we have three organizations—A, B, C— in the channel and a single anchor
peer—peer0.orgC— defined for organization C. When peer1.orgA (from organization A) contacts peer0.orgC, it will
tell it about peer0.orgA. And when at a later time peer1.orgB contacts peer0.orgC, the latter would tell the former
about peer0.orgA. From that point forward, organizations A and B would start exchanging membership information
directly without any assistance from peer0.orgC.

As communication across organizations depends on gossip in order to work, there must be at least one anchor peer
defined in the channel configuration. It is strongly recommended that every organization provides its own set of anchor
peers for high availability and redundancy. Note that the anchor peer does not need to be the same peer as the leader
peer.

External and internal endpoints

In order for gossip to work effectively, peers need to be able to obtain the endpoint information of peers in their own
organization as well as from peers in other organizations.

When a peer is bootstrapped it will use peer.gossip.bootstrap in its core.yaml to advertise itself and
exchange membership information, building a view of all available peers within its own organization.

The peer.gossip.bootstrap property in the core.yaml of the peer is used to bootstrap gossip within an
organization. If you are using gossip, you will typically configure all the peers in your organization to point to an
initial set of bootstrap peers (you can specify a space-separated list of peers). The internal endpoint is usually auto-
computed by the peer itself or just passed explicitly via core.peer.address in core.yaml. If you need to
overwrite this value, you can export CORE_PEER_GOSSIP_ENDPOINT as an environment variable.

Bootstrap information is similarly required to establish communication across organizations. The initial cross-
organization bootstrap information is provided via the “anchor peers” setting described above. If you want

12.10. Gossip data dissemination protocol 527

hyperledger-fabricdocs Documentation, Release master

to make other peers in your organization known to other organizations, you need to set the peer.gossip.
externalendpoint in the core.yaml of your peer. If this is not set, the endpoint information of the peer
will not be broadcast to peers in other organizations.

To set these properties, issue:

export CORE_PEER_GOSSIP_BOOTSTRAP=<a list of peer endpoints within the peer's org>
export CORE_PEER_GOSSIP_EXTERNALENDPOINT=<the peer endpoint, as known outside the org>

12.10.4 Gossip messaging

Online peers indicate their availability by continually broadcasting “alive” messages, with each containing the public
key infrastructure (PKI) ID and the signature of the sender over the message. Peers maintain channel membership by
collecting these alive messages; if no peer receives an alive message from a specific peer, this “dead” peer is eventually
purged from channel membership. Because “alive” messages are cryptographically signed, malicious peers can never
impersonate other peers, as they lack a signing key authorized by a root certificate authority (CA).

In addition to the automatic forwarding of received messages, a state reconciliation process synchronizes world state
across peers on each channel. Each peer continually pulls blocks from other peers on the channel, in order to repair
its own state if discrepancies are identified. Because fixed connectivity is not required to maintain gossip-based data
dissemination, the process reliably provides data consistency and integrity to the shared ledger, including tolerance for
node crashes.

Because channels are segregated, peers on one channel cannot message or share information on any other channel.
Though any peer can belong to multiple channels, partitioned messaging prevents blocks from being disseminated to
peers that are not in the channel by applying message routing policies based on a peers’ channel subscriptions.

Note: 1. Security of point-to-point messages are handled by the peer TLS layer, and do not require signatures.
Peers are authenticated by their certificates, which are assigned by a CA. Although TLS certs are also used, it is the
peer certificates that are authenticated in the gossip layer. Ledger blocks are signed by the ordering service, and then
delivered to the leader peers on a channel.

2. Authentication is governed by the membership service provider for the peer. When the peer connects to the channel
for the first time, the TLS session binds with the membership identity. This essentially authenticates each peer to the
connecting peer, with respect to membership in the network and channel.

528 Chapter 12. Architecture Reference

CHAPTER 13

Frequently Asked Questions

13.1 Endorsement

Endorsement architecture:

Question How many peers in the network need to endorse a transaction?

Answer The number of peers required to endorse a transaction is driven by the endorsement policy that
is specified in the chaincode definition.

Question Does an application client need to connect to all peers?

Answer Clients only need to connect to as many peers as are required by the endorsement policy for the
chaincode.

13.2 Security & Access Control

Question How do I ensure data privacy?

Answer There are various aspects to data privacy. First, you can segregate your network into channels,
where each channel represents a subset of participants that are authorized to see the data for the
chaincodes that are deployed to that channel.

Second, you can use private-data to keep ledger data private from other organizations on the channel.
A private data collection allows a defined subset of organizations on a channel the ability to endorse,
commit, or query private data without having to create a separate channel. Other participants on the
channel receive only a hash of the data. For more information refer to the Using Private Data in
Fabric tutorial. Note that the key concepts topic also explains when to use private data instead of a
channel.

Third, as an alternative to Fabric hashing the data using private data, the client application can hash
or encrypt the data before calling chaincode. If you hash the data then you will need to provide a
means to share the source data. If you encrypt the data then you will need to provide a means to
share the decryption keys.

529

private-data/private-data.html
private-data/private-data.html#when-to-use-a-collection-within-a-channel-vs-a-separate-channel
private-data/private-data.html#when-to-use-a-collection-within-a-channel-vs-a-separate-channel

hyperledger-fabricdocs Documentation, Release master

Fourth, you can restrict data access to certain roles in your organization, by building access control
into the chaincode logic.

Fifth, ledger data at rest can be encrypted via file system encryption on the peer, and data in-transit
is encrypted via TLS.

Question Do the orderers see the transaction data?

Answer No, the orderers only order transactions, they do not open the transactions. If you do not want
the data to go through the orderers at all, then utilize the private data feature of Fabric. Alternatively,
you can hash or encrypt the data in the client application before calling chaincode. If you encrypt
the data then you will need to provide a means to share the decryption keys.

13.3 Application-side Programming Model

Question How do application clients know the outcome of a transaction?

Answer The transaction simulation results are returned to the client by the endorser in the proposal
response. If there are multiple endorsers, the client can check that the responses are all the same,
and submit the results and endorsements for ordering and commitment. Ultimately the committing
peers will validate or invalidate the transaction, and the client becomes aware of the outcome via an
event, that the SDK makes available to the application client.

Question How do I query the ledger data?

Answer Within chaincode you can query based on keys. Keys can be queried by range, and composite
keys can be modeled to enable equivalence queries against multiple parameters. For example a
composite key of (owner,asset_id) can be used to query all assets owned by a certain entity. These
key-based queries can be used for read-only queries against the ledger, as well as in transactions that
update the ledger.

If you model asset data as JSON in chaincode and use CouchDB as the state database, you can
also perform complex rich queries against the chaincode data values, using the CouchDB JSON
query language within chaincode. The application client can perform read-only queries, but these
responses are not typically submitted as part of transactions to the ordering service.

Question How do I query the historical data to understand data provenance?

Answer The chaincode API GetHistoryForKey() will return history of values for a key.

Question How to guarantee the query result is correct, especially when the peer being queried may be
recovering and catching up on block processing?

Answer The client can query multiple peers, compare their block heights, compare their query results,
and favor the peers at the higher block heights.

13.4 Chaincode (Smart Contracts and Digital Assets)

Question Does Hyperledger Fabric support smart contract logic?

Answer Yes. We call this feature Chaincode. It is our interpretation of the smart contract
method/algorithm, with additional features.

A chaincode is programmatic code deployed on the network, where it is executed and validated by
chain validators together during the consensus process. Developers can use chaincodes to develop
business contracts, asset definitions, and collectively-managed decentralized applications.

Question How do I create a business contract?

530 Chapter 13. Frequently Asked Questions

hyperledger-fabricdocs Documentation, Release master

Answer There are generally two ways to develop business contracts: the first way is to code individual
contracts into standalone instances of chaincode; the second way, and probably the more efficient
way, is to use chaincode to create decentralized applications that manage the life cycle of one or
multiple types of business contracts, and let end users instantiate instances of contracts within these
applications.

Question How do I create assets?

Answer Users can use chaincode (for business rules) and membership service (for digital tokens) to
design assets, as well as the logic that manages them.

There are two popular approaches to defining assets in most blockchain solutions: the stateless
UTXO model, where account balances are encoded into past transaction records; and the account
model, where account balances are kept in state storage space on the ledger.

Each approach carries its own benefits and drawbacks. This blockchain technology does not ad-
vocate either one over the other. Instead, one of our first requirements was to ensure that both
approaches can be easily implemented.

Question Which languages are supported for writing chaincode?

Answer Chaincode can be written in any programming language and executed in containers. Currently,
Go, Node.js and Java chaincode are supported.

Question Does the Hyperledger Fabric have native currency?

Answer No. However, if you really need a native currency for your chain network, you can develop your
own native currency with chaincode. One common attribute of native currency is that some amount
will get transacted (the chaincode defining that currency will get called) every time a transaction is
processed on its chain.

13.5 Differences in Most Recent Releases

Question Where can I find what are the highlighted differences between releases?

Answer The differences between any subsequent releases are provided together with the Releases.

Question Where to get help for the technical questions not answered above?

Answer Please use StackOverflow.

13.6 Ordering Service

Question I have an ordering service up and running and want to switch consensus algorithms. How
do I do that?

Answer This is explicitly not supported.

Question What is the orderer system channel?

Answer The orderer system channel (sometimes called ordering system channel) is the channel the or-
derer is initially bootstrapped with. It is used to orchestrate channel creation. The orderer system
channel defines consortia and the initial configuration for new channels. At channel creation time,
the organization definition in the consortium, the /Channel group’s values and policies, as well
as the /Channel/Orderer group’s values and policies, are all combined to form the new initial
channel definition.

Question If I update my application channel, should I update my orderer system channel?

13.5. Differences in Most Recent Releases 531

https://stackoverflow.com/questions/tagged/hyperledger

hyperledger-fabricdocs Documentation, Release master

Answer Once an application channel is created, it is managed independently of any other channel (in-
cluding the orderer system channel). Depending on the modification, the change may or may not
be desirable to port to other channels. In general, MSP changes should be synchronized across all
channels, while policy changes are more likely to be specific to a particular channel.

Question Can I have an organization act both in an ordering and application role?

Answer Although this is possible, it is a highly discouraged configuration. By default the /Channel/
Orderer/BlockValidation policy allows any valid certificate of the ordering organizations
to sign blocks. If an organization is acting both in an ordering and application role, then this policy
should be updated to restrict block signers to the subset of certificates authorized for ordering.

Question I want to write a consensus implementation for Fabric. Where do I begin?

Answer A consensus plugin needs to implement the Consenter and Chain interfaces defined in the
consensus package. There is a plugin built against raft . You can study it to learn more for your own
implementation. The ordering service code can be found under the orderer package.

Question I want to change my ordering service configurations, e.g. batch timeout, after I start the
network, what should I do?

Answer This falls under reconfiguring the network. Please consult the topic on configtxlator.

13.6.1 BFT

Question When is a BFT version of the ordering service going to be available?

Answer No date has been set. We are working towards a release during the 2.x cycle, i.e. it will come
with a minor version upgrade in Fabric.

532 Chapter 13. Frequently Asked Questions

https://github.com/hyperledger/fabric/blob/release-2.0/orderer/consensus/consensus.go
https://github.com/hyperledger/fabric/tree/release-2.0/orderer/consensus/etcdraft
https://github.com/hyperledger/fabric/tree/release-2.0/orderer

CHAPTER 14

Contributions Welcome!

We welcome contributions to Hyperledger in many forms, and there’s always plenty to do!

First things first, please review the Hyperledger Code of Conduct before participating. It is important that we keep
things civil.

Note: If you want to contribute to this documentation, please check out the Style guide for contributors.

14.1 Ways to contribute

There are many ways you can contribute to Hyperledger Fabric, both as a user and as a developer.

As a user:

• Making Feature/Enhancement Proposals

• Reporting bugs

• Help test an upcoming Epic on the release roadmap. Contact the Epic assignee via the Jira work item or on
RocketChat.

As a writer or information developer:

• Update the documentation using your experience of Fabric and this documentation to improve existing topics
and create new ones. A documentation change is an easy way to get started as a contributor, makes it easier for
other users to understand and use Fabric, and grows your open source commit history.

• Participate in a language translation to keep the Fabric documentation current in your chosen language. The
Fabric documentation is available in a number of languages – English, Chinese, Malayalam and Brazilian Por-
tuguese – so why not join a team that keeps your favorite documentation up-to-date? You’ll find a friendly
community of users, writers and developers to collaborate with.

• Start a new language translation if the Fabric documentation isn’t available in your language. The Chinese,
Malayalam and Portuguese Brazilian teams got started this way, and you can too! It’s more work, as you’ll

533

https://wiki.hyperledger.org/community/hyperledger-project-code-of-conduct
https://jira.hyperledger.org/secure/Dashboard.jspa?selectPageId=10104
https://chat.hyperledger.org

hyperledger-fabricdocs Documentation, Release master

have to form a community of writers, and organize contributions; but it’s really fulfilling to see the Fabric
documentation available in your chosen language.

Jump to Contributing documentation to get started on your journey.

As a developer:

• If you only have a little time, consider picking up a “help-wanted” task, see Fixing issues and working stories.

• If you can commit to full-time development, either propose a new feature (see Making Feature/Enhancement
Proposals) and bring a team to implement it, or join one of the teams working on an existing Epic. If you
see an Epic that interests you on the release roadmap, contact the Epic assignee via the Jira work item or on
RocketChat.

14.2 Getting a Linux Foundation account

In order to participate in the development of the Hyperledger Fabric project, you will need a Linux Foundation ac-
count. Once you have a LF ID you will be able to access all the Hyperledger community tools, including Jira issue
management, RocketChat, and the Wiki (for editing, only).

Follow the steps below to create a Linux Foundation account if you don’t already have one.

1. Go to the Linux Foundation ID website.

2. Select the option I need to create a Linux Foundation ID, and fill out the form that appears.

3. Wait a few minutes, then look for an email message with the subject line: “Validate your Linux Foundation ID
email”.

4. Open the received URL to validate your email address.

5. Verify that your browser displays the message You have successfully validated your e-mail
address.

6. Access Jira issue management, or RocketChat.

14.3 Contributing documentation

It’s a good idea to make your first change a documentation change. It’s quick and easy to do, ensures that you
have a correctly configured machine, (including the required pre-requisite software), and gets you familiar with the
contribution process. Use the following topics to help you get started:

14.3.1 Connect with other writers

Audience: Writers who would like to contribute to the Fabric documentation.

This topic gives you general advice on how to contribute to one of the many language translations provided by Fabric.

In this topic, we’re going to cover:

• How to get started

• Using Rocket chat

• Documentation workgroup call

• Join a language translation workgroup

• Other ways to connect

534 Chapter 14. Contributions Welcome!

https://jira.hyperledger.org/issues/?filter=10147
https://jira.hyperledger.org/secure/Dashboard.jspa?selectPageId=10104
https://chat.hyperledger.org/
https://jira.hyperledger.org
https://jira.hyperledger.org
https://chat.hyperledger.org/
https://wiki.hyperledger.org/display/fabric/Hyperledger+Fabric
https://identity.linuxfoundation.org/
https://jira.hyperledger.org
https://chat.hyperledger.org/

hyperledger-fabricdocs Documentation, Release master

Getting started

Before you make a documentation change, you might like to connect with other people working on the Fabric docu-
mentation. Your Linux Foundation account will give you access to many different resources to help you connect with
other contributors to the documentation.

Once you have a Linux Foundation account, use any or all of the following mechanisms to connect with others.

Rocket chat

Hyperledger Fabric uses Rocket chat for interactive discussions on a variety of project topics.

• Documentation channel

You’ll find beginners and experts sharing information on the Fabric documentation. Read the conversation or
ask a question on how to get started.

• International languages channel

A dedicated channel for general questions on international languages.

• Japanese channel

Read, discuss and share ideas related to the Japanese translation.

Documentation workgroup call

A great place to meet people working on documentation is the Documentation workgroup call. These are held twice
every Friday at a time convenient for both Eastern and Western hemispheres. The agenda is published in advance, and
there are minutes and recordings of each session. Find out more on the Documentation wiki.

Join a language translation workgroup

Each of the international languages has a welcoming workgroup that you are encouraged to join. View the list of
international workgroups. See what your favorite workgroup is doing, and get connected with them. Each workgroup
has a list of members and their contact information.

Other ways to connect

Hyperledger Fabric has many other collaboration mechanisms such as mailing lists, contributor meetings and main-
tainer meetings. Find out about these and more here.

Good luck getting started and thanks for your contribution.

14.3.2 Contributing documentation

Audience: Anyone who would like to contribute to the Fabric documentation.

This short guide describes how the Fabric documentation is structured, built and published, as well as a few conventions
that help writers make changes to the Fabric documentation.

In this topic, we’re going to cover:

• An introduction to the documentation

• Repository folder structure

14.3. Contributing documentation 535

./contributing.html#getting-a-linux-foundation-account
https://chat.hyperledger.org/home
https://chat.hyperledger.org/channel/fabric-documentation
https://chat.hyperledger.org/channel/i18n
https://chat.hyperledger.org/channel/fabric-docs-japanese
https://wiki.hyperledger.org/display/fabric/Documentation+Working+Group
https://wiki.hyperledger.org/display/fabric/International+groups
https://wiki.hyperledger.org/display/fabric/International+groups
contributing.html

hyperledger-fabricdocs Documentation, Release master

• International language folder structure

• Making documentation changes

• Building the documentation on your local machine

• Building the documentation on GitHub with ReadTheDocs

• Getting your change approved

• Making a change to Commands Reference

• Adding a new CLI command

Introduction

The Fabric documentation is written in a combination of Markdown and reStructuredText source files. As a new author
you can use either format. We recommend that you use Markdown as an easy and powerful way to get started. If you
have a background in Python, you may prefer to use rST.

During the documentation build process, the documentation source files are converted to HTML using Sphinx. The
generated HTML files are subsequently published on the public documentation website. Users can select both different
languages and different versions of the Fabric documentation.

For example:

• Latest version of US English

• Latest version of Chinese

• Version 2.2 of US English

• Version 1.4 of US English

For historical reasons, the US English source files live in the main Fabric repository, whereas all international lan-
guage source files live in a single Fabric i18n repository. Different versions of the documentation are held within the
appropriate GitHub release branch.

Repository folders

Both the US English and international language repositories have essentially the same structure, so let’s start by
examining the US English source files.

All files relating to documentation reside within the fabric/docs/ folder:

fabric/docs
custom_theme
source

_static
_templates
commands
create_channel
dev-setup
developapps
diagrams

...
orderer
peers
policies
private-data

(continues on next page)

536 Chapter 14. Contributions Welcome!

https://www.markdownguide.org/
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/stable/
http://hyperledger-fabric.readthedocs.io
https://hyperledger-fabric.readthedocs.io/en/latest/
https://hyperledger-fabric.readthedocs.io/zh_CN/latest/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://github.com/hyperledger/fabric/
https://github.com/hyperledger/fabric-docs-i18n

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

smartcontract
style-guides
tutorial

wrappers

The most important folders is source/ becuase it holds the source language files. The documentation build process
uses the make command to convert these source files to HTML, which are stored in the dynamically created build/
html/ folder:

fabric/docs
build

html
custom_theme
source

_static
_templates
commands
create_channel
dev-setup
developapps
diagrams

...

Spend a little time navigating the docs folder in the Hyperledger Fabric repository. Click on the following links to see
how different source files map to their corresponding published topics.

• /docs/source/index.rst maps to Hyperledger Fabric title page

• /docs/source/developapps/developing-applications.rst maps to Developing applications

• /docs/source/peers/peers.md maps to Peers

We’ll see how to make changes to these files a little later.

International folders

The international language repository, fabric-docs-i18n, follows almost exactly the same structure as the
fabric repository which holds the US English files. The difference is that each language is located within its
own folder within docs/locale/:

fabric-docs-i18n/docs
locale

ja_JP
ml_IN
pt_BR
zh_CN

Examining any one of these folders shows a familiar structure:

locale/ml_IN
custom_theme
source

_static
_templates
commands
dev-setup

(continues on next page)

14.3. Contributing documentation 537

https://github.com/hyperledger/fabric/tree/master/docs
https://raw.githubusercontent.com/hyperledger/fabric/master/docs/source/index.rst
https://hyperledger-fabric.readthedocs.io/en/master/
https://raw.githubusercontent.com/hyperledger/fabric/master/docs/source/developapps/developing_applications.rst
https://hyperledger-fabric.readthedocs.io/en/master/developapps/developing_applications.html
https://raw.githubusercontent.com/hyperledger/fabric/master/docs/source/peers/peers.md
https://hyperledger-fabric.readthedocs.io/en/master/peers/peers.html
https://github.com/hyperledger/fabric-docs-i18n
https://github.com/hyperledger/fabric

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

developapps
diagrams

...
orderer
peers
policies
private-data
smartcontract
style-guides
tutorial

wrappers

As we’ll soon see, the similarity of the international language and US English folder structures means that the same
instructions and commands can be used to manage different language translations.

Again, spend some time examining the international language repository.

Making changes

To update the documentation, you simply change one or more language source files in a local git feature branch, build
the changes locally to check they’re OK, and submit a Pull request (PR) to merge your branch with the appropriate
Fabric repository branch. Once your PR has been reviewed and approved by the appropriate maintainers for the
language, it will be merged into the repository and become part of the published documentation. It really is that easy!

As well as being polite, it’s a really good idea to test any documentation changes before you request to include it in a
repository. The following sections show you how to:

• Build and review a documentation change on your own machine.

• Push these changes to your GitHub repository fork where they can populate your personal ReadTheDocs publi-
cation website for collaborators to review.

• Submit your documentation PR for inclusion in the fabric or fabric-docs-i18n repository.

Building locally

Use these simple steps to build the documentation.

1. Create a fork of the appropriate fabric or fabric-i18n repository to your GitHub account.

2. Install the following prerequisites; you may need to adjust depending on your OS:

• Python 3.7

• Pipenv

3. For US English:

cd $HOME/git
git clone git@github.com:hyperledger/fabric.git
cd fabric/docs
pipenv install
pipenv shell
make html

For Malayalam (for example):

538 Chapter 14. Contributions Welcome!

https://github.com/hyperledger/fabric-docs-i18n
https://readthedocs.org/
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric-docs-i18n
https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.pipenv.org/en/latest/#install-pipenv-today

hyperledger-fabricdocs Documentation, Release master

cd $HOME/git
git clone git@github.com:hyperledger/fabric-docs-i18n.git
cd fabric-docs-18n/docs/locale/ml_IN
pipenv install
pipenv shell
make html

The make command generates documentation html files in the build/html/ folder which you can now view
locally; simply navigate your browser to the build/html/index.html file.

4. Now make a small change to a file, and rebuild the documentation to verify that your change was as expected.
Every time you make a change to the documentation you will of course need to rerun make html.

5. If you’d like, you may also run a local web server with the following commands (or equivalent depending on
your OS):

sudo apt-get install apache2
cd build/html
sudo cp -r * /var/www/html/

You can then access the html files at http://localhost/index.html.

6. You can learn how to make a PR here. Moreover, if you are new to git or GitHub, you will find the Git book
invaluable.

Building on GitHub

It is often helpful to use your fork of the Fabric repository to build the Fabric documentation so that others can review
your changes before you submit them for approval. The following instructions show you how to use ReadTheDocs to
do this.

1. Go to http://readthedocs.org and sign up for an account.

2. Create a project. Your username will preface the URL and you may want to append -fabric to ensure that
you can distinguish between this and other docs that you need to create for other projects. So for example:
YOURGITHUBID-fabric.readthedocs.io/en/latest.

3. Click Admin, click Integrations, click Add integration, choose GitHub incoming webhook,
then click Add integration.

4. Fork the fabric repository.

5. From your fork, go to Settings in the upper right portion of the screen.

6. Click Webhooks.

7. Click Add webhook.

8. Add the ReadTheDocs’s URL into Payload URL.

9. Choose Let me select individual events:PushesBranch or tag creation Branch or
tag deletion.

10. Click Add webhook.

Use fabric-docs-i18n instead of fabric in the above instructions if you’re building an international language
translation.

Now, anytime you modify or add documentation content to your fork, this URL will automatically get updated with
your changes!

14.3. Contributing documentation 539

./github/github.html
https://git-scm.com/book/en/v2
http://readthedocs.org
https://github.com/hyperledger/fabric

hyperledger-fabricdocs Documentation, Release master

Making a PR

You can submit your PR for inclusion using the following instructions.

Before your PR can be included in the appropriate fabric or fabric-docs-i18n repository, it must be approved
by an appropriate maintainer. For example, a Japanese translation must be approved by a Japanese maintainer, and so
on. You can find the maintainers listed in the following CODEOWNERS files:

• US English CODEOWNERS and their maintainer GitHub IDs

• International language CODEOWNERS and their maintainer GitHub IDs

Both language repositories have a GitHub webhook defined so that, once approved, your newly merged content in the
docs/ folder will trigger an automatic build and publication of the updated documentation.

Commands Reference updates

Updating content in the Commands Reference topic requires additional steps. Because the information in the Com-
mands Reference topic is generated content, you cannot simply update the associated markdown files.

• Instead you need to update the _preamble.md or _postscript.md files under src/github.com/
hyperledger/fabric/docs/wrappers for the command.

• To update the command help text, you need to edit the associated .go file for the command that is located under
/fabric/internal/peer.

• Then, from the fabric folder, you need to run the command make help-docswhich generates the updated
markdown files under docs/source/commands.

Remember that when you push the changes to GitHub, you need to include the _preamble.md, _postscript.
md or _.go file that was modified as well as the generated markdown file.

This process only applies to English language translations. Command Reference translation is currently not possible
in international languages.

Adding a new CLI command

To add a new CLI command, perform the following steps:

• Create a new folder under /fabric/internal/peer for the new command and the associated help text.
See internal/peer/version for a simple example to get started.

• Add a section for your CLI command in src/github.com/hyperledger/fabric/scripts/
generateHelpDoc.sh.

• Create two new files under /src/github.com/hyperledger/fabric/docs/wrappers with the as-
sociated content:

– <command>_preamble.md (Command name and syntax)

– <command>_postscript.md (Example usage)

• Run make help-docs to generate the markdown content and push all of the changed files to GitHub.

This process only applies to English language translations. CLI command translation is currently not possible in
international languages.

540 Chapter 14. Contributions Welcome!

./github/github.html#opening-a-pull-request-in-github
https://github.com/hyperledger/fabric/blob/master/CODEOWNERS
https://github.com/orgs/hyperledger/teams/fabric-core-doc-maintainers
https://github.com/hyperledger/fabric-docs-i18n/blob/master/CODEOWNERS
https://github.com/orgs/hyperledger/teams/fabric-contributors
https://hyperledger-fabric.readthedocs.io/en/latest/command_ref.html

hyperledger-fabricdocs Documentation, Release master

14.3.3 Creating a new translation

Audience: Writers who would like to create a new Fabric translation.

If the Hyperledger Fabric documentation is not available in your chosen language then why not start a new language
translation? It’s relatively easy to get started, and creating a new language translation can be a very satisfying activity
for you and other Fabric users.

In this topic, we’re going to cover:

• An introduction to international language support

• How to create a new language workgroup

• How to create a new language translation

Introduction

Hyperledger Fabric documentation is being translated into many different languages. For example:

• Chinese

• Malayalam

• Brazilian Portuguese

• Japanese

If your chosen language is not available, then the first thing to do is to create a new language workgroup.

Create a new workgroup

It’s much easier to translate, maintain, and manage a language repository if you collaborate with other translators. Start
this process by adding a new workgroup to the list of international workgroups, using one of the existing workgroup
pages as an exemplar.

Document how your workgroup will collaborate; meetings, chat and mailing lists can all be very effective. Making
these mechanisms clear on your workgroup page can help build a community of translators.

Then use Rocket chat channels to let other people know you’ve started a translation, and invite them to join the
workgroup.

Create a new translation

Follow these instructions to create your own language repository. Our sample instructions will show you how to create
a new language translation for Spanish as spoken in Mexico:

1. Fork the fabric-docs-i18n repository to your GitHub account.

2. Clone your repository fork to your local machine:

git clone git@github.com:YOURGITHUBID/fabric-docs-i18n.git

3. Select the Fabric version you are going to use as a baseline. We recommend that you start with Fabric 2.2 as
this is an LTS release. You can add other releases later.

cd fabric-docs-i18n
git fetch origin
git checkout release-2.2

14.3. Contributing documentation 541

https://github.com/hyperledger/fabric-docs-i18n/tree/master/docs/locale/zh_CN
https://github.com/hyperledger/fabric-docs-i18n/tree/master/docs/locale/ml_IN
https://github.com/hyperledger/fabric-docs-i18n/tree/master/docs/locale/pt_BR
https://github.com/hyperledger/fabric-docs-i18n/tree/master/docs/locale/ja_JP
https://wiki.hyperledger.org/display/fabric/International+groups
./advice_for_writers.html#rocket-chat
https://github.com/hyperledger/fabric-docs-i18n

hyperledger-fabricdocs Documentation, Release master

4. Create a local feature branch:

git checkout -b newtranslation

5. Identify the appropriate two or four letter language code. Mexican Spanish has the language code es_MX.

6. Update the fabric CODEOWNERS file in the root directory. Add the following line:

/docs/locale/ex_EX/ @hyperledger/fabric-core-doc-maintainers @hyperledger/fabric-
→˓es_MX-doc-maintainers

7. Create a new language folder under docs/locale/ for your language.

cd docs/locale
mkdir es_MX

8. Copy the language files from another language folder, for example

cp -R pt_BR/ es_MX/

9. Customize the README.md file for your new language using this example.

10. Commit your changes locally:

git add .
git commit -s -m "First commit for Mexican Spanish"

11. Push your newtranslation local feature branch to the release-2.2 branch of your forked
fabric-docs-i18n repository:

git push origin release-2.2:newtranslation

Total 0 (delta 0), reused 0 (delta 0)
remote:
remote: Create a pull request for 'newtranslation' on GitHub by visiting:
remote: https://github.com/YOURGITHUBID/fabric-docs-i18n/pull/new/
→˓newtranslation
remote:
To github.com:ODOWDAIBM/fabric-docs-i18n.git

* [new branch] release-2.2 -> newtranslation

12. Connect your repository fork to ReadTheDocs using these instructions. Verify that your documentation builds
correctly.

13. Create a pull request (PR) for newtranslation on GitHub by visiting:

https://github.com/YOURGITHUBID/fabric-docs-i18n/pull/new/newtranslation

Your PR needs to be approved by one of the documentation maintainers. They will be automatically informed
of your PR by email, and you can contact them via Rocket chat.

14. On the i18n rocket channel request the creation of the new group of maintainers for your language,
@hyperledger/fabric-es_MX-doc-maintainers. Provide your GitHubID for addition to this
group.

Once you’ve been added to this list, you can add others translators from your workgroup.

Congratulations! A community of translators can now translate your newly-created language in the
fabric-docs-i18n repository.

542 Chapter 14. Contributions Welcome!

http://www.localeplanet.com/icu/
https://github.com/hyperledger/fabric-docs-i18n/blob/master/CODEOWNERS
https://github.com/hyperledger/fabric-docs-i18n/tree/master/docs/locale/pt_BR/README.md
./docs_guide.html#building-on-github
https://github.com/YOURGITHUBID/fabric-docs-i18n/pull/new/newtranslation
https://github.com/orgs/hyperledger/teams/fabric-core-doc-maintainers
https://chat.hyperledger.org/channel/i18n

hyperledger-fabricdocs Documentation, Release master

First topics

Before your new language can be published to the documentation website, you must translate the following topics.
These topics help users and translators of your new language get started.

• Fabric front page

This is your advert! Thanks to you, users can now see that the documentation is available in their language. It
might not be complete yet, but its clear you and your team are trying to achieve. Translating this page will help
you recruit other translators.

• Introduction

This short topic gives a high level overview of Fabric, and because it’s probably one of the first topics a new
user will look at, it’s important that it’s translated.

• Contributions Welcome!

This topic is vital – it helps contributors understand what, why and how of contributing to Fabric. You need to
translate this topic so that others can help you collaborate in your translation.

• Glossary

Translating this topic provides the essential reference material that helps other language translators make
progress; in short, it allows your workgroup to scale.

Once this set of topics have been translated, and you’ve created a language workgroup, your translation can be pub-
lished on the documentation website. For example, the Chinese language docs are available here.

You can now request, via the i18n rocket channel, that your translation is included on the documentation
website.

Suggested next topics

Once you have published the mandatory initial set of topics on the documentation website, you are encouraged to
translate these topics, in order. If you choose to adopt another order, that’s fine; you still will find it helpful to agree
an order of translation in your workgroup.

• Key concepts

For solution architects, application architects, systems architects, developers, academics and students alike, this
topic provides a comprehensive conceptual understanding of Fabric.

• Getting started

For developers who want to get hands-on with Fabric, this topic provides key instructions to help install, build a
sample network and get hands-on with Fabric.

• Developing applications

This topic helps developers write smart contracts and applications; these are the core elements of any solution
that uses Fabric.

• Tutorials

A set of hands-on tutorials to help developers and administrators try out specific Fabric features and capabilities.

• What’s new in Hyperledger Fabric v2.x

This topic covers the latest features in Hyperledger Fabric.

Finally, we wish you good luck, and thank you for your contribution to Hyperledger Fabric.

14.3. Contributing documentation 543

https://hyperledger-fabric.readthedocs.io/zh_CN/latest/
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://hyperledger-fabric.readthedocs.io/en/latest/CONTRIBUTING.html
https://hyperledger-fabric.readthedocs.io/en/latest/glossary.html
https://hyperledger-fabric.readthedocs.io/zh_CN/latest/
https://chat.hyperledger.org/channel/i18n
https://hyperledger-fabric.readthedocs.io/en/latest/key_concepts.html
https://hyperledger-fabric.readthedocs.io/en/latest/getting_started.html
https://hyperledger-fabric.readthedocs.io/en/latest/developapps/developing_applications.html
https://hyperledger-fabric.readthedocs.io/en/latest/tutorials.html
https://hyperledger-fabric.readthedocs.io/en/latest/whatsnew.html

hyperledger-fabricdocs Documentation, Release master

14.3.4 Style guide for contributors

Audience: documentation writers and editors

While this style guide will also refer to best practices using ReStructured Text (also known as RST), in general we
advise writing documentation in Markdown, as it’s a more universally accepted documentation standard. Both formats
are usable, however, and if you decide to write a topic in RST (or are editing an RST topic), be sure to refer to this
style guide.

When in doubt, use the docs themselves for guidance on how to format things.

• For RST formatting.

• For Markdown formatting.

If you just want to look at how things are formatted, you can navigate to the Fabric repo to look at the raw file by
clicking on Edit on Github link in the upper right hand corner of the page. Then click the Raw tab. This will
show you the formatting of the doc. Do not attempt to edit the file on Github. If you want to make a change, clone
the repo and follow the instructions in Contributing for creating pull requests.

Word choices

Avoid the use of the words “whitelist”, “blacklist”, “master”, or “slave”.

Unless the use of these words is absolutely necessary (for example, when quoting a section of code that uses them),
do not use these words. Either be more explicit (for example, describing what “whitelisting” actually does) or find
alternate words such as “allowlist” or “blocklist”.

Tutorials should have a list of steps at the top.

A list of steps (with links to the corresponding sections) at the beginning of a tutorial helps users find particular steps
they’re interested in. For an example, check out Use private data in Fabric.

“Fabric”, “Hyperledger Fabric” or “HLF”?

The first usage should be “Hyperledger Fabric” and afterwards only “Fabric”. Don’t use “HLF” or “Hyperledger” by
itself.

Chaincode vs. Chaincodes?

One chaincode is a “chaincode”. If you’re talking about several chaincodes, use “chaincodes”.

Smart contracts?

Colloquially, smart contracts are considered equivalent to chaincode, though at a technical level, it is more correct to
say that a “smart contract” is the business logic inside of a chaincode, which encompasses the larger packaging and
implementation.

JSON vs .json?

Use “JSON”. The same applies for any file format (for example, YAML).

curl vs cURL.

The tool is called “cURL”. The commands themselves are “curl” commands.

Fabric CA.

Do not call it “fabric-CA”, “fabricCA”, or FabricCA. It is the Fabric CA. The Fabric CA client binary can, however,
be referred to as the fabric-ca-client.

Raft and RAFT.

“Raft” is not an acronym. Do not call it a “RAFT ordering service”.

544 Chapter 14. Contributions Welcome!

http://hyperledger-fabric.readthedocs.io/en/release-1.4/channel_update_tutorial.html
http://hyperledger-fabric.readthedocs.io/en/release-1.4/peers/peers.html
./CONTRIBUTING.html
./private-data/private-data.html

hyperledger-fabricdocs Documentation, Release master

Referring to the reader.

It’s perfectly fine to use the “you” or “we”. Avoid using “I”.

Ampersands (&).

Not a substitute for the word “and”. Avoid them unless you have a reason to use it (such as in a code snippet that
includes it).

Acronyms.

The first usage of an acronym should be spelled out, unless it’s an acronym that’s in such wide usage this is unneeded.
For example, “Software Development Kit (SDK)” on first usage. Then use “SDK” afterward.

Try to avoid using the same words too often.

If you can avoid using a word twice in one sentence, please do so. Not using it more than twice in a single paragraph
is better. Of course sometimes it might not be possible to avoid this –– a doc about the state database being used is
likely to be replete with uses of the word “database” or “ledger”. But excessive usage of any particular word has a
tendency to have a numbing effect on the reader.

How should files be named?

By using underscores between words. Also, tutorials should be named as such. For example,
identity_use_case_tutorial.md. While not all files use this standard, new files should adhere to it.

Formatting and punctuation

Line lengths.

If you look at the raw versions of the documentation, you will see that many topics conform to a line length of roughly
70 characters. This restriction is no longer necessary, so you are free to make lines as long as you want.

When to bold?

Not too often. The best use of them is either as a summary or as a way of drawing attention to concepts you want to
talk about. “A blockchain network contains a ledger, at least one chaincode, and peers”, especially if you’re going to
be talking about those things in that paragraph. Avoid using them simply to emphasize a single word, as in something
like “Blockchain networks must use propery security protocols”.

When to surround something in back tics nnn?

This is useful to draw attention to words that either don’t make sense in plain English or when referencing parts of
the code (especially if you’ve put code snippets in your doc). So for example, when talking about the fabric-samples
directory, surround fabric-samples with back tics. Same with a code function like hf.Revoker. It might
also make sense to put back tics around words that do make sense in plain English that are part of the code if you’re
referencing them in a code context. For example, when referencing an attribute as part of an Access Control List.

Is it ever appropriate to use a dash?

Dashes can be incredibly useful but they’re not necessarily as technically appropriate as using separate declarative
sentences. Let’s consider this example sentence:

This leaves us with a trimmed down JSON object --- config.json, located in the fabric-
→˓samples folder inside first-network --- which will serve as the baseline for our
→˓config update.

There are a number of ways to present this same information, but in this case the dashes break up the information
while keeping it as part of the same thought. If you use a dash, make sure to use the “em” dash, which is three times
longer than a hyphen. These dashes should have a space before and after them.

When to use hyphens?

14.3. Contributing documentation 545

hyperledger-fabricdocs Documentation, Release master

Hyphens are mostly commonly used as part of a “compound adjective”. For example, “jet-powered car”. Note that
the compound adjective must immediately precede the noun being modified. In other words, “jet powered” does not
by itself need a hyphen. When in doubt, use Google, as compound adjectives are tricky and are a popular discussion
on grammar discussion boards.

How many spaces after a period?

One.

How should numbers be rendered?

Number zero through nine are spelled out. One, two, three, four, etc. Numbers after 10 are rendered as numbers.

Exceptions to this would be usages from code. In that case, use whatever’s in the code. And also examples like Org1.
Don’t write it as OrgOne.

Capitalization rules for doc titles.

The standard rules for capitalization in sentences should be followed. In other words, unless a word is the first word
in the title or a proper noun, do not capitalize its first letter. For example, “Understanding Identities in Fabric” should
be “Understanding identities in Fabric”. While not every doc follows this standard yet, it is the standard we’re moving
to and should be followed for new topics.

Headings inside of topics should follow the same standard.

Use the Oxford comma?

Yes, it’s better.

The classic example is, “I’d like to thank my parents, Ayn Rand and God”, as compared to: “I’d like to thank my
parents, Ayn Rand, and God.”

Captions.

These should be in italics, and it’s the only real valid use for italics in our docs.

Commands.

In general, put each command in its own snippet. It reads better, especially when commands are long. An exception
to this rule is when suggesting the export of a number of environment variables.

Code snippets.

In Markdown, if you want to post sample code, use three back tics to set off the snippet. For example:

Code goes here.

Even more code goes here.

And still more.

In RST, you will need to set off the code snippet using formatting similar to this:

.. code:: bash

Code goes here.

You can substitute bash for a language like Java or Go, where appropriate.

Enumerated lists in markdown.

Note that in Markdown, enumerated lists will not work if you separate the numbers with a space. Markdown sees this
as the start of a new list, not a continuation of the old one (every number will be 1.). If you need an enumerated list,
you will have to use RST. Bulleted lists are a good substitute in Markdown, and are the recommended alternative.

546 Chapter 14. Contributions Welcome!

hyperledger-fabricdocs Documentation, Release master

Linking.

When linking to another doc, use relative links, not direct links. When naming a link, do not just call it “link”. Use a
more creative and descriptive name. For accessibility reasons, the link name should also make it clear that it is a link.

All docs have to end with a license statement.

In RST, it’s this:

.. Licensed under Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by/4.0/

In markdown:

<!--- Licensed under Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by/4.0/ -->

How many spaces for indentation?

This will depend on the use case. Frequently it’s necessary, especially in RST, to indent two spaces, especially in a
code block. In a .. note:: box in RST, you have to indent to the space after the colon after note, like this:

.. note:: Some words and stuff etc etc etc (line continues until the 70 character
→˓limit line)

the line directly below has to start at the same space as the one above.

When to use which type of heading.

In RST, use this:

Chapter 1 Title
===============

Section 1.1 Title

Subsection 1.1.1 Title
~~~~~~~~~~~~~~~~~~~~~~

Section 1.2 Title
-----------------

Note that the length of what’s under the title has to be the same as the length of the title itself. This isn’t a problem in
Atom, which gives each character the same width by default (this is called “monospacing”, if you’re ever on Jeopardy!
and need that information.

In markdown, it’s somewhat simpler. You go:

# The Name of the Doc (this will get pulled for the TOC).

## First subsection

## Second subsection

Both file formats don’t like when these things are done out of order. For example, you might want a #### to be the
first thing after your # Title. Markdown won’t allow it. Similarly, RST will default to whatever order you give to the
title formats (as they appear in the first sections of your doc).

Relative links should be used whenever possible.

For RST, the preferred syntax is:

14.3. Contributing documentation 547



hyperledger-fabricdocs Documentation, Release master

:doc:`anchor text <relativepath>`

Do not put the .rst suffix at the end of the filepath.

For Markdown, the preferred syntax is:

[anchor text](<relativepath>)

For other files, such as text or YAML files, use a direct link to the file in github for example:

https://github.com/hyperledger/fabric/blob/master/docs/README.md

Relative links are unfortunately not working on github when browsing through a RST file.

14.4 Project Governance

Hyperledger Fabric is managed under an open governance model as described in our charter. Projects and sub-projects
are lead by a set of maintainers. New sub-projects can designate an initial set of maintainers that will be approved by
the top-level project’s existing maintainers when the project is first approved.

14.4.1 Maintainers

The Fabric project is lead by the project’s top level maintainers. The maintainers are responsible for reviewing and
merging all patches submitted for review, and they guide the overall technical direction of the project within the
guidelines established by the Hyperledger Technical Steering Committee (TSC).

14.4.2 Becoming a maintainer

The project’s maintainers will, from time-to-time, consider adding a maintainer, based on the following criteria:

• Demonstrated track record of PR reviews (both quality and quantity of reviews)

• Demonstrated thought leadership in the project

• Demonstrated shepherding of project work and contributors

An existing maintainer can submit a pull request to the maintainers file. A nominated Contributor may become a
Maintainer by a majority approval of the proposal by the existing Maintainers. Once approved, the change set is then
merged and the individual is added to the maintainers group.

Maintainers may be removed by explicit resignation, for prolonged inactivity (e.g. 3 or more months with no review
comments), or for some infraction of the code of conduct or by consistently demonstrating poor judgement. A pro-
posed removal also requires a majority approval. A maintainer removed for inactivity should be restored following
a sustained resumption of contributions and reviews (a month or more) demonstrating a renewed commitment to the
project.

14.4.3 Release cadence

The Fabric maintainers have settled on a quarterly (approximately) release cadence (see releases). At any given time,
there will be a stable LTS (long term support) release branch, as well as the master branch for upcoming new features.
Follow the discussion on the #fabric-release channel in RocketChat.

548 Chapter 14. Contributions Welcome!

https://github.com/hyperledger/fabric/blob/master/docs/README.md
https://www.hyperledger.org/about/charter
https://github.com/hyperledger/fabric/blob/master/MAINTAINERS.md
https://github.com/hyperledger/fabric/blob/master/MAINTAINERS.md
https://wiki.hyperledger.org/community/hyperledger-project-code-of-conduct
https://github.com/hyperledger/fabric#releases


hyperledger-fabricdocs Documentation, Release master

14.4.4 Making Feature/Enhancement Proposals

First, take time to review JIRA to be sure that there isn’t already an open (or recently closed) proposal for the same
function. If there isn’t, to make a proposal we recommend that you open a JIRA Epic or Story, whichever seems to
best fit the circumstance and link or inline a “one pager” of the proposal that states what the feature would do and,
if possible, how it might be implemented. It would help also to make a case for why the feature should be added,
such as identifying specific use case(s) for which the feature is needed and a case for what the benefit would be
should the feature be implemented. Once the JIRA issue is created, and the “one pager” either attached, inlined in the
description field, or a link to a publicly accessible document is added to the description, send an introductory email to
the fabric@lists.hyperledger.org mailing list linking the JIRA issue, and soliciting feedback.

Discussion of the proposed feature should be conducted in the JIRA issue itself, so that we have a consistent pattern
within our community as to where to find design discussion.

Getting the support of three or more of the Hyperledger Fabric maintainers for the new feature will greatly enhance
the probability that the feature’s related PRs will be included in a subsequent release.

14.4.5 Contributor meeting

The maintainers hold regular contributors meetings. The purpose of the contributors meeting is to plan for and review
the progress of releases and contributions, and to discuss the technical and operational direction of the project and
sub-projects.

Please see the wiki for maintainer meeting details.

New feature/enhancement proposals as described above should be presented to a maintainers meeting for considera-
tion, feedback and acceptance.

14.4.6 Release roadmap

The Fabric release roadmap of epics is maintained in JIRA.

14.4.7 Communications

We use RocketChat for communication and Google Hangouts™ for screen sharing between developers. Our devel-
opment planning and prioritization is done in JIRA, and we take longer running discussions/decisions to the mailing
list.

14.5 Contribution guide

14.5.1 Install prerequisites

Before we begin, if you haven’t already done so, you may wish to check that you have all the prerequisites installed
on the platform(s) on which you’ll be developing blockchain applications and/or operating Hyperledger Fabric.

14.5.2 Getting help

If you are looking for something to work on, or need some expert assistance in debugging a problem or working out
a fix to an issue, our community is always eager to help. We hang out on Chat, IRC (#hyperledger on freenode.net)
and the mailing lists. Most of us don’t bite :grin: and will be glad to help. The only silly question is the one you don’t

14.5. Contribution guide 549

https://jira.hyperledger.org/issues/?filter=12524
mailto:fabric@lists.hyperledger.org
https://wiki.hyperledger.org/display/fabric/Contributor+Meetings
https://jira.hyperledger.org/secure/Dashboard.jspa?selectPageId=10104
https://chat.hyperledger.org/
https://jira.hyperledger.org
https://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric
https://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric
https://www.hyperledger.org/community
https://chat.hyperledger.org/channel/fabric/
https://lists.hyperledger.org/


hyperledger-fabricdocs Documentation, Release master

ask. Questions are in fact a great way to help improve the project as they highlight where our documentation could be
clearer.

14.5.3 Reporting bugs

If you are a user and you have found a bug, please submit an issue using JIRA. Before you create a new JIRA issue,
please try to search the existing items to be sure no one else has previously reported it. If it has been previously
reported, then you might add a comment that you also are interested in seeing the defect fixed.

Note: If the defect is security-related, please follow the Hyperledger security bug reporting process.

If it has not been previously reported, you may either submit a PR with a well documented commit message describing
the defect and the fix, or you may create a new JIRA. Please try to provide sufficient information for someone else to
reproduce the issue. One of the project’s maintainers should respond to your issue within 24 hours. If not, please bump
the issue with a comment and request that it be reviewed. You can also post to the relevant Hyperledger Fabric channel
in Hyperledger Chat. For example, a doc bug should be broadcast to #fabric-documentation, a database bug
to #fabric-ledger, and so on. . .

14.5.4 Submitting your fix

If you just submitted a JIRA for a bug you’ve discovered, and would like to provide a fix, we would welcome that
gladly! Please assign the JIRA issue to yourself, then submit a pull request (PR). Please refer to github/github for a
detailed workflow.

14.5.5 Fixing issues and working stories

Review the issues list and find something that interests you. You could also check the “help-wanted” list. It is wise
to start with something relatively straight forward and achievable, and that no one is already assigned. If no one is
assigned, then assign the issue to yourself. Please be considerate and rescind the assignment if you cannot finish in a
reasonable time, or add a comment saying that you are still actively working the issue if you need a little more time.

14.5.6 Reviewing submitted Pull Requests (PRs)

Another way to contribute and learn about Hyperledger Fabric is to help the maintainers with the review of the PRs
that are open. Indeed maintainers have the difficult role of having to review all the PRs that are being submitted and
evaluate whether they should be merged or not. You can review the code and/or documentation changes, test the
changes, and tell the submitters and maintainers what you think. Once your review and/or test is complete just reply to
the PR with your findings, by adding comments and/or voting. A comment saying something like “I tried it on system
X and it works” or possibly “I got an error on system X: xxx ” will help the maintainers in their evaluation. As a result,
maintainers will be able to process PRs faster and everybody will gain from it.

Just browse through the open PRs on GitHub to get started.

14.5.7 PR Aging

As the Fabric project has grown, so too has the backlog of open PRs. One problem that nearly all projects face is
effectively managing that backlog and Fabric is no exception. In an effort to keep the backlog of Fabric and related
project PRs manageable, we are introducing an aging policy which will be enforced by bots. This is consistent with
how other large projects manage their PR backlog.

550 Chapter 14. Contributions Welcome!

https://jira.hyperledger.org/secure/Dashboard.jspa?selectPageId=10104
https://wiki.hyperledger.org/display/HYP/Defect+Response
https://chat.hyperledger.org
https://jira.hyperledger.org/issues/?filter=10580
https://jira.hyperledger.org/issues/?filter=10147
https://github.com/hyperledger/fabric/pulls


hyperledger-fabricdocs Documentation, Release master

14.5.8 PR Aging Policy

The Fabric project maintainers will automatically monitor all PR activity for delinquency. If a PR has not been updated
in 2 weeks, a reminder comment will be added requesting that the PR either be updated to address any outstanding
comments or abandoned if it is to be withdrawn. If a delinquent PR goes another 2 weeks without an update, it will
be automatically abandoned. If a PR has aged more than 2 months since it was originally submitted, even if it has
activity, it will be flagged for maintainer review.

If a submitted PR has passed all validation but has not been reviewed in 72 hours (3 days), it will be flagged to the
#fabric-pr-review channel daily until it receives a review comment(s).

This policy applies to all official Fabric projects (fabric, fabric-ca, fabric-samples, fabric-test, fabric-sdk-node,
fabric-sdk-java, fabric-gateway-java, fabric-chaincode-node, fabric-chaincode-java, fabric-chaincode-evm, fabric-
baseimage, and fabric-amcl).

14.5.9 Setting up development environment

Next, try building the project in your local development environment to ensure that everything is set up correctly.

14.5.10 What makes a good pull request?

• One change at a time. Not five, not three, not ten. One and only one. Why? Because it limits the blast area
of the change. If we have a regression, it is much easier to identify the culprit commit than if we have some
composite change that impacts more of the code.

• Include a link to the JIRA story for the change. Why? Because a) we want to track our velocity to better judge
what we think we can deliver and when and b) because we can justify the change more effectively. In many
cases, there should be some discussion around a proposed change and we want to link back to that from the
change itself.

• Include unit and integration tests (or changes to existing tests) with every change. This does not mean just happy
path testing, either. It also means negative testing of any defensive code that it correctly catches input errors.
When you write code, you are responsible to test it and provide the tests that demonstrate that your change does
what it claims. Why? Because without this we have no clue whether our current code base actually works.

• Unit tests should have NO external dependencies. You should be able to run unit tests in place with go test
or equivalent for the language. Any test that requires some external dependency (e.g. needs to be scripted to
run another component) needs appropriate mocking. Anything else is not unit testing, it is integration testing by
definition. Why? Because many open source developers do Test Driven Development. They place a watch on
the directory that invokes the tests automagically as the code is changed. This is far more efficient than having
to run a whole build between code changes. See this definition of unit testing for a good set of criteria to keep
in mind for writing effective unit tests.

• Minimize the lines of code per PR. Why? Maintainers have day jobs, too. If you send a 1,000 or 2,000 LOC
change, how long do you think it takes to review all of that code? Keep your changes to < 200-300 LOC, if
possible. If you have a larger change, decompose it into multiple independent changes. If you are adding a
bunch of new functions to fulfill the requirements of a new capability, add them separately with their tests, and
then write the code that uses them to deliver the capability. Of course, there are always exceptions. If you add
a small change and then add 300 LOC of tests, you will be forgiven;-) If you need to make a change that has
broad impact or a bunch of generated code (protobufs, etc.). Again, there can be exceptions.

Note: Large pull requests, e.g. those with more than 300 LOC are more than likely not going to receive an approval,
and you’ll be asked to refactor the change to conform with this guidance.

14.5. Contribution guide 551

http://artofunittesting.com/definition-of-a-unit-test/


hyperledger-fabricdocs Documentation, Release master

• Write a meaningful commit message. Include a meaningful 55 (or less) character title, followed by a blank line,
followed by a more comprehensive description of the change. Each change MUST include the JIRA identifier
corresponding to the change (e.g. [FAB-1234]). This can be in the title but should also be in the body of the
commit message.

Note: Example commit message:

[FAB-1234] fix foobar() panic

Fix [FAB-1234] added a check to ensure that when foobar(foo string)
is called, that there is a non-empty string argument.

Finally, be responsive. Don’t let a pull request fester with review comments such that it gets to a point that it requires
a rebase. It only further delays getting it merged and adds more work for you - to remediate the merge conflicts.

14.6 Legal stuff

Note: Each source file must include a license header for the Apache Software License 2.0. See the template of the
license header.

We have tried to make it as easy as possible to make contributions. This applies to how we handle the legal aspects of
contribution. We use the same approach—the Developer’s Certificate of Origin 1.1 (DCO)—that the Linux® Kernel
community uses to manage code contributions.

We simply ask that when submitting a patch for review, the developer must include a sign-off statement in the commit
message.

Here is an example Signed-off-by line, which indicates that the submitter accepts the DCO:

Signed-off-by: John Doe <john.doe@example.com>

You can include this automatically when you commit a change to your local git repository using git commit -s.

14.7 Related Topics

14.7.1 Using Jira to understand current work items

This document has been created to give further insight into the work in progress towards the Hyperledger Fabric v1
architecture based on the community roadmap. The requirements for the roadmap are being tracked in Jira.

It was determined to organize in sprints to better track and show a prioritized order of items to be implemented based
on feedback received. We’ve done this via boards. To see these boards and the priorities click on Boards -> Manage
Boards:

Now on the left side of the screen click on All boards:

On this page you will see all the public (and restricted) boards that have been created. If you want to see the items
with current sprint focus, click on the boards where the column labeled Visibility is All Users and the column Board
type is labeled Scrum. For example the Board Name Consensus:

When you click on Consensus under Board name you will be directed to a page that contains the following columns:

The meanings to these columns are as follows:

552 Chapter 14. Contributions Welcome!

https://github.com/hyperledger/fabric/blob/master/docs/source/dev-setup/headers.txt
https://github.com/hyperledger/fabric/blob/master/docs/source/DCO1.1.txt
https://elinux.org/Developer_Certificate_Of_Origin
https://jira.hyperledger.org/


hyperledger-fabricdocs Documentation, Release master

Fig. 1: Jira boards

Fig. 2: Jira boards

Fig. 3: Jira boards

Fig. 4: Jira boards

14.7. Related Topics 553



hyperledger-fabricdocs Documentation, Release master

• Backlog – list of items slated for the current sprint (sprints are defined in 2 week iterations), but are not currently
in progress

• In progress – items currently being worked by someone in the community.

• In Review – items waiting to be reviewed and merged in GitHub

• Done – items merged and complete in the sprint.

If you want to see all items in the backlog for a given feature set, click on the stacked rows on the left navigation of
the screen:

Fig. 5: Jira boards

This shows you items slated for the current sprint at the top, and all items in the backlog at the bottom. Items are listed
in priority order.

If there is an item you are interested in working on, want more information or have questions, or if there is an item that
you feel needs to be in higher priority, please add comments directly to the Jira item. All feedback and help is very
much appreciated.

14.7.2 Setting up the development environment

Prerequisites

• Git client

• Go version 1.14.x

• Docker version 18.03 or later

• (macOS) Xcode Command Line Tools

• SoftHSM

• jq

Steps

554 Chapter 14. Contributions Welcome!

https://git-scm.com/downloads
https://golang.org/dl/
https://docs.docker.com/get-docker/
https://developer.apple.com/downloads/
https://github.com/opendnssec/SoftHSMv2
https://stedolan.github.io/jq/download/


hyperledger-fabricdocs Documentation, Release master

Install the Prerequisites

For macOS, we recommend using Homebrew to manage the development prereqs. The Xcode command line tools
will be installed as part of the Homebrew installation.

Once Homebrew is ready, installing the necessary prerequisites is very easy:

brew install git go jq softhsm
brew cask install --appdir="/Applications" docker

Docker Desktop must be launched to complete the installation so be sure to open the application after installing it:

open /Applications/Docker.app

Developing on Windows

On Windows 10 you should use the native Docker distribution and you may use the Windows PowerShell. However,
for the binaries command to succeed you will still need to have the uname command available. You can get it as
part of Git but beware that only the 64bit version is supported.

Before running any git clone commands, run the following commands:

git config --global core.autocrlf false
git config --global core.longpaths true

You can check the setting of these parameters with the following commands:

git config --get core.autocrlf
git config --get core.longpaths

These need to be false and true respectively.

The curl command that comes with Git and Docker Toolbox is old and does not handle properly the redirect used in
Getting Started. Make sure you have and use a newer version which can be downloaded from the cURL downloads
page

Clone the Hyperledger Fabric source

First navigate to https://github.com/hyperledger/fabric and fork the fabric repository using the fork button in the top-
right corner. After forking, clone the repository.

mkdir -p github.com/<your_github_userid>
cd github.com/<your_github_userid>
git clone https://github.com/<your_github_userid>/fabric

Note: If you are running Windows, before cloning the repository, run the following command:

git config --get core.autocrlf

If core.autocrlf is set to true, you must set it to false by running:

git config --global core.autocrlf false

14.7. Related Topics 555

https://brew.sh
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://github.com/hyperledger/fabric


hyperledger-fabricdocs Documentation, Release master

Configure SoftHSM

A PKCS #11 cryptographic token implementation is required to run the unit tests. The PKCS #11 API is used by the
bccsp component of Fabric to interact with hardware security modules (HSMs) that store cryptographic information
and perform cryptographic computations. For test environments, SoftHSM can be used to satisfy this requirement.

SoftHSM generally requires additional configuration before it can be used. For example, the default configuration will
attempt to store token data in a system directory that unprivileged users are unable to write to.

SoftHSM configuration typically involves copying /etc/softhsm2.conf to $HOME/.config/softhsm2/
softhsm2.conf and changing directories.tokendir to an appropriate location. Please see the man page
for softhsm2.conf for details.

After SoftHSM has been configured, the following command can be used to initialize the token required by the unit
tests:

softhsm2-util --init-token --slot 0 --label "ForFabric" --so-pin 1234 --pin 98765432

If tests are unable to locate the libsofthsm2.so library in your environment, specify the library path, the PIN, and the
label of your token in the appropriate environment variables. For example, on macOS:

export PKCS11_LIB="/usr/local/Cellar/softhsm/2.6.1/lib/softhsm/libsofthsm2.so"
export PKCS11_PIN=98765432
export PKCS11_LABEL="ForFabric"

Install the development tools

Once the repository is cloned, you can use make to install some of the tools used in the development environment. By
default, these tools will be installed into $HOME/go/bin. Please be sure your PATH includes that directory.

make gotools

After installing the tools, the build environment can be verified by running a few commands.

make basic-checks integration-test-prereqs
ginkgo -r ./integration/nwo

If those commands completely successfully, you’re ready to Go!

If you plan to use the Hyperledger Fabric application SDKs then be sure to check out their prerequisites in the Node.js
SDK README and Java SDK README.

14.7.3 Building Hyperledger Fabric

The following instructions assume that you have already set up your development environment.

To build Hyperledger Fabric:

make dist-clean all

Building the documentation

If you are contributing to the documentation, you can build the Fabric documentation on your local machine. This
allows you to check the formatting of your changes using your web browser before you open a pull request.

556 Chapter 14. Contributions Welcome!

https://github.com/hyperledger/fabric-sdk-node#build-and-test
https://github.com/hyperledger/fabric-gateway-java/blob/master/README.md


hyperledger-fabricdocs Documentation, Release master

You need to download the following prerequisites before you can build the documentation:

• Python 3.7

• Pipenv

After you make your updates to the documentation source files, you can generate a build that includes your changes
by running the following commands:

cd fabric/docs
pipenv install
pipenv shell
make html

This will generate all the html files in the docs/build/html folder. You can open any file to start browsing the
updated documentation using your browser. If you want to make additional edits to the documentation, you can rerun
make html to incorporate the changes.

Running the unit tests

Use the following command to run all unit tests:

make unit-test

To run a subset of tests, set the TEST_PKGS environment variable. Specify a list of packages (separated by space),
for example:

export TEST_PKGS="github.com/hyperledger/fabric/core/ledger/..."
make unit-test

To run a specific test use the -run RE flag where RE is a regular expression that matches the test case name. To run
tests with verbose output use the -v flag. For example, to run the TestGetFoo test case, change to the directory
containing the foo_test.go and call/execute

go test -v -run=TestGetFoo

Running Node.js Client SDK Unit Tests

You must also run the Node.js unit tests to ensure that the Node.js client SDK is not broken by your changes. To run
the Node.js unit tests, follow the instructions here.

14.7.4 Configuration

Configuration utilizes the viper and cobra libraries.

There is a core.yaml file that contains the configuration for the peer process. Many of the configuration settings can
be overridden on the command line by setting ENV variables that match the configuration setting, but by prefixing
with ‘CORE_’. For example, setting peer.networkId can be accomplished with:

CORE_PEER_NETWORKID=custom-network-id peer

14.7. Related Topics 557

https://wiki.python.org/moin/BeginnersGuide/Download
https://pipenv.readthedocs.io/en/latest/#install-pipenv-today
https://github.com/hyperledger/fabric-sdk-node/blob/master/README.md
https://github.com/spf13/viper
https://github.com/spf13/cobra


hyperledger-fabricdocs Documentation, Release master

14.7.5 Coding guidelines

Coding in Go

We code in Go™ and try to follow the best practices and style outlined in Effective Go and the supplemental rules
from the Go Code Review Comments wiki.

We also recommend new contributors review the following before submitting pull requests:

• Practical Go

• Go Proverbs

The following tools are executed against all pull requests. Any errors flagged by these tools must be addressed before
the code will be merged:

• gofmt -s

• goimports

• go vet

Testing

Unit tests are expected to accompany all production code changes. These tests should be fast, provide very good
coverage for new and modified code, and support parallel execution.

Two matching libraries are commonly used in our tests. When modifying code, please use the matching library that
has already been chosen for the package.

• gomega

• testify/assert

Any fixtures or data required by tests should generated or placed under version control. When fixtures are generated,
they must be placed in a temporary directory created by ioutil.TempDir and cleaned up when the test terminates.
When fixtures are placed under version control, they should be created inside a testdata folder; documentation that
describes how to regenerate the fixtures should be provided in the tests or a README.txt. Sharing fixtures across
packages is strongly discouraged.

When fakes or mocks are needed, they must be generated. Bespoke, hand-coded mocks are a maintenance burden and
tend to include simulations that inevitably diverge from reality. Within Fabric, we use go generate directives to
manage the generation with the following tools:

• counterfeiter

• mockery

API Documentation

The API documentation for Hyperledger Fabric’s Go APIs is available in GoDoc.

14.7.6 Adding or updating Go packages

Hyperledger Fabric uses go modules to manage and vendor its dependencies. This means that all of the external
packages required to build our binaries reside in the vendor folder at the top of the repository. Go uses the packages
in this folder instead of the module cache when go commands are executed.

558 Chapter 14. Contributions Welcome!

https://golang.org/doc/effective_go.html
https://github.com/golang/go/wiki/CodeReviewComments
https://dave.cheney.net/practical-go/presentations/qcon-china.html
https://go-proverbs.github.io/
https://golang.org/cmd/gofmt/
https://godoc.org/golang.org/x/tools/cmd/goimports
https://golang.org/cmd/vet/
https://onsi.github.io/gomega/
https://godoc.org/github.com/stretchr/testify/assert
https://github.com/maxbrunsfeld/counterfeiter
https://github.com/vektra/mockery
https://godoc.org/github.com/hyperledger/fabric


hyperledger-fabricdocs Documentation, Release master

If a code change results in a new or updated dependency, please be sure to run go mod tidy and go mod vendor
to keep the vendor folder and dependency metadata up to date.

See the Go Modules Wiki for additional information.

14.7. Related Topics 559

https://github.com/golang/go/wiki/Modules


hyperledger-fabricdocs Documentation, Release master

560 Chapter 14. Contributions Welcome!



CHAPTER 15

Glossary

Terminology is important, so that all Hyperledger Fabric users and developers agree on what we mean by each specific
term. What is a smart contract for example. The documentation will reference the glossary as needed, but feel free to
read the entire thing in one sitting if you like; it’s pretty enlightening!

15.1 Anchor Peer

Used by gossip to make sure peers in different organizations know about each other.

When a configuration block that contains an update to the anchor peers is committed, peers reach out to the anchor
peers and learn from them about all of the peers known to the anchor peer(s). Once at least one peer from each
organization has contacted an anchor peer, the anchor peer learns about every peer in the channel. Since gossip
communication is constant, and because peers always ask to be told about the existence of any peer they don’t know
about, a common view of membership can be established for a channel.

For example, let’s assume we have three organizations — A, B, C — in the channel and a single anchor peer —
peer0.orgC — defined for organization C. When peer1.orgA (from organization A) contacts peer0.orgC,
it will tell peer0.orgC about peer0.orgA. And when at a later time peer1.orgB contacts peer0.orgC,
the latter would tell the former about peer0.orgB. From that point forward, organizations A and B would start
exchanging membership information directly without any assistance from peer0.orgC.

As communication across organizations depends on gossip in order to work, there must be at least one anchor peer
defined in the channel configuration. It is strongly recommended that every organization provides its own set of anchor
peers for high availability and redundancy.

15.2 ACL

An ACL, or Access Control List, associates access to specific peer resources (such as system chaincode APIs or event
services) to a Policy (which specifies how many and what types of organizations or roles are required). The ACL is
part of a channel’s configuration. It is therefore persisted in the channel’s configuration blocks, and can be updated
using the standard configuration update mechanism.

561



hyperledger-fabricdocs Documentation, Release master

An ACL is formatted as a list of key-value pairs, where the key identifies the resource whose access we
wish to control, and the value identifies the channel policy (group) that is allowed to access it. For example
lscc/GetDeploymentSpec: /Channel/Application/Readers defines that the access to the life cy-
cle chaincode GetDeploymentSpec API (the resource) is accessible by identities which satisfy the /Channel/
Application/Readers policy.

A set of default ACLs is provided in the configtx.yaml file which is used by configtxgen to build channel config-
urations. The defaults can be set in the top level “Application” section of configtx.yaml or overridden on a per
profile basis in the “Profiles” section.

15.3 Block

Fig. 1: Block B1 is linked to block B0. Block
B2 is linked to block B1.

A block contains an ordered set of transactions. It is cryptograph-
ically linked to the preceding block, and in turn it is linked to be
subsequent blocks. The first block in such a chain of blocks is called
the genesis block. Blocks are created by the ordering service, and
then validated and committed by peers.

15.4 Chain

The ledger’s chain is a transaction log structured as hash-linked
blocks of transactions. Peers receive blocks of transactions from the
ordering service, mark the block’s transactions as valid or invalid
based on endorsement policies and concurrency violations, and ap-
pend the block to the hash chain on the peer’s file system.

15.5 Chaincode

See Smart-Contract.

15.6 Channel

Fig. 2: Blockchain B con-
tains blocks 0, 1, 2.

562 Chapter 15. Glossary



hyperledger-fabricdocs Documentation, Release master

Fig. 3: Channel C connects application A1,
peer P2 and ordering service O1.

A channel is a private blockchain overlay which allows for data iso-
lation and confidentiality. A channel-specific ledger is shared across
the peers in the channel, and transacting parties must be authenti-
cated to a channel in order to interact with it. Channels are defined
by a Configuration-Block.

15.7 Commit

Each Peer on a channel validates ordered blocks of transactions and
then commits (writes/appends) the blocks to its replica of the channel
Ledger. Peers also mark each transaction in each block as valid or
invalid.

15.8 Concurrency Control Version
Check

Concurrency Control Version Check is a method of keeping ledger state in sync across peers on a channel. Peers
execute transactions in parallel, and before committing to the ledger, peers check whether the state read at the time the
transaction was executed has been modified. If the data read for the transaction has changed between execution time
and commit time, then a Concurrency Control Version Check violation has occurred, and the transaction is marked as
invalid on the ledger and values are not updated in the state database.

15.9 Configuration Block

Contains the configuration data defining members and policies for a system chain (ordering service) or channel. Any
configuration modifications to a channel or overall network (e.g. a member leaving or joining) will result in a new
configuration block being appended to the appropriate chain. This block will contain the contents of the genesis block,
plus the delta.

15.10 Consensus

A broader term overarching the entire transactional flow, which serves to generate an agreement on the order and to
confirm the correctness of the set of transactions constituting a block.

15.11 Consenter set

In a Raft ordering service, these are the ordering nodes actively participating in the consensus mechanism on a channel.
If other ordering nodes exist on the system channel, but are not a part of a channel, they are not part of that channel’s
consenter set.

15.12 Consortium

A consortium is a collection of non-orderer organizations on the blockchain network. These are the organizations that
form and join channels and that own peers. While a blockchain network can have multiple consortia, most blockchain

15.7. Commit 563



hyperledger-fabricdocs Documentation, Release master

networks have a single consortium. At channel creation time, all organizations added to the channel must be part of a
consortium. However, an organization that is not defined in a consortium may be added to an existing channel.

15.13 Chaincode definition

A chaincode definition is used by organizations to agree on the parameters of a chaincode before it can be used on
a channel. Each channel member that wants to use the chaincode to endorse transactions or query the ledger needs
to approve a chaincode definition for their organization. Once enough channel members have approved a chaincode
definition to meet the Lifecycle Endorsement policy (which is set to a majority of organizations in the channel by
default), the chaincode definition can be committed to the channel. After the definition is committed, the first invoke
of the chaincode (or, if requested, the execution of the Init function) will start the chaincode on the channel.

15.14 Dynamic Membership

Hyperledger Fabric supports the addition/removal of members, peers, and ordering service nodes, without compro-
mising the operationality of the overall network. Dynamic membership is critical when business relationships adjust
and entities need to be added/removed for various reasons.

15.15 Endorsement

Refers to the process where specific peer nodes execute a chaincode transaction and return a proposal response to the
client application. The proposal response includes the chaincode execution response message, results (read set and
write set), and events, as well as a signature to serve as proof of the peer’s chaincode execution. Chaincode applications
have corresponding endorsement policies, in which the endorsing peers are specified.

15.16 Endorsement policy

Defines the peer nodes on a channel that must execute transactions attached to a specific chaincode application, and
the required combination of responses (endorsements). A policy could require that a transaction be endorsed by a
minimum number of endorsing peers, a minimum percentage of endorsing peers, or by all endorsing peers that are
assigned to a specific chaincode application. Policies can be curated based on the application and the desired level of
resilience against misbehavior (deliberate or not) by the endorsing peers. A transaction that is submitted must satisfy
the endorsement policy before being marked as valid by committing peers.

15.17 Follower

In a leader based consensus protocol, such as Raft, these are the nodes which replicate log entries produced by the
leader. In Raft, the followers also receive “heartbeat” messages from the leader. In the event that the leader stops
sending those message for a configurable amount of time, the followers will initiate a leader election and one of them
will be elected leader.

15.18 Genesis Block

The configuration block that initializes the ordering service, or serves as the first block on a chain.

564 Chapter 15. Glossary



hyperledger-fabricdocs Documentation, Release master

15.19 Gossip Protocol

The gossip data dissemination protocol performs three functions: 1) manages peer discovery and channel membership;
2) disseminates ledger data across all peers on the channel; 3) syncs ledger state across all peers on the channel. Refer
to the Gossip topic for more details.

15.20 Hyperledger Fabric CA

Hyperledger Fabric CA is the default Certificate Authority component, which issues PKI-based certificates to net-
work member organizations and their users. The CA issues one root certificate (rootCert) to each member and one
enrollment certificate (ECert) to each authorized user.

15.21 Init

A method to initialize a chaincode application. All chaincodes need to have an an Init function. By default, this
function is never executed. However you can use the chaincode definition to request the execution of the Init function
in order to initialize the chaincode.

15.22 Install

The process of placing a chaincode on a peer’s file system.

15.23 Instantiate

The process of starting and initializing a chaincode application on a specific channel. After instantiation, peers that
have the chaincode installed can accept chaincode invocations.

NOTE: This method i.e. Instantiate was used in the 1.4.x and older versions of the chaincode lifecycle. For the current
procedure used to start a chaincode on a channel with the new Fabric chaincode lifecycle introduced as part of Fabric
v2.0, see Chaincode-definition_.

15.24 Invoke

Used to call chaincode functions. A client application invokes chaincode by sending a transaction proposal to a peer.
The peer will execute the chaincode and return an endorsed proposal response to the client application. The client
application will gather enough proposal responses to satisfy an endorsement policy, and will then submit the trans-
action results for ordering, validation, and commit. The client application may choose not to submit the transaction
results. For example if the invoke only queried the ledger, the client application typically would not submit the read-
only transaction, unless there is desire to log the read on the ledger for audit purpose. The invoke includes a channel
identifier, the chaincode function to invoke, and an array of arguments.

15.19. Gossip Protocol 565



hyperledger-fabricdocs Documentation, Release master

15.25 Leader

In a leader based consensus protocol, like Raft, the leader is responsible for ingesting new log entries, replicating
them to follower ordering nodes, and managing when an entry is considered committed. This is not a special type of
orderer. It is only a role that an orderer may have at certain times, and then not others, as circumstances determine.

15.26 Leading Peer

Each Organization can own multiple peers on each channel that they subscribe to. One or more of these peers should
serve as the leading peer for the channel, in order to communicate with the network ordering service on behalf of the
organization. The ordering service delivers blocks to the leading peer(s) on a channel, who then distribute them to
other peers within the same organization.

15.27 Ledger

Fig. 4: A Ledger, ‘L’

A ledger consists of two distinct, though related, parts – a “blockchain” and the “state
database”, also known as “world state”. Unlike other ledgers, blockchains are immutable
– that is, once a block has been added to the chain, it cannot be changed. In contrast, the
“world state” is a database containing the current value of the set of key-value pairs that
have been added, modified or deleted by the set of validated and committed transactions in
the blockchain.

It’s helpful to think of there being one logical ledger for each channel in the network. In
reality, each peer in a channel maintains its own copy of the ledger – which is kept consistent
with every other peer’s copy through a process called consensus. The term Distributed
Ledger Technology (DLT) is often associated with this kind of ledger – one that is logically
singular, but has many identical copies distributed across a set of network nodes (peers and the ordering service).

15.28 Log entry

The primary unit of work in a Raft ordering service, log entries are distributed from the leader orderer to the followers.
The full sequence of such entries known as the “log”. The log is considered to be consistent if all members agree on
the entries and their order.

15.29 Member

See Organization.

15.30 Membership Service Provider

Fig. 5: An MSP, ‘ORG.MSP’

The Membership Service Provider (MSP) refers to an abstract component of the sys-
tem that provides credentials to clients, and peers for them to participate in a Hyper-
ledger Fabric network. Clients use these credentials to authenticate their transactions,
and peers use these credentials to authenticate transaction processing results (endorse-
ments). While strongly connected to the transaction processing components of the

566 Chapter 15. Glossary



hyperledger-fabricdocs Documentation, Release master

systems, this interface aims to have membership services components defined, in such
a way that alternate implementations of this can be smoothly plugged in without mod-
ifying the core of transaction processing components of the system.

15.31 Membership Services

Membership Services authenticates, authorizes, and manages identities on a permis-
sioned blockchain network. The membership services code that runs in peers and
orderers both authenticates and authorizes blockchain operations. It is a PKI-based
implementation of the Membership Services Provider (MSP) abstraction.

15.32 Ordering Service

Also known as orderer. A defined collective of nodes that orders transactions into a block and then distributes blocks
to connected peers for validation and commit. The ordering service exists independent of the peer processes and
orders transactions on a first-come-first-serve basis for all channels on the network. It is designed to support pluggable
implementations beyond the out-of-the-box Kafka and Raft varieties. It is a common binding for the overall network;
it contains the cryptographic identity material tied to each Member.

15.33 Organization

Fig. 6: An organiza-
tion, ‘ORG’

Also known as “members”, organizations are invited to join the blockchain network by a
blockchain network provider. An organization is joined to a network by adding its Mem-
bership Service Provider (MSP) to the network. The MSP defines how other members of
the network may verify that signatures (such as those over transactions) were generated by a
valid identity, issued by that organization. The particular access rights of identities within an
MSP are governed by policies which are also agreed upon when the organization is joined
to the network. An organization can be as large as a multi-national corporation or as small
as an individual. The transaction endpoint of an organization is a Peer. A collection of
organizations form a Consortium. While all of the organizations on a network are members,
not every organization will be part of a consortium.

15.34 Peer

Fig. 7: A peer, ‘P’

A network entity that maintains a ledger and runs chaincode containers in order to perform
read/write operations to the ledger. Peers are owned and maintained by members.

15.35 Policy

Policies are expressions composed of properties of digital identities, for example:
OR('Org1.peer', 'Org2.peer'). They are used to restrict access to resources on
a blockchain network. For instance, they dictate who can read from or write to a channel, or

15.31. Membership Services 567



hyperledger-fabricdocs Documentation, Release master

who can use a specific chaincode API via an ACL. Policies may be defined in configtx.
yaml prior to bootstrapping an ordering service or creating a channel, or they can be spec-
ified when instantiating chaincode on a channel. A default set of policies ship in the sample
configtx.yaml which will be appropriate for most networks.

15.36 Private Data

Confidential data that is stored in a private database on each authorized peer, logically separate from the channel ledger
data. Access to this data is restricted to one or more organizations on a channel via a private data collection definition.
Unauthorized organizations will have a hash of the private data on the channel ledger as evidence of the transaction
data. Also, for further privacy, hashes of the private data go through the Ordering-Service, not the private data itself,
so this keeps private data confidential from Orderer.

15.37 Private Data Collection (Collection)

Used to manage confidential data that two or more organizations on a channel want to keep private from other orga-
nizations on that channel. The collection definition describes a subset of organizations on a channel entitled to store a
set of private data, which by extension implies that only these organizations can transact with the private data.

15.38 Proposal

A request for endorsement that is aimed at specific peers on a channel. Each proposal is either an Init or an Invoke
(read/write) request.

15.39 Query

A query is a chaincode invocation which reads the ledger current state but does not write to the ledger. The chaincode
function may query certain keys on the ledger, or may query for a set of keys on the ledger. Since queries do not change
ledger state, the client application will typically not submit these read-only transactions for ordering, validation, and
commit. Although not typical, the client application can choose to submit the read-only transaction for ordering,
validation, and commit, for example if the client wants auditable proof on the ledger chain that it had knowledge of
specific ledger state at a certain point in time.

15.40 Quorum

This describes the minimum number of members of the cluster that need to affirm a proposal so that transactions can
be ordered. For every consenter set, this is a majority of nodes. In a cluster with five nodes, three must be available
for there to be a quorum. If a quorum of nodes is unavailable for any reason, the cluster becomes unavailable for both
read and write operations and no new logs can be committed.

15.41 Raft

New for v1.4.1, Raft is a crash fault tolerant (CFT) ordering service implementation based on the etcd library of
the Raft protocol. Raft follows a “leader and follower” model, where a leader node is elected (per channel) and its

568 Chapter 15. Glossary

https://coreos.com/etcd/
https://raft.github.io/raft.pdf


hyperledger-fabricdocs Documentation, Release master

decisions are replicated by the followers. Raft ordering services should be easier to set up and manage than Kafka-
based ordering services, and their design allows organizations to contribute nodes to a distributed ordering service.

15.42 Software Development Kit (SDK)

The Hyperledger Fabric client SDK provides a structured environment of libraries for developers to write and test
chaincode applications. The SDK is fully configurable and extensible through a standard interface. Components,
including cryptographic algorithms for signatures, logging frameworks and state stores, are easily swapped in and
out of the SDK. The SDK provides APIs for transaction processing, membership services, node traversal and event
handling.

Currently, the two officially supported SDKs are for Node.js and Java, while two more – Python and Go – are not yet
official but can still be downloaded and tested.

15.43 Smart Contract

A smart contract is code – invoked by a client application external to the blockchain network – that manages access
and modifications to a set of key-value pairs in the World State via Transaction. In Hyperledger Fabric, smart contracts
are packaged as chaincode. Chaincode is installed on peers and then defined and used on one or more channels.

15.44 State Database

World state data is stored in a state database for efficient reads and queries from chaincode. Supported databases
include levelDB and couchDB.

15.45 System Chain

Contains a configuration block defining the network at a system level. The system chain lives within the ordering
service, and similar to a channel, has an initial configuration containing information such as: MSP information,
policies, and configuration details. Any change to the overall network (e.g. a new org joining or a new ordering
node being added) will result in a new configuration block being added to the system chain.

The system chain can be thought of as the common binding for a channel or group of channels. For instance, a
collection of financial institutions may form a consortium (represented through the system chain), and then proceed to
create channels relative to their aligned and varying business agendas.

15.46 Transaction

Fig. 8: A transaction,
‘T’

Transactions are created when a chaincode is invoked from a client application to read or
write data from the ledger. Fabric application clients submit transaction proposals to en-
dorsing peers for execution and endorsement, gather the signed (endorsed) responses from
those endorsing peers, and then package the results and endorsements into a transaction that
is submitted to the ordering service. The ordering service orders and places transactions in a
block that is broadcast to the peers which validate and commit the transactions to the ledger
and update world state.

15.42. Software Development Kit (SDK) 569



hyperledger-fabricdocs Documentation, Release master

15.47 World State

Also known as the “current state”, the world state is a component of the HyperLedger Fabric
Ledger. The world state represents the latest values for all keys included in the chain trans-
action log. Chaincode executes transaction proposals against world state data because the
world state provides direct access to the latest value of these keys rather than having to cal-
culate them by traversing the entire transaction log. The world state will change every time the value of a key changes
(for example, when the ownership of a car – the “key” – is transferred from one owner to another – the “value”) or
when a new key is added (a car is created). As a result, the world state is critical to a transaction flow, since the current
state of a key-value pair must be known before it can be changed. Peers commit the latest values to the ledger world
state for each valid transaction included in a processed block.

Fig. 9: The World
State, ‘W’

570 Chapter 15. Glossary



CHAPTER 16

Releases

Hyperledger Fabric releases are documented on the Fabric github page.

571

https://github.com/hyperledger/fabric#releases


hyperledger-fabricdocs Documentation, Release master

572 Chapter 16. Releases



CHAPTER 17

Still Have Questions?

We try to maintain a comprehensive set of documentation for various audiences. However, we realize that often there
are questions that remain unanswered. For any technical questions relating to Hyperledger Fabric not answered here,
please use StackOverflow. Another approach to getting your questions answered to send an email to the mailing
list (fabric@lists.hyperledger.org), or ask your questions on RocketChat (an alternative to Slack) on the #fabric or
#fabric-questions channel.

Note: Please, when asking about problems you are facing tell us about the environment in which you are experiencing
those problems including the OS, which version of Docker you are using, etc.

573

https://stackoverflow.com/questions/tagged/hyperledger-fabric
https://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric
https://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric
mailto:fabric@lists.hyperledger.org
https://chat.hyperledger.org/


hyperledger-fabricdocs Documentation, Release master

574 Chapter 17. Still Have Questions?



CHAPTER 18

Status

Hyperledger Fabric is in the Active state. For more information on the history of this project see our wiki page.
Information on what Active entails can be found in the Hyperledger Project Lifecycle document.

Note: If you have questions not addressed by this documentation, or run into issues with any of the tutorials, please
visit the Still Have Questions? page for some tips on where to find additional help.

575

https://wiki.hyperledger.org/display/fabric/Hyperledger+Fabric
https://wiki.hyperledger.org/display/HYP/Project+Lifecycle

	Introduction
	What’s new in Hyperledger Fabric v2.x
	Release notes
	Key Concepts
	Getting Started
	Developing Applications
	Tutorials
	Deploying a production network
	Operations Guides
	Upgrading to the latest release
	Commands Reference
	Architecture Reference
	Frequently Asked Questions
	Contributions Welcome!
	Glossary
	Releases
	Still Have Questions?
	Status

